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Aging is accompanied by a decline of working memory, an important cognitive capacity that involves stimulus-selective neural
activity that persists after stimulus presentation. Here, we unraveled working memory dynamics in older human adults (male
and female) including those diagnosed with mild cognitive impairment (MCI) using a combination of behavioral modeling, neuro-
psychological assessment, and MEG recordings of brain activity. Younger adults (male and female) were studied with behavioral
modeling only. Participants performed a visuospatial delayed match-to-sample task under systematic manipulation of the delay
and distance between sample and test stimuli. Their behavior (match/nonmatch decisions) was fit with a computational model
permitting the dissociation of noise in the internal operations underlying the working memory performance from a strategic
decision threshold. Task accuracy decreased with delay duration and sample/test proximity. When sample/test distances were small,
older adults committed more false alarms than younger adults. The computational model explained the participants’ behavior well.
The model parameters reflecting internal noise (not decision threshold) correlated with the precision of stimulus-selective cortical
activity measured with MEG during the delay interval. The model uncovered an increase specifically in working memory noise in
older compared with younger participants. Furthermore, in the MCI group, but not in the older healthy controls, internal noise
correlated with the participants’ clinically assessed cognitive integrity. Our results are consistent with the idea that the stability
of working memory contents deteriorates in aging, in a manner that is specifically linked to the overall cognitive integrity of
individuals diagnosed with MCI.

Key words: behavioral modeling; electrophysiology; neural dynamics; neuroimaging; translational neuroscience

Significance Statement

Several cognitive functions decline during aging, and this process is aggravated in mild cognitive impairment (MCI)—a
condition constituting a primary risk factor for developing dementia. One function susceptible to age-related cognitive decline
is working memory: the ability to maintain information online for the flexible control of behavior, which entails persistent
stimulus-selective neural activity in different regions of the cerebral cortex. We used computational modeling of behavioral
and neural recordings to show that the stability of working memory contents is reduced in older human subjects and predicts
overall cognitive decline in MCI patients. Our findings provide new mechanistic insight into cognitive aging and MCI and
highlight working memory stability as an objective marker of the mechanisms underlying cognitive impairment.
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Introduction
Aging has profound effects on brain function, with important
ramifications at the levels of society and individuals
(Lindenberger, 2014). While several cognitive capacities tend to
decline during aging in a largely correlated fashion (Grady,
2012; Lindenberger, 2014), cognitive aging also exhibits strong
interindividual differences (Lindenberger, 2014). These differ-
ences may reflect undetected pathology of neural circuitry as
well as strategies to cope with performance reductions in specific
tasks (Grady, 2012). Developing a mechanistic understanding of
these cognitive changes faces several challenges (Grady, 2012).
One is to delineate factors that exacerbate the physiological driv-
ers of age-related cognitive decline and incur an increased risk of
developing dementia, as manifested, for example, in mild cogni-
tive impairment (MCI; Hedden and Gabrieli, 2004; Grady, 2012;
Petersen, 2016). Another challenge is to isolate specific mecha-
nistic markers of aging-related changes in cognitive computa-
tion, which predict individuals’ performance on specific
cognitive tasks as well as their general cognitive integrity
(Grady, 2012).

One capacity affected by age-related cognitive decline is work-
ingmemory (Park et al., 1996; Hedden and Gabrieli, 2004; Grady,
2012; Lindenberger, 2014). Working memory refers to the ability
to maintain information online and put this information to use
for cognitive computation and action (Baddeley, 1992).
Working memory is an appealing focus for unraveling the phys-
iological basis of age-related cognitive decline for several reasons.
First, it is a fundamental building block of cognition (Goldman-
Rakic, 1995; Miller et al., 2018), and so individual working mem-
ory performance tends to predict performance on a variety of
other cognitive tasks (Conway et al., 2002; Oberauer et al.,
2008; Salthouse and Pink, 2008; Verhaeghen, 2013). Second, its
neural basis, including age-related deteriorations (M. Wang
et al., 2011), has been studied extensively in the monkey brain
as well as in cortical circuit models (Miller et al., 2018; X-J.
Wang, 2021). Third, recent advances in neuroimaging data anal-
ysis permit noninvasive tracking of the maintenance of working
memory content in the human brain (Christophel et al., 2017;
Curtis and Sprague, 2021).

Previous work has culminated in a cohesive framework for
linking performance on working memory tasks to computational
and neurophysiological mechanisms. The maintenance of infor-
mation in working memory relies, at least in part, on stimulus-
selective neuronal activity that persists after the offset of a
to-be-remembered stimulus (Goldman-Rakic, 1995; Miller
et al., 2018; X-J. Wang, 2021). Convergent evidence from differ-
ent approaches in humans and monkeys has identified such
content-selective persistent activity in many brain regions
including the frontal, parietal, and sensory cortex (Foster et al.,
2016; Christophel et al., 2017; Miller et al., 2018; Barbosa et al.,
2020, 2021; Curtis and Sprague, 2021; X-J. Wang, 2021).
Modeling work shows that such persistent activity can be pro-
duced by synaptic reverberation (Compte, 2000; Compte, et al.,
2003; X-J. Wang, 2021) in circuits with a balanced interplay
between recurrent excitation and inhibition (Shu et al., 2003).
Disruptions in this balance deteriorate the stability of the
stimulus-selective activity patterns, thus yielding a characteristic
decrease of behavioral performance (Murray et al., 2014).

This framework now opens the door for studying the neural
bases of age-related changes in cognition at an unprecedented
level of mechanistic detail. Abstractions of the above (high-
dimensional and biophysically detailed) cortical circuit models

can be fit to behavioral data and used to decompose an individ-
ual’s performance in a working memory task into several latent
sources of behavioral variability (Van Den Berg et al., 2012;
Kilpatrick et al., 2013; Panichello et al., 2019; Schapiro et al.,
2022). This enables a dissociation of the stability of the working
memory representation from task strategies that could them-
selves change with aging.

To illuminate dynamical mechanisms underlying age-related
changes in cognition, we aimed to (1) identify computational and
neurophysiological signatures of working memory mechanisms
and (2) link these signatures to individual cognitive integrity in
older adults. To these ends, we combined model-based analyses
of behavior during a working memory task with magnetoence-
phalographic (MEG) recordings. We isolated specific signatures
of the stability of working memory representations and the
underlying cortical activity during working memory delays.

Materials and Methods
Participants and recruitment
We report analyses of two datasets acquired in the context of different
studies. Participants of both studies were financially compensated with
ten Euros per hour of participation and (for Dataset 2) for expenses
incurred due to SARS-CoV-2-antigen testing.

Sample for Dataset 1. Dataset 1 included behavioral (working mem-
ory task), neuropsychological, eye-tracking, and MEG data from three
groups of older participants (Fig. 1A, Table 1): participants diagnosed
clinically with MCI (N= 19), age-matched older healthy controls
(OHCs; N= 20), and unclassified older participants (UNC; N= 7). The
recruitment of participants and definition of these groups are described
in the following.

Participants for the MCI group were recruited in the outpatient clinic
for memory disorders of the Department of Psychiatry and
Psychotherapy, University Medical Center Hamburg-Eppendorf
(UKE). The study was part of a longitudinal study, in which patients
underwent a placebo-controlled intervention (tailored video game). All
measurements reported in this paper stem from the first time point (pre-
intervention baseline). Included patients fulfilled diagnostic criteria for
MCI (F06.7) according to the International Classification of Diseases,
Version 10 (World Health Organization, 2004). Further, the domain-
specific subdivisions of amnestic MCI and multidomain-amnestic MCI
were both eligible for the study. The distribution of diagnoses within
the MCI group is shown in Table 1. Age-matched healthy control partic-
ipants for the OHC group were recruited using flyers and newspaper/
online announcements.

For the assessment of cognitive integrity, the extended version of the
well-validated Consortium to Establish a Registry for Alzheimer’s
Disease (CERAD-Plus) neuropsychological test battery including addi-
tional tests for executive functions and cognitive speed (Moms et al.,
1989; Mirra et al., 1991; Schmid et al., 2014) was employed.
Participants of the OHC group showed no cognitive impairment unex-
pected for their age, gender, and educational level (population-based
z-scores greater than −1.5 in each test of the test battery).

Participants originally recruited for the OHC group that produced
scores in line with MCI in the neuropsychological assessment could

Table 1. Sample description

Measure
YHC
(N = 21)

OHC
(N = 20)

MCI
(N = 19)

UNC
(N = 7)

Mean age in years (SD) 27.2 (3.8) 69.4 (6.2) 73.7 (6.2) 70.3 (8.2)
% Female 66.7 60 63.2 57.1
% Diagnosis: amnestic MCI |
multidomain-amnestic MCI

- - 63.2 | 36.8 -

YHC, younger healthy controls; OHC, older healthy controls; MCI, mild cognitive impairment; UNC, unclear
diagnosis.
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choose to be consulted clinically by a psychiatrist of the outpatient clinic
for memory disorders. In case they met the inclusion criteria for the
study and the physician deemed it appropriate, participation as an
MCI patient in the study was offered, and they were assigned to the
MCI group for further analysis (N= 1). Those subjects who did not fulfill
the criteria for OHC and did not undergo this full diagnostic procedure
were not assigned to either the OHC or MCI group and were grouped
together as the unclear diagnosis (UNC) group (N= 7).

General inclusion criteria were participant’s age between 55 and 90
years; ability to consent; place of residence around Hamburg,
Germany; and sufficient mobility. Exclusion criteria were relevant psy-
chiatric concomitant diseases (depression, schizophrenia, anxiety disor-
der, personality disorder), physical illnesses with a relevant influence on
mental or motor skills functions (e.g., stroke, heart failure, cerebrovascu-
lar diseases, endocrinological disorders, inflammatory diseases of the
central nervous system, epilepsy, Parkinson’s disease), substance depen-
dence or substance abuse, relevant impairments of the sensory system
that make interventions impossible, clinically relevant anemia, nonre-
movable metal implants or implanted electronic devices, and
claustrophobia.

Sample for Dataset 2. Dataset 2 consisted of behavioral and eye-
tracking data (same working memory task as Dataset 1) from a group
of young healthy controls (YHCs, N= 21; Fig. 1A, Table 1), collected
in the context of a separate study at the Department of Clinical
Psychology and Psychotherapy at the Universität Hamburg. We used
these data as a reference in the current study to identify overall age-
dependent changes in working memory performance.

Participants in the YHC group were recruited from the general pop-
ulation of Hamburg through flyers and online announcements and
included if they were between 18 and 35 years old and had no pre-
existing, diagnosed mental disorder or neurological condition.

Informed consent. Participants’ informed (written) consent was
obtained in both studies. The study design for both datasets was
approved by the ethics committee of the Department of Psychiatry at
the UKE (Dataset 1) or the Faculty of Psychology and Human
Movement Science at Universität Hamburg (Dataset 2) and conducted
in accordance with the Declaration of Helsinki. We excluded subjects
from all analyses if their accuracy in the working memory task was below
60% (N= 3; Extended Data Fig. 1-1C), which is below the accuracy that
would be achieved should a participant employ the simple strategy of giv-
ing a “different” response on every trial (see below, Working memory
task and procedure).

Experimental design
Dataset 1. MEG sessions were conducted in the UKE Department of

Neurophysiology and Pathophysiology. For MEG data acquisition, sub-
jects were placed in a comfortable position in a magnetically shielded
room, at a viewing distance of 60 cm from the screen on which the sti-
muli were shown. MEG data were recorded with 275 axial gradiometers
(CTF Systems) at a sampling rate of 1,200 Hz. Electrocardiogram (ECG),
vertical EOG, and horizontal EOGweremeasured using bipolar Ag/AgCl
electrodes and a ground measured on the wrist. Subjects were asked to
minimize their head movements during the measurements, and the
three-dimensional head position was recorded via fiducial coils attached
to the external auditory canals and the nasion. This permitted online
tracking of the head position and guiding of subjects back into their ini-
tial position during breaks of the experimental task. Stimuli were back-
projected on a transparent screen with a projector (Sanyo PLC-XP51)
with 1,920 × 1,080 resolution, at a refresh rate of 60 Hz. Eye movements
and pupil size were recorded during task performance with an EyeLink®
1000 long-range mount (SR Research) device at a sampling rate of
1,000 Hz.

Structural T1-weighted MRI scans for individualized source recon-
struction of MEG data were collected with a Siemens 3 T
MAGNETOM Prisma scanner using a standard 32-channel head coil.
The structural images were obtained using a three-dimensional
T1-weighted magnetization-prepared gradient-echo sequence (repeti-
tion time = 2,500 ms; echo time = 2.12 ms; TI = 1,100 ms; acquisition

matrix = 232 × 288 × 19.3; flip angle = 9°; 0.83 × 0.83 × 0.94 mm voxel
size).

The neuropsychological assessment of the older subjects was admin-
istered by experienced clinical staff in the outpatient center for memory
disorders of the UKE Department of Psychiatry and Psychotherapy. The
tests of the CERAD-Plus battery were performed in a paper–pencil for-
mat and evaluated for diagnostic purposes according to the reference
data provided by the Memory Clinic of Basel (Platter, 2018).

Dataset 2. Data were collected in a behavioral laboratory under
similar conditions as for the MEG recordings in Dataset 1 (task-relevant
stimulus parameters were identical with the exception of a shorter inter-
trial interval (see below,Working memory task and procedure). Here, we
used a headrest to ensure a fixed viewing distance of 52 cm from the
monitor, and stimuli were presented on a 22′′ Dell P2210 monitor
with a resolution of 1,680 × 1,050 and a refresh rate of 60 Hz.
Eye-tracking (SMI RED500) data were simultaneously acquired during
task performance at 250 Hz. ECG data were also recorded but are not
reported here.

Neuropsychological test battery and cognitive integrity score
The neuropsychological diagnostics carried out were based on the vali-
dated CERAD-Plus test battery, which consists of 11 individual tests: ver-
bal fluency (semantic, animals; phonemic, S-words), modified Boston
Naming Test (BNT), Mini-Mental State Examination (MMSE), word
list (learning, recall, and recognition), constructional praxis, construc-
tional praxis recall, and Parts A and B of the trail making test (TMT).
As is common in the field, performance on the word list recognition
test was quantified in terms of the discriminability score introduced in
Mohs et al. (1986):

Discriminability = 1− (10−H)+ (10− CR)
20

( )
× 100, (1)

where H was the hit rate and CR was the rate of correct rejects.
We used principal component analysis (PCA) to combine ten test

scores into a single summary measure of cognitive integrity, whereby
the MMSE was excluded as scores on this test already reflected a mixture
of assessments of several cognitive domains. The strong correlation
between MMSE scores and our cognitive summary score (r= 0.65;
p < 10−4) further validated our approach (Extended Data Fig. 1-1B).
To compute the summary measure of cognitive integrity, the individual
scores on each test were z-transformed across subjects (Extended Data
Fig. 1-1A). Unlike the other tests, high scores of both TMTs (Parts A
and B) reflect poor performance. To ensure that positive values reflected
higher performance for all tests, the signs of the z-scores for these two
tests were flipped. We then computed the (across-subject) covariance
matrix between the z-scored test scores (dimensionality, 10 × 10) and
used MATLAB’s (MathWorks®) singular value decomposition algorithm
to compute the corresponding ten principal components and their asso-
ciated eigenvalues. One subject (MCI) was excluded from this analysis
because they did not complete all tests in the battery.

For comparison with previous neuropsychological work, we also
computed a composite CERAD total score proposed by Chandler et al.
(2005) as the sum of the following six test scores: semantic fluency
(max. 24 points), BNT, word list learning, word list recall, word list rec-
ognition (true positives− false positives) and constructional praxis.
This CERAD total score was closely correlated with the eigenvalue of
the first principal component (PC1) derived via the PCA procedure
described above (Fig. 1B, middle). In this study, we used the PC1 as
the summary measure of individual cognitive integrity. We took this
approach because it made use of information from all tests of the
extended test battery version, which has been shown to be diagnostically
beneficial (Schmid et al., 2014), and because in doing so, tests that do not
contribute to the CERAD total score, but that showed group differences
between OHC andMCI in our study, could be included in the composite
score for cognitive integrity (Extended Data Table 1-1). The PC1
explained a large fraction of variance (>40%) in the neuropsychological
data (see Results).
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Working memory task and procedure
The visuospatial delayed match-to-sample working memory task
(Fig. 1C; Extended Data Fig. 1-1D) was programmed in MATLAB using
Psychtoolbox-3 (Brainard, 1997). The task was to decide whether a sam-
ple stimulus and a test stimulus separated by a variable delay occurred in
the same or different locations. Each trial began with presentation of a
central white fixation cross (arm length, 0.8° of visual angle, d.v.a.; arm
thickness, 0.2 d.v.a.) that was present for the entire trial. After a variable
baseline interval (uniform distribution with range 1–2.5 s for Dataset 1,
0.5–2.0 s for Dataset 2), the sample stimulus was presented for 0.5 s, fol-
lowed by the delay (1, 3, or 9 s, equiprobable) and then the test stimulus
(0.5 s). Sample and test stimuli were circular checkerboard patches
(diameter, 2.8 d.v.a.; spatial frequency, one cycle per d.v.a.), appearing
in the lower visual hemifield at a fixed eccentricity of 6 d.v.a. The sample
could be presented at any of 12 equiprobable locations, ranging from
∼13.85 to ∼166.15° of polar angle (fixed spacing≈ 13.85°), while the
most extreme samples could still be flanked by a “near nonmatch” test
stimulus on both sides (amounting to 14 possible test stimulus locations,
ranging from 0 to 180°). Herein, 0° refers to the left part of the horizontal
meridian. The test occurred at either the same location as the sample or
at a different location (see below). Upon offset of the test stimulus, the
fixation cross changed color from white to light blue, which prompted
subjects to report their decision via right- or left-handed button press
for “same” or “different” judgments, respectively. This response was
soon (0.1 s) followed by visual feedback about its accuracy (“correct”
in green font; “error” in red font; font size 36, presented 1.0 d.v.a. above
fixation for 0.75 s). Each trial was followed by a fixed interval (3 s for
Dataset 1, 2 s for Dataset 2) during which participants were instructed
to blink if needed, and this was followed by the baseline period of the
following trial.

The task was designed to consist of three trial categories, each with a
desired frequency of occurrence within a block of 63 trials: “match trials”
(sample and test at identical positions, 33% of trials), “near nonmatch
trials” (smallest possible sample-test distance of 13.85°; 33% of trials),
and “far nonmatch trials” (sample-test distance randomly chosen from
the remaining possible sample-test distances, which could be between
27.7 and ∼166.15° depending on the sample location; 34% of trials).
Trials were presented in blocks of 63 trials each, within which the differ-
ent delay durations and sample-test distances were randomly interleaved
under the abovementioned constraint. Subjects received feedback about
their average performance at the end of each block. They were instructed
to fixate the central cross and minimize blinking during the trial.

Before starting the experimental task, all subjects underwent training to
familiarize themwith the task. This consisted of a general instruction of the
task rules with the help of a slide presentation (administered outside the
MEG chamber for Dataset 1 and in the testing room for Dataset 2) and
practice with various aspects of the task (after the subject had been placed
in the MEG for Dataset 1 and in the testing room for Dataset 2). The first
stage of the practice required the participant to fixate the fixation cross
while checkerboard stimuli identical to those of the main experiment
were presented, including feedback if and when the participant broke
fixation. Next, four nonconsecutive example trials covering match, far
nonmatch, and near nonmatch trials and varying delay durations were
performed. In case of an incorrect response on any of these trials, a
text with the correct solution was displayed and the trial was repeated.
Finally, six consecutive trials were performed with identical timing and
intertrial intervals as in the main experiment. Once training was com-
plete, each subject then performed several blocks of the main experiment
(concurrent to MEG measurement for Dataset 1).

We aimed for three task blocks per subject in Dataset 1 and at least
two blocks per subject in Dataset 2. Data collection had to be terminated
early in some subjects, due to lack of alertness or willingness to continue,
or end of the scheduled testing session. We obtained the complete set of
three trial blocks for the following fractions of participants per group:
MCI, 14/19; OHC, 13/20; UNC, 3/7; and YHC, 4/21. Since the differences
in trial counts for different individuals/groups studied here only affect the
precision of the parameter estimates (behavioral model parameters or
MEG measures), but did not bias them in a particular direction, they
also did not bias the group comparisons or across-subject correlations

reported in this paper. Furthermore, we included these trial counts as
nuisance regressors in regression models (Fig. 7).

Analysis of working memory-guided behavior
Trials were excluded from analysis contingent on the following criteria: a
task-irrelevant button (two of four available buttons on the response pad)
was pressed, response time was ≤0.2 s, or it exceeded the subject’s mean
response time by four standard deviations. Further, the entire first block
of one MCI participant was excluded from analysis due to poor compre-
hension of task instructions (accuracy <50% correct for this block).
Accordingly, an average (SD) of 157 (31) trials per subject were submit-
ted for analysis (range across subjects, 59–189 trials).

The mean response accuracy was computed as the proportion of cor-
rect responses (i.e., “same” response on match trials and “different”
response on nonmatch trials). For several analyses (Fig. 2B; Extended
Data Fig. 2-1), error rates were analyzed separately for the three trial cat-
egories described above.

We also quantified the signal-detection theoretic (Green and Swets,
1966) measures of sensitivity (d′) and criterion (c) from the fractions
of hits (“same” responses on match trials, denoted asH) and false alarms
(“same” responses on nonmatch trials, denoted as FA), whereby the
latter fraction was first computed separately for the near and far
nonmatch trials and then averaged.

Sensitivity d′ and criterion c were then computed as follows:

d′ = z(H)− z(FA), (2)

c = z(H)+ z(FA). (3)

Computational modeling of working memory-guided behavior
General approach. Our model of working memory task behavior

consisted of two computational elements, both of which accounted for
a fraction of behavioral imprecision: (1) a point-estimate memory repre-
sentation that diffused over time, leading to an increase in error as a func-
tion of delay (Panichello et al., 2019), and (2) a decision transformation
of that representation into a categorical behavioral report (Engel and
Wang, 2011; Murray et al., 2014).

The dynamics of the memory representation were modeled as a
Wiener diffusion process where the standard deviation of the across-trial
distribution of memory representations at generic time t during the
memory delay was captured by σt and determined by the memory noise
parameter σmem as follows:

st =
�������
ts2

mem

√
. (4)

The across-trial variance of this memory representation thus increased
monotonically as a function of time (Eq. 4). In practice, we estimated
σT, the across-trial memory representation distribution at the end of a
given delay duration T= {1, 3, 9} s. This representation was then trans-
formed into a probability distribution over the task-relevant decision
variable x, the absolute distance between the memory representation
and test stimulus presented at the end of the delay duration T . We mod-
eled the across-trial distribution of the decision variable as a normal dis-
tribution with a mean equal to the true sample-test distance (Δ) and
folded around zero (corresponding to test location) to reflect the absolute
deviation of the internal memory representation from the test stimulus as
follows:

pdf (x|D, sT ) = 1�������
2ps2

T

√ × dx × exp − (x–D)2

2s2
T

( )
+ 1�������

2ps2
T

√
× dx × exp − (x + D)2

2s2
T

( )
. (5)

Here, the two summed terms on the right-hand side of the equation
correspond to the probability densities from the original memory repre-
sentation distribution, taking an equal distance (x) left and right of
the test stimulus location. We evaluated this function numerically
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for 0 ≤ x ≤ 360 (with the high upper bound allowing for possible
cases of very high memory noise) and at a resolution dx = 0.05.
We modeled the decision function (DF) for a given value of x as a
logistic function:

DF(x|u, d, sdec) = u+ 1–(2× u)
1+ e−(x–d)/sdec

, (6)

where δ was the inflection point of the function [DF (δ) = 0.5] and cor-
responds to a “soft” (i.e., nondeterministic) threshold for translating x
into a same (DF << 0.5) or different (DF >> 0.5) choice; σdec was a deci-
sion noise parameter that governed the slope of DF; and θ was the prob-
ability of a time-independent lapse that determined the function’s two
asymptotes (θ and 1-θ, respectively), assumed to be symmetric for sim-
plicity. The probability of a “different” response as a function of delay
duration T and sample-test distance Δwas then computed by integrating
(i.e., summing) over all x:

p(different|T , D) =
∑

DF(x)× pdf(x|D, T). (7)

Note that lapses could be sensory, motor, decisional, or mnemonic in ori-
gin. Also note that, if DF took the form of a step function (i.e., infinite
slope, σdec = 0), then the location of the step was equivalent to a determi-
nistic threshold applied to the decision variable (Fig. 3A, middle).

In some model variants, we also allowed for the possibility of time-
dependent memory lapses. The time-dependent memory lapse probability
was modeled as a hazard function in which the likelihood of a memory
lapse having occurred by time t during the delay (umem,t) accumulated
over time:

umem,t = 1 − e−lt , (8)

where l was the hazard rate.
The overall choice probability was then computed as a mixture model

as follows:

p(different|T , D) = umem,T × 0.5+ (1− umem,T )×
∑

DF(x)

× pdf(x|T , D). (9)

We fit six different variants of this general model to participants’ choices
(Table 2).

The most complex model variant (Model 6) allowed all five above-
described parameters to vary: memory noise σmem, decision noise σdec,
decision threshold δ, fixed lapse probability θ, and hazard rate of memory
lapses λ. The simplest model variant (Model 1) fit only σmem and δ as free
parameters. All variants of intermediate complexity fit σmem and δ as addi-
tional free parameters. In variants that fit only a subset of the five param-
eters described above, all other parameters were set to zero.Model variants
not including time-independent (θ) and time-dependent (λ) lapses resulted
in asymptotes of the DF equal to 0 and 1.Model variants in which decision
noise (σdec) was set to zero resulted in a DF that took the form of a step
function (Fig. 3A, middle) as opposed to a smooth sigmoid.

Parameter estimation. The objective function to be minimized dur-
ing model fitting was defined as the cross-entropy across trials trl

between the participants’ responses and model predictions for the likeli-
hood of a “different” response:

CE = −
∑
trl

(1− pdtrl)log(1− p̂dtrl)+ pdtrllog( p̂dtrl), (10)

where pdtrl refers to the participant’s response and p̂dtrl to the model’s
prediction. Best-fitting parameters for a particular model variant were
found by minimizing this objective function using the particle swarm
optimization algorithm (100 particles with wide parameter bounds and
initialized at pseudorandom locations: max. of 1,000 iterations) using a
toolbox designed for implementation in MATLAB (Birge, 2003).

Model selection: parameter recovery and model comparison. Among
the six candidate fitted models (Table 2), we selected a single variant
through a combination of parameter recovery and formal model com-
parison, and the parameter estimates of this variant were then used for
all analyses reported in “Results.” To evaluate the recoverability of
parameters from the different candidate model variants, we simulated
behavioral datasets (N= 100, each consisting of 189 trials) for each var-
iant where each parameter was set to a representative value across all sub-
jects from fits of the least complex model that included that parameter
(σmem = 4.2856; σdec = 3.0802; δ= 11.1370; θdec = 0.0203; λ= 0.0049;
Extended Data Fig. 3-1A). We evaluated the recovery of σmem and δ
(key parameters present in all model variants) by means of the width
of the distribution of the fitted parameters across all 100 simulated data-
sets. This procedure showed that the recoverability of σmem and δ was
compromised in models that included σdec as a free parameter
(Extended Data Fig. 3-1B), excluding those two models from further
consideration.

Next, the goodness of fit of the remaining four model variants was
compared by means of Bayes’ information criterion (BIC) scores as
follows:

BIC = 2 × CE + nfree parameters × log(ntrials). (11)

Model 2, which included σmem, δ, and θ as free parameters, was themodel
with the lowest mean BIC score when pooling all subjects across groups
(Extended Data Fig. 3-1C). Taken together, parameter recovery analyses
and model comparison motivated our selection of Model 2 (Table 2) for
all further analyses of the parameter estimates (link to overt behavior,
cognitive integrity, and MEG). We acknowledge that it remains possible
that time-dependent memory lapses and/or decision noise affected par-
ticipants’ behavior. However, our parameter recovery analysis suggests
that the current experimental manipulations are not adequate for iden-
tifying the contributions of these additional parameters.

MEG data analysis
MEG data were analyzed with a combination of customized scripts (see
associated code) and the following toolboxes: FieldTrip (Oostenveld
et al., 2011) for MATLAB and MNE (Gramfort et al., 2013) and pymeg
for Python (https://github.com/DonnerLab/pymeg), as established in the
previous work of our laboratory (Wilming et al., 2020; Murphy et al.,
2021).

Preprocessing. Preprocessing of the MEG data proceeded according
to a standardized pipeline developed in our laboratory (https://github.
com/DonnerLab/meg-preproc). This broadly involved initial artifact
detection and removal using both independent component analysis
(ICA) and non-ICA methods, trial segmentation, and reconstruction
of the signal with respect to its cortical source.

Continuous MEG time series for each task block were first resampled
to 400 Hz, and the line noise was removed by bandstop filtering∼50, 100,
and 150 Hz. Time points at which any of the following MEG artifacts
occurred were then identified: head movements (translation of any
fiducial coil >6 mm from the first data point in that block), muscle
artifacts (z > 20 after applying a 110–140 Hz Butterworth filter and
z-scoring), sensor jumps (detected by Grubb’s outlier test for intercepts
of lines fitted to log-power spectra computed on 7 s data segments, with

Table 2. Free parameters in fitted model variants

Model
#

Memory
noise
(σmem)

Threshold
(δ)

Lapse
(θ)

Memory
lapse rate
(λ)

Decision
noise
(σdec)

# of free
parameters

1 X X 2
2 X X X 3
3 X X X 3
4 X X X 3
5 X X X X 4
6 X X X X X 5
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20% overlap between successive segments), and other noise sources (usu-
ally due to cars passing the MEG laboratory, identified as any 2 s data
segment in which any sensor had data range >20 pT). The timings of
blinks (EyeLink algorithm) and saccades (gaze changes >1.5 d.v.a.)
were identified using the eye-tracking data if these data were deemed
of sufficient quality after visual inspection, or through outliers in the ver-
tical EOG (z-score > 2). Heartbeat timings were identified by applying
FieldTrip’s ft_artifact_ecg algorithm to the ECG data.

Having detected the artifacts described above, we then high-pass
filtered the continuousMEG data at 1 Hz, discarded any time points con-
taining head movement, muscle, jump, or car/other artifacts, concate-
nated the cleaned time series across blocks for a given participant, and
subjected the resulting concatenated data to ICA (infomax algorithm).
Component time series were then segmented from −1 to 2 s around
identified blinks and saccades (−0.3–0.3 s around identified heart beats);
components were ranked by their coherence with EOG (ECG) data
equivalently segmented around blinks/saccades (heart beats); the tempo-
ral trajectories, spectral properties, and spatial topographies of the 25
components with the highest coherences were visually inspected; and
the component numbers of those judged to capture eye or cardiac arti-
facts were noted. In a final set of steps, the ICA weights were backpro-
jected onto the downsampled, bandstop-filtered continuous MEG data
now subjected to a high-pass filter of 0.1 Hz; those components captur-
ing eye and cardiac artifacts were removed from the data; and the data
were epoched into trial intervals from 0.6 s before sample onset to
0.3 s after test stimulus onset. In addition to those excluded due to the
response time and accuracy criteria described above for behavioral anal-
yses, trials with any time point containing previously identified head
movement, muscle, jump, or car/other artifacts were excluded from all
MEG analyses.

Subjects who despite careful recruitment were judged through
visual inspection to be subject to persistent artifacts in their MEG
data (presumably from the presence of metallic materials, used for
example in dental work) were preprocessed without discarding these
time points, and the data quality was re-evaluated after the source
reconstruction procedure (N = 7). Subjects whose data on visual inspec-
tion after source reconstruction still displayed slow fluctuations indi-
cating metal artifacts were excluded from further MEG data analysis
altogether (N = 3).

Our MEG analyses focused primarily on data around sample presen-
tation and the first second of the delay. If trials with a delay duration
above 1 s did not contain artifacts during the first second of the delay,
these were preserved for the analysis together with the 1 s delay trials
to increase the number of trials available for analysis and computation
of the data covariance matrix (see below, Spectral analysis and source
reconstruction). If a cleaned dataset for an individual subject consisted
of fewer than 80 trials after preprocessing, then that subject was excluded
from all MEG analyses (N= 4). In total, this procedure resulted in the
exclusion of 7 of the 46 subjects who contributed to the behavioral
results, leaving 39 subjects for MEG analysis in total (16 for MCI, 17
for OHC, and 6 for UNC).

Spectral analysis and source reconstruction. We first subjected the
trial-averaged (phase-locked) response of each sensor from the single-
trial time courses, in order to isolate activity components that are non-
phase locked to stimulus onset. The latter are generated by recurrent
synaptic interactions that are also involved in the generation of persistent
cortical activity (Donner and Siegel, 2011; Miller et al., 2018).
Time-frequency representations (TFRs) of complex-valued Fourier
coefficients (phase and amplitude information) for individual trials
were calculated using a sliding window Fourier transform. We used
Hanning tapers for the frequency range 1–35 Hz (window length,
0.4 s; time steps, 0.05 s; frequency steps, 1 Hz; frequency smoothing,
±2.5 Hz) and the multitaper method with discrete proloid slepian tapers
(window length, 0.25 s; time steps, 0.05 s; frequency steps, 4 Hz; fre-
quency smoothing, ±6 Hz) for the frequency range 36–120 Hz.

For the source reconstruction, we used (mostly individual subject; see
below) structural MRI scans to generate three-layered head models in
FieldTrip, which were in turn used to compute the forward solution

(leadfield) for each source point. The cortical surface was reconstructed
using FreeSurfer (Dale et al., 1999; Fischl et al., 1999) and aligned to
established anatomical atlases (see below, Definition of ROIs and ROI
groups). For subjects with artifactual (N= 6) or no (N= 4) MRI scans,
a template average surface provided by FreeSurfer (“fsaverage”) was
used instead. We used linearly constrained minimum variance
(LCMV) beamforming to project the sensor-level Fourier coefficients
into source space, specifically onto 4,096 vertices per hemisphere located
on the cortical surface (recursively subdivided octahedron). We com-
puted LCMV filters with MNE using a covariance matrix of the cleaned,
epoched single-trial (broadband) data to constrain a forward model. This
covariance matrix was computed using the data from all trials irrespec-
tive of delay duration between 0.25 s before and 1.5 s after sample onset.
At each vertex, the source orientation was selected based on the maxi-
mum output source power determined through singular value decompo-
sition. To overcome random sign flips of the beamformer results, the
polarity of the time series of adjacent vertices was aligned. Then the
complex-valued Fourier coefficients of each vertex were computed by
application of the corresponding spatial filter and transformed into
power by taking the absolute value and squaring.

The source-level power estimates were averaged across all vertices
within each region of interest (ROI; see below, Definition of ROIs and
ROI groups) and normalized with respect to the mean baseline spectrum
using the decibel transform. The baseline spectrum was computed by
averaging power estimates across the interval −0.4 to −0.2 s from the
sample onset and then across all trials. Because we had no a priori
hypotheses about hemispheric lateralization effects and the anatomical
atlas we used is symmetric, the power modulation values were further
pooled across the left- and right-hemispheric parts of each ROI. Power
modulations of the ROI groups were evaluated as the mean
trial-averaged power values of the ROIs within each ROI group (Table 3).

Decoding of sample spatial location fromMEG data. We trainedmul-
tivariate decoders to predict the angular position of the sample stimulus
from the spatiospectral power modulation patterns in each cortical area
during the trial. Decoding was performed using ridge regression through
scikit-learn for Python (Pedregosa et al., 2011), separately for each sub-
ject and time point. We normalized the power values of all vertices per
“brain region” (from both hemispheres) and 31 frequency bins (range,
5–35 Hz) by z-scoring across trials. This frequency range was chosen
because we observed sustained powermodulations in this range through-
out delay intervals (Fig. 5A; Extended Data Fig. 5-1A). In separate ver-
sions of this analysis, “brain region” referred to individual ROIs from
the anatomical atlas or ROI groups (Table 3), across which all vertices
were pooled. To reduce the dimensionality of the data, PCA was per-
formed on the training data, and we only used the components account-
ing for top 80% of the variance in the data for the decoding. This cutoff
was chosen to avoid overfitting given the relatively low number of trials
and resulted in 39.49 ± 8.5 (mean ± SD) components averaged across all
time points for example area V1 (Fig. 6A). The resulting components
were used as decoding features. The decoder was fit using 10-fold cross-
validation and an L2 penalty of α= 1. Decoding precision was evaluated
by Pearson’s correlation coefficient between the predicted sample angle
and its actual angle. To additionally assess whether a more coarse-

Table 3. Definition of groups of ROIs for time courses of delay activity

Group ROI Reference

V1 V1 Glasser et al. (2016)
Early visual V2, V3, V4
Dorsal visual V6, V3A, V7, IPS1, V3B, V6A
MT+ and neighbors MST, LO1, LO2, MT, V4t, FST, LO3, V3CD, PH
Ventral visual V8, FFC, PIT, VMV1, VMV2, VMV3, VVC
PMd 6a, 6d
Eye fields FEF, PEF
PMv 6v, 6r
M1 M1 (Hand) de Gee et al. (2017)

V1, primary visual cortex; MT+, middle temporal area and medial superior temporal area; PMd, dorsal premotor
cortex; PMv, ventral premotor cortex; M1, primary motor cortex.
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grained decoding approach would boost the sensitivity of the analysis, we
also decoded the visual hemifield that the sample stimulus appeared in
using cross-validated logistic regression (L2 penalty, C= 1). Here, we
evaluated the decoder performance using the area under the receiver
operating curve (Extended Data Fig. 6-1A).

To assess the stability of the working memory code during the delay
period, across the entire cortex as well as specifically in the dorsal visual
cortex, we computed the cross-temporal decoding precision for the exact
sample location by training the decoder at each time point and evaluating
its performance at all time points (also known as temporal generalization
analysis; King and Dehaene, 2014). The resulting temporal generaliza-
tion matrix A consists of elements that represent the decoding precisions
for each train and test time (x, y).

As a measure of the level of temporal generalization in individual
subjects, we determined the sum of all off-diagonal elements during
the delay (1 s; x, y = [0.5 s, 1.5 s]):∑

Ax,y(Test time = Train time), (12)

We defined another measure of temporal generalization with wider shifts
between train and test time, removing potential above-chance generali-
zation due solely to the smoothing effect of the window for spectral anal-
ysis (0.4 s): ∑

Ax,y(|Test time− Train time| ≥ 0.5 s). (13)

Finally, to complement our assessment of the above-chance temporal
generalization, we also sought to test the evidence for a dynamic code dur-
ing working memory maintenance. Following previous work (Myers
et al., 2015; Wolff et al., 2017), we tested the difference in decoding pre-
cision between each cross-time element (Ax,y) with their corresponding
within-time elements (Ax,x and Ay,y) using two-sided nonparametric per-
mutation tests. The presence of a significant difference at time x, y and
both within-time elements is considered an indication of dynamic coding.
To account for multiple comparisons, these individual sets of p-values
were false discovery rate (FDR) corrected (Extended Data Fig. 8-1).

Predicting individual cognition from MEG markers of cortical delay
activity. In order to relate markers of cortical delay activity to computa-
tional model-based or neuropsychological test scores, we focused on four
markers derived from the spectral power modulations and evaluated
across the first 1 s of delay ([0.5 s, 1.5 s]), which was available on all tri-
als: (1) mean power modulation (pow) in the range 5–35 Hz, (2) mean
decoding precision (dp), (3) across-trial variance (atv) of the time-
averaged power modulation estimates, and (4) within-trial variance
(wtv) of power modulation estimates across 20 successive time steps
within individual trials, followed by averaging variance estimates across
trials. For simplicity and due to a lack of a priori hypotheses about
specific key regions, we averaged these markers across all 180 ROIs
(see below, Definition of ROIs and ROI groups) and z-scored across
included subjects.

We then fit different multiple linear regression models to predict
different individual cognitive measures (model parameter estimates as
well as cognitive integrity scores) from these four cortex-wide neural
markers of delay activity:

y = b0 + b1 × dp+ b2 × pow + b3 × atv + b4 × wtv + b5

× trl+ e, (14)

where y were, in different model fits, the parameter estimates from the
behavioral model or individual cognitive integrity scores and trl were
the individual trial counts (z-scored) that were included as nuisance
regressor to account for interindividual differences in the trial counts
available for MEG analyses. This analysis was performed including all
subjects in a single model, as well as for OHC andMCI groups separately.
We further investigated the relationship of the measures of temporal
generalization to task-related behavioral measures and cognitive integ-
rity using correlation analysis.

Definition of ROIs and ROI groups. We based the anatomical defini-
tion of ROIs on amultimodal MRI-based parcellation of the cerebral cor-
tex (180 ROIs; Glasser et al., 2016). For certain analyses focusing on
specific regions along the visuomotor cortical pathway, we collapsed
results across multiple ROIs belonging to certain ROI groups (defined
in the Supplement of Glasser et al., 2016) as described in Table 3.

Here, only the primary motor region was defined independently—on
the basis of the previous work of our laboratory—as the hand-specific
area (de Gee et al., 2017). For calculating whole-cortex maps of certain
statistics, we used the 22 ROI groups defined in the supplementary
text of Glasser et al. (2016).

Eye-tracking data analysis
Preprocessing. Eye positions and pupil size were recorded during the

performance of the working memory task and were preprocessed using
customized scripts and FieldTrip (Oostenveld et al., 2011) for
MATLAB following the approach used in our laboratory’s previous
work (Murphy et al., 2021). Two subjects (OHC, N= 1; UNC, N= 1)
and five individual blocks from other subjects had to be excluded from
the analysis of gaze directions due to technical problems during the
recording. Blinks and missing data were linearly interpolated to obtain
a continuous time series of gaze directions during task performance
from which x- and y-gaze directions during the trials (−0.1–1.6 s with
respect to sample stimulus onset) were extracted. Individual trials were
excluded if >60% of the extracted trial data had to be interpolated, if a
prolonged artifact occurred (>0.3 s of consecutive interpolation) and/
or if the standard deviation of the recorded x-gaze directions within a
trial was unfeasibly small (indicating loss of corneal reflection during
the recording; threshold SD= 10−6).

Subjects whose data consisted of fewer than 60 trials after the prepro-
cessing steps described above were excluded from any further analyses of
gaze directions (Fig. 1A). On average (SD), 136.76 (34.91) trials per sub-
ject were submitted to further analyses (range across subjects, 63–189 tri-
als). For comparison with the younger subjects, the eye-tracking data of
the older subjects were resampled to the same sampling rate as in Dataset
2 (250 Hz).

Decoding of sample spatial location from gaze direction. We focused
the gaze direction analysis on the time from the stimulus onset to the end
of a delay duration of 1 s. The Cartesian coordinates (x and y) of gaze
directions provided by the eye tracker were used as features for training
classifiers, which were identical to the decoding analysis from the MEG
activity described above, with the exception that no dimensionality
reduction needed to be performed (because there were only two
features).

Statistical analysis
Within-subject tests were nonparametric permutation tests against zero
(10,000 permutations). For comparisons between groups of subjects, we
used between-subject nonparametric permutation tests (10,000 permu-
tations). All permutation tests were performed two-sided, the only
exception being within-subject statistics of time-resolved (identical train
and test time) decoding precision where we specifically tested for the
presence of above-chance decoding.

Deviations from zero in ROI- or ROI-group-specific TFRs and
decoding time courses were identified through cluster-based permuta-
tion testing (Maris and Oostenveld, 2007; 10,000 permutations, cluster-
forming threshold, p < 0.05). Maps of measures plotted over the entire
cortex (brain maps) were thresholded through FDR correction at a sign-
ificance threshold of p< 0.05.

All correlation analyses were performed using Pearson’s correlation
(two-tailed).

Evidence for the null hypothesis was tested by estimating the Bayes
factor (BF10) from a T statistic (Krekelberg, 2022).

Code accessibility. Analysis code is available at https://github.com/
DonnerLab/2024_Monov_WM-dynamics-in-the-aging-human-brain.

Data availability. For reasons of data protection, raw behavioral data
and preprocessed MEG data can be made available upon request.
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Results
We used an integrative approach to gain insight into aging effects
on the stability of working memory representations and to relate
these to clinical measures of cognitive integrity (Fig. 1A).
Through behavioral modeling, we quantified working memory
dynamics in terms of latent variables. For all older participants,

we measured their cortical population activity using MEG and
their performance in a neuropsychological test battery. We com-
bined categorical and dimensional approaches in our analysis of
working memory mechanisms by (1) comparing model- and
MEG-based measures between groups (OHC, MCI, and—as a
reference for behavioral modeling—YHC) and (2) for the older
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Figure 1. Sample and approach. A, Testing modalities (rows) and definition of participant subgroups (columns). Sample sizes within each modality/subgroup combination define the number of
subjects included in the corresponding analyses. B, Left: variance explained by the principal components derived from PCA of the CERAD-Plus neuropsychological test battery data. Inset shows loadings
of different tests for the PC1 (gray in plot of variance explained). Middle: correlation of PC1 scores and CERAD total scores across all older adults. Right: ROC curves for diagnostic classification (OHC vs
MCI) using PC1 scores (gray). C, Schematic of the delayed match-to-sample working memory task. Appearance of stimuli shown is for illustration purposes only. See Extended Data Figure 1-1A and
Extended Data Table 1-1 for subgroup-specific performance scores on the CERAD-Plus test battery and Extended Data Figure 1-1B for correlation of PC1 scores with MMSE performance. The overall task
accuracy for the four groups is shown in Extended Data Figure 1-1C. For original appearance of the stimuli, see Extended Data Figure 1-1D.
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participants, correlating our measures with a clinical assessment
of their cognitive integrity. All participants in the MCI group
were classified as amnestic in neuropsychological testing
(Table 1).

The first principle component (PC1) of the scores from the
CERAD-Plus test battery (Moms et al., 1989; Mirra et al., 1991;
Schmid et al., 2014) consisted of positive contributions of perfor-
mance scores in all tests (Fig. 1B, left, inset) and explained 42.5%
of variance in the test data (Fig. 1B, left). Word list learning, the
subtest in which performance can be most straightforwardly
linked to the integrity of working memory, held the highest load-
ing of all CERAD-Plus subtests on PC1 (∼0.41; Fig. 1B, inset);
and there was a significant difference in performance on this sub-
test between OHC and MCI (Extended Data Fig. 1-1A, Extended
Data Table 1-1), which may reflect the diagnostic importance of
working memory in MCI. The eigenvalues (scores) associated
with PC1 were (1) strongly correlated to alternative summary
metrics [CERAD “total score” (Chandler et al., 2005), Fig. 1B,
middle, and MMSE (Folstein et al., 1975; Mitchell, 2009),
Extended Data Fig. 1-1B] and (2) highly predictive of the clinical
MCI diagnosis [receiver operating characteristic (ROC) value,
≈0.86, Fig. 1B, right]. In the following, we used these scores
(denoted as “PC1 score”) as a summary measure to quantify
each older individual’s cognitive integrity.

Impaired working memory performance in older adults
In our delayed match-to-sample working memory task, subjects
judged whether a “sample” and a “test” stimulus had the same or
a different spatial location (Fig. 1C). As expected from previous
work (Nilsson and Nelson, 1981; Zhang and Luck, 2009; Shin
et al., 2017), the difficulty of this judgment depended on both
temporal and spatial distances between the sample and the test
(Fig. 2A,B; Extended Data Fig. 2-1A,B), with the error rate
increasing with delay duration (collapsing across match and non-
match trials; main effect of delay in mixed delay * group
ANOVA: F2,126 = 38.6; p < 10

−4; Fig. 2A) as well as with test-
sample distance (nonmatch trials only; main effect of distance
in mixed distance * delay * group ANOVA: F1,63 = 258.84;
p < 10−4; Extended Data Fig. 2-1B).

Group-wise comparisons of error rates (two-sided permutation
tests) showed significant differences in the performance between
YHC and MCI (p= 0.0061), while there were no significant group

differences between YHC andOHC (p= 0.0707) orOHC andMCI
groups (p=0.45; Extended Data Fig. 1-1C). Previous modeling of
spatial delayed match-to-sample performance showed that false
alarms on trials with small test-sample distance are particularly
informative about the stability of workingmemory representations
(Murray et al., 2014). Indeed, while we observed no effects of
group on misses and false alarms for “far” trials (Extended Data
Fig. 2-1A,B), younger healthy controls performed better than older
adults on the near false alarm trials, for both 1 and 3 s (but not 9 s)
delays (Fig. 2B, left and middle; planned comparisons, two-sided
permutation tests). There was a similar, but only trending, effect
for an increased task accuracy of OHC compared with MCI on
9 s near trials (Fig. 2B, right).

Model-based dissection of working memory performance
The behavioral effects reported above may, in principle, be due to
changes in the stability of the working memory representation or
in the response strategy of the subjects. Both factors may change
with age. To disentangle these possibilities and to gain deeper
mechanistic insight, we developed a model of working memory
dynamics inspired by previous cortical circuit modeling work
(Compte, 2000; Engel and Wang, 2011; Murray et al., 2014).
These biophysically detailed models consist of many parameters,
which preclude fitting them to behavioral data in a principled
fashion. To estimate individual parameters quantifying the
mechanisms governing working memory performance, we there-
fore opted for a more abstract (“algorithmic”) modeling
approach using a small set of free parameters that were
sufficiently constrained by our behavioral data.

Our approach assumed that instability of a working memory
representation may originate from two sources. First, a random
drift of the activity pattern in the neuronal population encoding
the sample stimulus (i.e., spatial location) will introduce a ran-
dom error in the information encoded at the end relative to the
start of the delay period (Murray et al., 2014; Wimmer et al.,
2014; Schneegans and Bays, 2018). This was captured by describ-
ing the sample representation during delay as a particle subject to
a random diffusion process (Fig. 3A, left; Panichello et al., 2019;
Schapiro et al., 2022) with a diffusion constant that captured the
memory noise. Second, the activity pattern may vanish altogether
before the end of the delay period (Zhang and Luck, 2009). In the
simplest model variant tested, this was captured by a single lapse
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Figure 2. Behavioral results. A, Error rate (black, mean ± SEM) as a function of delay duration across all subjects (N= 67) and corresponding model predictions (gray, mean ± SEM). B, False
alarm rate on near nonmatch trials by delay durations (lighter shades, mean ± SEM) and corresponding model predictions (darker shades, mean ± SEM) for YHC (N= 21; yellow), OHC (N= 20;
blue), and MCI (N= 19; red) subgroups. P-values refer to results of nonparametric, between-subject permutation tests. See Extended Data Figure 2-1 for error rates and model predictions plotted
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parameter (see below andMaterials and Methods). For the same/
different judgment required by our task, the model computed the
absolute distance between memory representation at the end of
delay and the then-shown test stimulus, resulting in the decision
variable. The judgment was then produced through the applica-
tion of a threshold (hard cutoff or smooth function; see below) to
this decision variable (Fig. 3A, middle).

We fit the behavioral data with a selection of model variants
differing in the composition of free parameters (see Materials
and Methods). Model validation with synthetic data as well as
model comparison (Table 2; Extended Data Fig. 3-1A–C) favored
a model variant containing the following free parameters: mem-
ory noise (σmem), decision threshold (δ), and lapse probability
(θ). Here, the decision translating the difference between the
memory representation and test stimulus locations into a
same/different response was modeled as a deterministic process
(i.e., step function). The probability of lapses (i.e., random
responses) was reflected in symmetric asymptotes of this func-
tion (Fig. 3A, middle). The model yielded probabilities of “differ-
ent” judgments as a function of delay and sample-test stimulus
distance (Fig. 3A, right). We used this model variant for all anal-
yses described below.

The predictions of the fitted model were largely consistent with
participants’ performance for all participant groups and conditions

assessed here (Fig. 2A,B; Extended Data Fig. 2-1A,B). Analysis of
the overall goodness of fit of the behavioral model showed good
correspondence betweenmodel predictions and subjects’ responses
for both match and nonmatch trials [match trials: R2(adjusted) =
0.7022, p(F-test) < 10−4, nonmatch trials: R2(adjusted) = 0.8425,
p(F-test) < 10−4; Extended Data Fig. 3-1E]. Further, we found
expected correlations of the fitted model parameters with model-
free metrics of behavioral performance based on signal detection
theory: threshold δwas positively correlated with signal detection
theoretic criterion c (Extended Data Fig. 3-1F, left), and both
memory noise (σmem) and lapse (θ) parameters were negatively
correlated with sensitivity d′ (Extended Data Fig. 3-1F, middle
and right; all Pearson’s correlations, p < 10−4).

The lapse parameter in this model variant captured lapses
occurring at different levels of processing (sensory encoding,
memory maintenance, decision, and action selection), which
were not dissociable in the current task. We further note that,
while the DF is certainly an oversimplification, model compari-
son did not favor a model with a noisy decision transformation
(Extended Data Fig. 3-1A–C), likely because the data also did
not allow for disentangling behavioral variability due to lapses
versus decision noise.

The model revealed smaller memory noise (σmem) for young
healthy adults compared with MCI patients and a trending
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Figure 3. Behavioral modeling results. A, Left: model schematic with one exemplary memory trace (solid light gray line) diffusing in space over time from sample (blue cross) offset (solid dark
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effect compared with the OHCs (Fig. 3B, left; one-way ANOVA
noise: F2,57 = 2.76; p= 0.07). We combined memory noise and
lapse probability into a single measure that captured all stochas-
ticity in internal processing distinct from strategic sources of
error (i.e., decision threshold δ). This revealed larger behavioral
stochasticity in both groups of older adults than the younger
healthy controls (Fig. 3B, third from left; one-way ANOVA
noise + lapse: F2,57 = 3.25; p= 0.0461). There was no evidence
for group differences in other model parameters (decision
threshold, lapse probability on its own; Fig. 3B; one-way
ANOVA lapse: F2,57 = 1.03, p= 0.36; one-way ANOVA thresh-
old: F2,57 = 0.58, p= 0.56). In order to assess whether age-related
working memory deteriorations are specifically due to the
decreased quality of working memory representations rather
than changes in task strategy (i.e., fitted threshold parameters),
we quantified the strength of evidence in support of the hypoth-
esis that threshold parameters do not differ between groups. This
revealed only weak evidence for the null hypothesis [BF10(YHC/
all older) = 0.42, p= 0.31; BF10(YHC/MCI) = 0.46, p= 0.32;
BF10(YHC/OHC) = 0.39, p= 0.45]. We also assessed the statisti-
cal significance of the difference between the group effects on
the behavioral stochasticity and threshold parameters (Δdiff) using
a two-sided permutation test on the normalized data. We did not
find support for the specificity of group differences in the fitted sto-
chasticity parameters compared with fitted threshold parameters
[Δdiff(YHC/all older) =−0.4255, p=0.1182; Δdiff(YHC/MCI)=
−0.4638, p=0.1852; Δdiff(YHC/OHC)=−0.3936, p=0.2284;
Δdiff(OHC/MCI)= 0.0497, p= 0.8960]. Thus, although we found
statistically significant effects of group on the stochasticity but
not threshold parameters, we did not find conclusive evidence
that the age-related deterioration in task performance can be
ascribed only to increased stochasticity.

Furthermore, we observed that the parameter estimates for
σmem were correlated, across subjects, to those for δ (Pearson’s
correlation, r= 0.25, p= 0.04; Extended Data Fig. 3-1D). We rea-
soned that this correlation may be genuine, reflecting a strategic
adaptation to participants’ individual levels of memory noise,
applying higher thresholds for “different” decisions (i.e., higher
values for δ) for higher memory noise (increased σmem). To eval-
uate the plausibility of this idea, we assessed whether such a stra-
tegic threshold adjustment would help to maximize performance
under larger levels of σmem. Through simulation (three task
blocks = 189 trials), we computed the δ settings that lead to the
highest accuracy for 100 different levels of σmem covering
the range of fitted noise parameters observed in the subjects of
the study. The performance-maximizing δ values were identified
using simplex search (D’Errico, 2012) minimizing the objective:
1− P(correct), where P(correct) is the average response accuracy
across trials. Indeed, a more conservative threshold (higher δ)
produced better task performance when memory noise was
high (Pearson’s correlation, p < 10−4; Extended Data Fig. 3-2A).
To further investigate the notion of strategic threshold adjust-
ments, we performed another control analysis in which we cor-
related working memory accuracy with memory noise as well
as threshold parameter fits (Extended Data Fig. 3-2B). As
expected, this showed that memory noise has a consistent nega-
tive effect on working memory accuracy across all subgroups (all
subjects, YHC, OHC, MCI). Interestingly, for fitted threshold
parameters, negative correlations with working memory accu-
racy were instead only present in both older groups (OHC,
MCI), but not in the younger subjects (Extended Data Fig. 3-
2B). Our data therefore point to possible strategic threshold
adjustments in aged individuals as an optimal strategy to

remediate task performance in the face of increased noise levels,
which can readily be related to the literature (Ratcliff and
McKoon, 2008).

In sum, the group differences in behavioral performance of
the working memory task were related to the age-related dete-
rioration of the stability of the working memory representation,
which in turn might lead to (potentially compensatory) strategic
changes in decision thresholds.

Relating working memory mechanisms to cognitive integrity
We next used a dimensional approach focusing on individual
differences to link the working memory mechanisms to cognitive
integrity. Cognitive aging is characterized by substantial differ-
ences between individuals, which are only partly captured by
the clinical classification into OHCs and MCI categories
(Fig. 1A,B). For example, seven older participants who were orig-
inally recruited for our OHC group exhibited neuropsychological
test scores comparable withMCI and were, therefore, classified as
a separate cohort for the purpose of this study (UNC; Fig. 1A). In
the following, we used each participant’s neuropsychological test
results, summarized by the eigenvalue of the PC1 (Fig. 1B), as an
individual measure of overall cognitive integrity.

Individual cognitive integritywas robustly correlated to perfor-
mance on the working memory task as well as the model param-
eters capturing behavioral stochasticity (in particular, stability of
memory representation): higher cognitive integrity was associated
with higher task accuracy and lower combined memory noise/
lapse scores from the model (Fig. 4A,B). Remarkably, the correla-
tion with task accuracy was present only in the MCI but not the
OHC group individually, with a clear difference in correlation
between the two groups (Fig. 4A). Likewise, therewas a correlation
to cognitive integrity for noise and lapse probability combined in
the MCI but not the OHC group, with a trend toward a difference
in correlations between the groups (Fig. 4B). This correlation in
the MCI group was primarily driven by memory noise over lapse
probability (Extended Data Fig. 4-1A). By contrast, we observed
no correlation between cognitive integrity and the decision thresh-
old parameter (Fig. 4C). The same correlational analyses per-
formed using the CERAD total score (Chandler et al., 2005)
yielded comparable results (Extended Data Fig. 4-1C).

In sum, we established a link between individual cognitive
integrity on the one hand and working memory task perfor-
mance as well as model-estimated memory noise parameters
on the other hand, specifically in the MCI group. Our final anal-
yses aimed to relate the modeling results to direct measurements
of cortical delay activity underlying the working memory task.

Task-related cortical dynamics and link to behavior
The combination of spectral and source analysis with anatomical
atlases (Wilming et al., 2020; Murphy et al., 2021) yielded a
detailed description of the task-related cortical population
dynamics (Fig. 5). The test stimulus induced a transient increase
in the <8 Hz and 50–100 Hz (gamma) frequency ranges in visual
cortical areas, followed by suppression in the 8–36 Hz (alpha/
beta) frequency range (Fig. 5A; Extended Data Fig. 5-1A). This
matches the general pattern of visual stimulus-induced MEG
power modulations (Donner and Siegel, 2011), including studies
using similar visual stimuli (Murphy et al., 2021), so it served as a
quality control of our MEG data.

Importantly, the low-frequency power suppression was sus-
tained throughout the delay interval (Fig. 5A; Extended Data
Fig. 5-1A) and widely distributed across the posterior cortex
(Fig. 5B; Extended Data Fig. 5-1B). The magnitude and spatial
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distribution of this power suppression during delay were similar
in the OHC and MCI groups, without any evidence for differ-
ences (Fig. 5B; Extended Data Fig. 5-1B).

We used spatiospectral features (Materials and Methods and
Wilming et al., 2020) to decode the spatial location of the sample
in the local cortical population activity (Fig. 6). While the sensory
response produced the highest decoding precision during sample
presentation, all visual cortical areas continued to show above-
chance decoding during delay, most pronounced and sustained
in the dorsal visual cortex (Fig. 6A,B; Extended Data Fig. 6-1A,B).
Like the power modulations, decoding precisions were similar
for both groups (Fig. 6B; Extended Data Fig. 6-1B). We were
unable to detect sustained stimulus encoding beyond the shortest
delay interval of 1 s—possibly due to highly limited trial counts
for these longer trials—and a more coarse-grained approach,
decoding the hemifield in which the sample stimulus was

presented, yielded largely equivalent results (Extended Data
Fig. 6-1A).

Another set of our analyses related the behavioral modeling
parameters to different markers of cortical delay activity during
our task. We quantified four measures of the delay activity (from
0.5 to 1.5 s): in addition to pow (5–35 Hz) and dp (as shown in
Figs. 5, 6) and also the within- and across-trial variability of these
power modulations (Extended Data Fig. 7-1A,B). These measures
were included because neural variability has been implicated in
cognitive integrity and aging (Grady, 2012; Dinstein et al., 2015;
Garrett et al., 2021; Waschke et al., 2021). Due to the widespread
distribution of decoding precision and overall power modulation,
we collapsed eachmeasure of delay activity across all cortical ROIs
(N=180). We then fit a series of linear models regressing individ-
ual cognitive performance measures onto these activity markers
(alongside some nuisance regressors).
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These neural markers were not linked to individual cognitive
integrity (PC1 score; all p > 0.05). But higher neural decoding
precision predicted higher working memory task accuracy across
subjects (similar trends within each group; Fig. 7A). None of the
three other neural measures showed such a relationship. This
effect was accounted for by a link between decoding precision
and behavioral stochasticity parameters (memory noise and lapse
combined; Fig. 7B), but not decision threshold (Fig. 7C), again
with a similar trend within each group (significant for MCI,
but not OHC).

Notably, the analysis also revealed across-trial variability of
power modulations as a second significant predictor of individual
differences in the behavioral stochasticity parameters (memory
noise and lapse probability combined), specifically in the MCI
group (Fig. 7B), and again with no effect for threshold (Fig. 7C).

Finally, we analyzed the temporal generalization of decoding
of the sample stimulus location to test the extent to which the
sustained above-chance decoding identified in the previous anal-
ysis (Fig. 6A) reflected a stable mnemonic code. Examining the
temporal generalization matrix, we found statistically significant
off-diagonal decoding precisions during the delay period across
the whole cortex (Fig. 8A) as well as specifically in the dorsal
visual cortex (Fig. 8B), suggesting some stability of the memory

code over time. However, in line with some previous findings
(Trübutschek et al., 2017), this temporal generalization was
also not perfect—that is, we did not observe a uniform square
of above-chance decoding precisions in the temporal generaliza-
tionmatrix encompassing the delay, which would be indicative of
a code that was perfectly stable over time.

To obtain a scalar metric of temporal generalization, we com-
puted the sum across all off-diagonal elements of the temporal
generalization matrix covering the delay period (1 s). Analysis
of this metric showed that both groups exhibited significant
above-chance off-diagonal decoding performance across the
whole cortex as well as the dorsal visual cortex specifically, while
the group comparison of this metric did not yield group differ-
ences between OHC and MCI (Fig. 8C).

We focused our further analyses on the dorsal visual cortex as
this area showed significant decoding precision throughout the
1 s delay period (Fig. 6A). We did observe that the summed
decoding precision of the off-diagonal elements in the dorsal
visual cortex correlated positively across participants with work-
ing memory accuracy and negatively with fitted stochasticity
parameters (Fig. 8D). At the subgroup level, this effect was
only present for OHC, with no significant difference in these cor-
relations between OHC and MCI (Fig. 8D). To increase the
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specificity of the scalar measure as an index of temporal general-
ization of the neural code and rule out confounding smoothing
effects of our window for spectral analysis, in a separate analysis,
we only included those matrix elements in the summation for
which train and test time were further apart (Fig. 8E, left, inset).
Across all subjects, we found significant encoding of the sample
stimulus location during the delay (Fig. 8E, second from left,
inset) and the same correlative relationship to task-related beha-
vioral measures (Fig. 8E). In a final set of complementary analy-
ses, we did not find evidence for a dynamic working memory
code during the delay period, but did find evidence for a dynamic
code during sensory encoding of the sample stimulus (Extended
Data Fig. 8-1A,B). Thus, our data suggest that stability of the neu-
ral code may at least partially underlie maintenance of spatial
location in working memory on our task.

Taken together, our MEG results support the notion that the
behavioral model-derived parameters are useful markers of the
neural mechanism of working memory and point to the potential
relevance of trial-to-trial variability of power modulations as a
marker of MCI.

Decoding working memory content from gaze direction
Participants were instructed to keep their gaze fixated on the
cross in the center of the screen during task performance. Even
so, fixational eye movements are difficult to suppress (especially

for individuals not used to psychophysical testing), and previous
work has lined fixational eye movements to working memory
performance (Van Ede et al., 2019; Willeke et al., 2019; Linde-
Domingo and Spitzer, 2023; De Vries and Van Ede, 2024).
Furthermore, even small fixational eye movements may affect
E/MEG data (Yuval-Greenberg et al., 2008; Liu et al., 2022).
For these reasons, we wondered if fixational eye movements
may have had any relationship to behavioral task performance
and/or influenced our MEG results.

We thus trained time-variant classifiers to predict the sample
location from participants’ fixational eye movements (Fig. 9A,
Materials and Methods). The sample stimulus location could
be reliably decoded from gaze directions across all subjects dur-
ing both sample stimulus presentation and the (1 s) working
memory delay (Fig. 9B). This was also the case for each partici-
pant group (Fig. 9C,D; Extended Data Fig. 9-1A,B). There was
also a significant difference in delay-period decoding precision
between the MCI group and both younger and OHC groups
(Fig. 9C; Extended Data Fig. 9-1B).

Importantly, we did not observe relationships between delay-
period sample location decoding from gaze directions and beha-
vioral/model-based measures from the working memory task
(Fig. 9E; Extended Data Fig. 9-1C), nor the individual cognitive
integrity scores of the older subjects (Extended Data Fig. 9-1C).
Furthermore, the individual delay-period decoding precisions
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derived from the gaze data and those derived from the MEG data
were not significantly correlated with each other in any of the
defined ROI groups [N= 28, p-values ranging from 0.0537 to
0.9375 (mean, 0.5869); Fig. 6B].

In sum, while we found clear evidence for the sample stimulus
location being encoded in gaze direction during the working
memory delay, and differently so between groups, eye move-
ments in our task were not directly related to behavioral accuracy
or the precision of memory-related neural representations.

Discussion
Age-related changes in working memory performance have been
investigated using a variety of task protocols. This previous work
has revealed diminished working memory capacity with age in
contexts requiring maintenance of multiple memoranda (Bopp
and Verhaeghen, 2018), especially when conjunctions of different
object features (rather than single features) needed to be remem-
bered (Peich et al., 2013; but see Pertzov et al., 2015). Less is
known about the quality of working memory representations

in human aging. One landmark study of aging monkeys has iden-
tified a deterioration of stimulus-selective persistent activity in
the prefrontal cortex (M. Wang et al., 2011). It has remained
unknown whether and how these neurophysiological changes
generalize to the human brain and how they relate to working
memory performance and to individual cognitive integrity.
Our current study provides a comprehensive assessment of
age-related changes in the stability of performance-relevant
working memory representations and their neurophysiological
bases, as well as their links to individual cognitive integrity in a
clinically well-characterized sample of older participants.

One of the main insights afforded by our model-based
approach is that reductions in working memory performance
with aging (compared with younger adults) are related to a dete-
rioration of the model-inferred stability (quality) of working
memory representations and that this in turn is associated with
individual differences in cognitive integrity within the group of
older adults, establishing its broad functional relevance. These
conclusions invite comparison with studies of age-related changes
in perceptual decision-making (Ratcliff and McKoon, 2008).
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Some behavioral modeling work has revealed that the increases
in reaction times in two-choice tasks commonly observed in
older adults are not due to the less efficient integration of decision
evidence, but to increased response caution, a strategic effect
(Ratcliff and McKoon, 2008). Given the close mechanistic links
between working memory and evidence accumulation in delib-
erative decisions (X-J. Wang, 2008; Schapiro et al., 2022), one
might expect that the increase in memory noise we inferred in
older adults will translate into less efficient evidence accumula-
tion (i.e., lower drift rate; Ratcliff and McKoon, 2008), at least
across longer timescales at whichmechanisms of persistent activ-
ity play out. Indeed, recent work constraining behavioral model
fits with neurophysiological data provided first evidence for
degraded evidence accumulation in aging (McGovern et al.,

2018). It will be instructive to study aging effects in evidence
accumulation tasks that are more protracted (Tsetsos et al.,
2012; Drugowitsch et al., 2016; Murphy et al., 2021) and/or
more cognitive in nature (Purcell and Kiani, 2016; Van Den
Brink et al., 2023) than the ones used in the existing aging
literature.

The relationship between our behavioral markers of working
memory quality (memory noise and lapse probability) and over-
all cognitive integrity was particularly pronounced in older indi-
viduals diagnosed with MCI and not in age-matched healthy
controls. This indicates a tight link between deterioration of
working memory mechanisms on the one hand and pathophys-
iological aging as gauged by standard comprehensive neuropsy-
chological test batteries on the other hand. Likewise, the
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relationship between MEG markers of cortical delay activity
measured during the delay, especially for trial-to-trial neural var-
iability, and the model-derived markers (memory noise and lapse
probability) was also particularly strong in the MCI group. Since
a decline in working memory function is a common finding
within the MCI diagnosis (Saunders and Summers, 2010), it is
nonetheless noteworthy that overt group differences between
healthy older subjects and MCI patients are lacking. It is possible
that workingmemory deficits only become apparent in tasks with
higher working memory load and/or longer delays, which could
be a key difference between our design and previous studies
investigating working memory in MCI patients (e.g., with the
CANTAB test battery; Saunders and Summers, 2010). In any
case, taken together these observations highlight the translational
potential of model- and MEG-based assessments of working
memory mechanisms for the objective detection and monitoring
of cognitive impairment during aging.

Notably, during the working memory delay, MCI patients’
fixational eye movements were more systematically related to
the sample stimulus locations than both younger and OHC
groups. The higher precision of sample location decoding from
gaze direction in the MCI group compared with the other groups
could simply be due to relatively larger-amplitude gaze shifts
toward the sample locations in the MCI group, possibly due to
a reduced ability to suppress fixational eye movements in order
to follow the task instruction to maintain steady fixation
throughout the trial. Alternatively, the result could reflect a com-
pensatory strategy deployed by the MCI group to ameliorate
what would otherwise manifest as clearer performance decre-
ments. That being said, the behavioral relevance of this potential
compensatory strategy remains unclear since we found no corre-
lation between the precision of the sample location decoding
from gaze direction and task performance.

Our MEG approach builds on recent neuroimaging work that
illuminated the possibility of decoding the content and precision
of stimulus-selective working memory representations from
noninvasively measured spatial patterns of brain activity.
Previous functional MRI studies have decoded stimulus-specific
information from activity patterns in the frontal, parietal, and
visual cortex during working memory delays (Christophel
et al., 2017; Curtis and Sprague, 2021). While similar decoding
approaches applied to event-related potential signals failed to
identify lasting stimulus-selective activity patterns (Wolff et al.,
2015, 2017; Rose et al., 2016), they have succeeded when applied
to modulations of band-limited signal power (Foster et al., 2016;
Barbosa et al., 2020, 2021), as we did here. Moreover, while the
decodability of memoranda from these signals may decrease to
some degree over memory delays, this can be explained at least
in part by the drift in the underlying memory representations
that is thought to be a primary source of error in behavioral
working memory reports (Wimmer et al., 2014; Wolff et al.,
2020). These characteristics—which we observed in patterns of
spectral power modulation in the dorsal visual cortex—are gen-
erally consistent with cortical circuit models in which working
memory emerges from sustained attractor states that drift over
time (Compte, 2000; Murray et al., 2014; Wimmer et al., 2014;
Schneegans and Bays, 2018).

Another key prediction of these models is that the persistent
activity patterns underlying working memory representations
should manifest in strong temporal generalization of the under-
lying code. While this property has been observed previously for
EEG spectral power modulations in young adults for a visuospa-
tial working memory task similar to ours (Barbosa et al., 2020),

we only found evidence for limited stability of the code during
the working memory delay in older adults. This inconsistency
might be explained by several factors: (1) our lower data yield
in the older participants, which generally decreases decoding
accuracy, as well as our capacity to recover a stable code,
(2) the decreased stability of older adult memory representations
that we have demonstrated presently through our model-based
analysis, which will translate into a less stable code, and (iii) per-
haps, a greater reliance of the older adult cohort on “activity-silent”
mechanisms for working memory (Wolff et al., 2017), which can
complement maintenance through persistent activity (Barbosa
et al., 2020; Stein et al., 2021). We note that we are currently left
to speculation regarding points (1) and (3), but these would be
potentially interesting avenues for future research into aging.

Our results complement other studies linking behavioral per-
formance (Murray et al., 2014) and neural signals (Barbosa et al.,
2020, 2021) in working memory tasks to the dynamics of cortical
circuit models. These links formalize relationships between neu-
ral microcircuit properties (e.g., the ratio of recurrent excitation
and inhibition in a circuit, E/I) and patterns of task behavior.
Thus, such links open opportunities for understanding beha-
vioral effects of cognitive aging in terms of underlying neural cir-
cuit properties. For example, there is indirect evidence for
alterations of cortical E/I in Alzheimer’s disease (Montez et al.,
2009; Maestú et al., 2021). One challenge associated with cortical
circuit modeling of measured behavioral changes is that the
parameter space of cortical circuit models is high-dimensional,
and in some cases different circuit alterations can produce highly
similar behavioral effects (Stein et al., 2021). Here, we circum-
vented this issue by fitting a lower-dimensional model, which
was well constrained by the behavioral task while exhibiting
straightforward relationships to more detailed circuit models
(Murray et al., 2014). Complementing such behavioral modeling
with noninvasive measures of E/I (Gao et al., 2017; Pfeffer et al.,
2018, 2021; Bruining et al., 2020) and other circuit properties
may help to add much-needed constraint in future applications
of these neural circuit models to empirical data.
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