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Abstract

Strong laser pulses can control superconductivity, inducing non-equilibrium transient pairing

by leveraging strong-light matter interaction. Here we demonstrate theoretically that equilibrium

ground-state phonon-mediated superconductive pairing can be affected through the vacuum fluctu-

ating electromagnetic field in a cavity. Using the recently developed ab initio quantum electrody-

namical density-functional theory approximation, we specifically investigate the phonon-mediated

superconductive behavior of MgB2 under different cavity setups and find that in the strong-light

matter coupling regime its superconducting transition temperature can be enhanced by ≈ 73%

(≈ 40%) in an in-plane (out-of-plane) polarized cavity. The results highlight that strong-light mat-

ter coupling in extended systems can profoundly alter material properties in a non-perturbative

way by modifying their electronic structure and phononic dispersion at the same time. Our find-

ings indicate a pathway to the experimental realization of light-controlled superconductivity in

solid-state materials at equilibrium via cavity-material engineering.

The prospect of light-controlled superconductivity has driven a vast range of recent ex-

perimental and theoretical efforts [1–5]. While strong lasers facilitate material control in

the out-of-equilibrium regime, an alternative approach involves using the quantum fluctua-

tions of electromagnetic fields to modify material properties at equilibrium within cavities:

The strong interaction between matter and photon fields in a cavity [6, 7] gives rise to the

emerging fields of polaritonic chemistry [8–14] and cavity materials engineering [15, 16] that

promise to revolutionize the way we perceive materials science [1, 17]. However, while there

is convincing experimental evidence supporting the modification of molecules within cavities

through vacuum fluctuations [18], equivalent findings for extended materials are scarce [19–

21]. Research on polaritons primarily considers the combined response of light and matter

excitations [22–27], rather than directly investigating material changes.

Most theoretical predictions for cavity-controlled solid-state materials have relied on

model Hamiltonians [28–32]. Notably, the control of superconductivity in a cavity has

been explored through various approaches [33–36]. For instance, coupling photons to

phonons modifies the electron-phonon coupling and phonon frequency [33], generating non-

equilibrium states through the quantum Eliashberg effect [35], or creating novel pairing
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mechanisms via attractive interactions mediated by the photon vacuum fluctuations [34]. A

few recent experiments support theoretical proposals to alter ground-state material prop-

erties via photon fluctuations, for instance, the breakdown of topological protection in the

quantum Hall effect in two-dimensional electron gases [19, 37] and the renormalization

of the critical temperature for the metal-to-insulator transition in layered TaS2 within a

Fabry-Pérot cavity [20].

However, developing efficient theoretical methods for complex light-matter coupling in

realistic extended materials within a cavity is challenging due to the vast number of de-

grees of freedom required to describe light and matter on the same footing. Quantum-

electrodynamical density-functional theory (QEDFT) presents an exact and practical solu-

tion, by shifting the complexity in the degrees of freedom into a search for functionals of

the electronic density [15, 38]. As opposed to standard density-functional theory (DFT),

where a functional accounting for the electronic exchange and correlation is required, one

here needs to approximate the electron-photon interaction. The recently developed QEDFT

method [39, 40], which is inherently non-perturbative, can describe strong light-matter in-

teractions in extended systems embedded in arbitrary quantum environments like optical

cavities.

Here we demonstrate, using QEDFT, the tuneability of the superconducting transition

temperature (Tc) in MgB2, a phonon-mediated superconductor, through coupling to the

vacuum fluctuations of an optical cavity. MgB2 is a conventional phonon-mediated super-

conductor with a high Tc of ≈ 39 K. Its superconducting behavior is well described by

standard DFT methods, which correctly predict its Tc and two anisotropic superconducting

gaps originating from Boron π and σ bands [41]. QEDFT predicts that the Tc of MgB2

can be enhanced by up to 73% when strongly coupled to electromagnetic fluctuations of

the cavity vacuum that are polarized along the materials stacking planes. Rotating the

cavity polarization into the direction perpendicular to the planes, instead, can lead to an

enhancement of up to 40%. We ascribe this change in the critical temperature to the com-

pounding effect of both the enhanced electron-phonon coupling and the renormalized phonon

frequencies of the ground state. QEDFT has gradually matured to the point where it can

be applied to the simulation and analysis of light-matter interactions in complex material

systems, providing a tool for advancing material manipulation through tailored fluctuat-

ing electromagnetic fields. This work shows that cavity material engineering can achieve
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profound changes in equilibrium materials properties, beyond the perturbative regime.

COUPLING MATTER TO ELECTROMAGNETIC VACUUM FLUCTUATIONS

Light-matter coupled systems in the non-relativistic regime are described in quantum

electrodynamics (QED) by the Pauli-Fierz (PF) Hamiltonian [15]. The effect of the electro-

magnetic modes of a Fabry-Pérot cavity can be described in terms of a few effective modes

whose coupling to matter depends on both material and cavity properties [42]. In the ve-

locity gauge within the long-wavelength approximation [42] the PF Hamiltonian reads as

follows (in the Hartree atomic units):

ĤPF =
1

2

Ne∑
l=1

(
−i∇l +

1

c
Â

)2

+
1

2

Ne∑
l ̸=k

w(rl, rk) +
Ne∑
l=1

vext(rl) +

Mp∑
α=1

ωα

(
â†αâα +

1

2

)
, (1)

where l (α) is the index for electrons (effective photon modes), Ne (Mp) is the number of

electrons (effective photon modes), w(rl, rk) and vext(rl) are the Coulomb interaction among

electrons and between electrons and nuclei, respectively, rl is the position for electron l, ωα

and âα (â†α) are the frequency and annihilation (creation) operator of the effective photon

mode α, respectively. The vector potential (or photon field) operator in the long-wavelength

approximation is Â = c
∑Mp

α=1 λαεα
(
â†α + âα

)
/
√
2ωα, where c is the speed of light and εα the

polarization of the effective photon mode α with the effective mode strength λα =
√
4π/Ωα

(the effective mode volume Ωα). Using the electron-photon exchange approximation [39, 40]

we reduce the degrees of freedom of the PF Hamiltonian by recasting the problem into

a purely electronic one. We do so by mapping the electromagnetic vacuum fluctuations

(∆Âα) to fluctuations of the electronic paramagnetic current (∆Ĵp) of the material, i.e.,

∆Âα ∝ εα · ∆Ĵp [39]. Within QEDFT [15, 38] we can then apply the Kohn-Sham (KS)

scheme to formulate the problem with a purely electronic Hamiltonian

ĤKS = −1

2
∇2 + vext(r) + vHxc(r) + vpxc(r), (2)

where vext(r) is the external potential from the nuclei, vHxc(r) the Hartree and exchange-

correlation (xc) potential from electron-electron interaction, and vpxc(r) the electron-photon

exchange-correlation potential. The Coulomb xc-potential can be obtained using commonly

used DFT functionals [43]. In this work, the electron-photon exchange-correlation potential,
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instead, is approximated as the electron-photon exchange potential within the local density

approximation (LDA) [39, 40] as the solution of the following Poisson equation

∇2vpxLDA(r) = −
Mp∑
α=1

2π2λ̃2α
ω̃2
α

(ε̃α · ∇)2
(
3ρ(r)

8π

)2/3

, (3)

where ρ(r) is the electron density and the tilde indicates renormalized quantities (c.f. Meth-

ods). Within this method, the different cavity configurations are obtained by varying the

ratio of the mode strength λα and the effective cavity photon frequency ωα, as this ratio,

together with photon polarization, is the only parameter that affects the electron-photon

exchange potential in our simulations. Here, instead of providing the details of a realistic

cavity setup, we use these two variables, λα and ωα, to encode the detailed information of

the cavity setup such as the mode volume, photon frequency, cavity material, and so on.

All the computational details can be found in the Methods section and a comprehensive

description of the derivation of the electron-photon exchange functional used here can be

found in Ref. [39, 40].

CAVITY MODIFICATION OF THE SUPERCONDUCTIVE CRITICAL TEM-

PERATURE

The superconductive behavior of MgB2 is modified when it is placed inside a Fabry–Pérot

cavity, illustrated in Fig. 1(a), which is a simple optical resonator with a planar geometry.

The Tc of MgB2 outside a cavity is well described by Eliashberg theory using the first prin-

ciples methods [41, 44], which are constructed from the electronic and phononic structure.

Hence, cavity-renormalization of Tc can be predicted by using QEDFT to calculate these

quantities when dressed by the vacuum fluctuations of light. We analyze two different con-

figurations for the MgB2 within the Fabry-Pérot cavity. These include 1) an out-of-plane

configuration, with a single effective photon mode polarized perpendicular to the Boron

plane, and 2) an in-plane configuration, with two effective photon modes - one polarized

along x and the other along y, with y pointing in the Boron-Boron σ bond direction.

We find that the coupling between the cavity and MgB2 dresses electrons and thereby

renormalizes the forces exerted by the electrons on the nuclei. This is a clear demonstration

of the non-perturbative nature of the coupling with consequences on both the electronic

and phononic subsystems of the material. While these non-perturbative effects due to the
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cavity can in principle change the lattice unit cell of MgB2, we here consider the DFT-

relaxed cell outside the cavity. The dressing of electrons with the photon modes changes

the electron density on the Boron plane, concentrating electrons around Boron σ bonds

[Fig. 1(a)]. In both cavity configurations, this accumulation screens the Coulomb repulsion

between Boron ions, leading to a softening of the E2g phonon frequency [Fig. 1(b)]. The

E2g mode is the phonon mode that primarily drives superconductivity in MgB2 [45], and

therefore the cavity-induced softening of this mode enhances the Tc up to 71 K (in-plane)

and 58 K (out-of-plane) in the respective polarized cavities [Fig. 1(c)].

The Tc in phonon-mediated superconductors can be determined by solving the mass

renormalization function and superconducting gap using the anisotropic Migdal-Eliashberg

theory, which involves the anisotropic electron-phonon coupling matrix, electronic density of

states at the Fermi energy, phonon dispersion, and electronic band structure of the material

(c.f. Methods). The Eliashberg spectral function quantitatively describes the probability of

an electron emitting or absorbing a phonon at a specific frequency ωph. Figure 2(a) shows

that the isotropic Eliashberg function α2F (ωph) for MgB2 is indeed changed inside the cavity.

For example, the intensity of the dominant peak at around 70 meV corresponding to the

E2g phonon mode increases, compared to the case of the material being outside the cavity.

To estimate the changes in Tc we then calculate the total electron-phonon coupling strength

λ from the isotropic Eliashberg function (c.f. Methods). Increased λ corresponds to higher

superconducting temperatures [46]. Consistently, in Fig. 2(b), λ rises with the photon mode

strength λα in both in-plane and out-of-plane polarized cavity, explaining the enhanced Tc

as shown in Fig. 1(c).

NON-PERTURBATIVE CHANGES IN THE ELECTRONIC AND PHONONIC

STRUCTURE

The shift in the total electron-phonon coupling strength λ may stem from changes in

phonon frequency ωνq and electron-phonon matrix elements gmn,ν(k,q) = ⟨mk+ q|∂qνV |nk⟩.

These matrix elements describe the scattering between the single particle electronic states

|nk⟩ (with the band index n and crystal momentum k) and |mk+ q⟩ via the ion-electron

potential change, ∂qνV , induced by the ν-th phonon branch at momentum q. Note that

we also include the electron-photon interaction contribution in the ion-electron potential

6



(c.f. Methods). Examining the electron-phonon matrix elements without light-matter

interaction, we find that electronic states at the Fermi surface are strongly coupled to

the zone-centered E2g mode due to the large diagonal electron-phonon matrix elements

[Fig. 2(d)] and in agreement with existing literature [47]. Specifically, to assess the photon-

induced changes of the electronic states across the σ sheet of the Fermi surface connected

via the photon momentum qs, we compute the average electron-phonon matrix elements

between the E2g mode at qs and the three highest valence bands at the zone center Γ,

defined as |gn,ave(Γ,qs)| =
√∑Nb

m |gnm,ν(Γ,qs)|2/Nb (m runs over the three electronic bands

and Nb = 3). We find enhanced electron-phonon coupling in both the in-plane and out-

of-plane polarized cavity configurations [Fig. 2(e)]. This indicates that, in addition to the

E2g mode softening, the change in electron-phonon matrix elements is contributing to the

enhancement of Tc.

The superconductivity of MgB2 is characterized by two superconductive gaps associated

with the pairing of electrons within two different Fermi sheets of π and σ character, respec-

tively. A way to discriminate the influence of the cavity on these two sheets is to analyze

the distribution of values of the band- and wave-vector-dependent electron-phonon coupling

strength at the Fermi level (c.f. Methods), shown in Figure 2(c). Lower values of electron-

phonon coupling strength cluster on the π sheet, and higher values on the σ sheet [41].

These two sheets are affected differently by the cavity: the σ sheet is affected most, with a

clear shift towards higher values, while the π sheet remains largely unaffected. Both in-plane

and out-of-plane polarized cavity increases these values. The consequence of this modifi-

cation is an asymmetric change of the superconducting gaps, c.f. Figure 2(f) showing the

superconducting gaps of MgB2 inside and outside the cavity. The superconducting transi-

tion temperature Tc can be directly determined from this representation by evaluating the

vanishing points of the superconducting gaps as a function of temperature. The calculations

yield a Tc of 41 K for MgB2 outside the cavity, which closely aligns with experimental data

(39 K).

Now that we have discussed the cavity effect on the phonons and the electron-phonon

coupling, we turn to a more detailed analysis of the underlying renormalization of the elec-

tronic and phononic structure of the material. Figure 3(a) shows the cavity-induced changes

of the real space electron density in the cavity. In the out-of-plane polarized cavity, the elec-

tronic density shifts from the plane of Magnesium atoms to the bond regime between Boron
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atoms in the Boron plane. Instead, in the in-plane polarized cavity, electrons relocate from

the center of the hexagons on the Boron plane to the σ bonds on the same plane. This be-

havior can be understood through a simple physical explanation. The Hamiltonian within

the electron-photon exchange approximation contains the current-current correlation term

(ε̃α · Ĵp)
2 [39], which counters the kinetic energy aligned with photon field polarization.

This equivalently increases the electron’s physical mass in the polarization direction [48],

because electrons interact strongly with the virtual photons inside the cavity. Therefore, in

the in-plane polarized cavity, the enhanced electron physics mass confines electrons closer

to the potential energy local minima on the Boron planes, resulting in more electron density

in the bond regimes, compared to the center regime of the hexagons.

These changes in the electron density directly impact the electron and phonon dispersion

within the cavity. Figure 3(b) compares electronic band structures near the Fermi energy

of MgB2 outside and within a cavity. While the general shape of the inside-cavity band

structure (and Fermi surface and density of states) resembles that outside the cavity, the

light-matter interaction induces modifications that are non-uniform throughout the Brillouin

zone, with energy shifts in the meV range. Figure 3(c) shows the modification of the

phonon dispersion within the in-plane polarized cavity with different light-matter couplings

(λα/ωα) from 0.14 to 1.0. The light-matter interaction mainly alters the E2g mode in the in-

plane polarized cavities. The large change in the phonon frequency along Γ-A is consistent

with the strong electron-phonon coupling along that path [47], while acoustic and low-

energy optical phonons (below 50 meV) are less affected, because of weak electron-phonon

coupling. Another way of understanding the changes in the phonon frequency is to consider

the modification of the dressed potential energy surface (polaritonic surface) induced by

the light-matter interaction [49]. Notably, the cavity affects various phonon modes across a

broad crystal momentum range and not only around the zone center, which is within the

light-cone, i.e. within the momentum range of the photons.

DISCUSSION

On general grounds, this work puts forward a novel mechanism of light-enhanced super-

conductivity in the ground state of a material, without exciting the matter with classical

fields. This constitutes a paradigm shift, where material phases can be modified and explored
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as a function of light-matter coupling strength in addition to standard parameters like tem-

perature or pressure, which has been used before to change the superconducting temperature

of MgB2 [50]. The intuitive physical picture that describes how vacuum photon fluctuations

affect electrons and phonons, and consequently phonon-mediated superconductivity within

a cavity, is as follows: Electrons in the crystal, bound by the potential landscape created by

the ions, experience enhanced localization due to the interaction with virtual photons from

the quantum vacuum. This promotes localization around potential local minima, such as

the Boron-Boron σ bonds in MgB2. The electron accumulation along these bonds screens

Coulomb repulsion between Boron ions, leading to decreased interatomic force constants

and softening of the E2g mode, which happens to be the main phonon mode for supercon-

ductivity in MgB2. Within our developed QEDFT scheme [39, 40] and cavity setup, the

predicted superconducting transition temperature Tc here depends solely on the ratio of the

effective mode strength λα [42] and the photon frequency ωα. High light-matter coupling

strength (λα/ωα) can be achieved by reducing the effective photonic mode frequency or by

decreasing the effective mode volume (λα ∼ 1/
√
Ωα). The attainment of coupling strengths

necessary to observe enhanced Tc depends on the details of an experimental setup, such as

the mode volume, frequency, polarization of the effective photon modes, the thickness of the

sample, and the quality of the cavity, and so on. However, to observe enhanced Tc in MgB2

within an in-plane-polarized cavity with a fixed photon frequency (e.g., 150 meV), we recom-

mend using a thin MgB2 sample, as the effective coupling strength diminishes with thickness

due to the increased plasma frequency [48]. Lastly, we highlight that the above-proposed

mechanism of cavity-enhanced superconductivity is a general one. Still, we anticipate it

to potentially lead to a reduction in Tc for other materials inside a cavity. In addition to

the specific cavity Fabry-Pérot setups chosen in this work, we acknowledge that other cav-

ity configurations [16] may be employed to enhance the light-matter coupling strength and

break crystal symmetry, inducing novel types of light-matter hybrid phase transitions.

In conclusion, we have demonstrated that modifying the ground state of a phonon-

mediated superconductor strongly coupled to a cavity can enhance its superconducting tran-

sition temperature. By using the advanced QEDFT method on MgB2, we have illustrated

how the interaction between light and matter inside the cavity alters the electron density

of the ground state. This results in non-perturbative modifications of the electronic band

structure and the E2g phonon mode of MgB2, which is the phonon directly contributes to the
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change in the superconducting transition temperature. The non-perturbative nature of the

mechanism shows that cavity-material engineering should be pursued within first-principles

approaches.

METHODS

A. Mapping photonic fluctuations to electronic currents

Starting with the non-relativistic Pauli-Fierz (PF) Hamiltonian shown in the main text,

Eq. (1), the quadratic (or diamagnetic) term Â2 can be directly incorporated into the

bare frequency ωα [51], thereby simplifying the equations. This transformation converts

the bare photons into dressed photons, characterized by the dressed photon frequency ω̃α.

In the case of multiple modes coupled to the matter the diamagnetic is off-diagonal, i.e.

coupling different modes. Hence, the dressed photon frequency has to be obtained by solving

the eigenvalues of the following real and symmetric matrix, Wαα′ = ω2
αδαα′ + Neλαλα′εα ·

εα′ [39, 40], which can be diagonalized using an orthonormal matrix U, such that Ω̃ =

UWUT with eigenvalues ω̃2
α, for example, the dressed photon frequency for one photon

mode is ω̃α =
√
ω2
α +Neλ2α. The mode strength λ̃α and polarization direction ε̃α of the

dressed photon mode α can be obtained via the transformation [40] λ̃αε̃α =
∑Mp

β=1 Uαβλβεβ,

where εα (ε̃α) is normalized. The PF Hamiltonian with the dressed photon modes becomes

ˆ̃HPF = −1

2

Ne∑
l=1

∇2
l +

1

2

Ne∑
l ̸=k

w(rl, rk) +
Ne∑
l=1

vext(rl) +
1

c
ˆ̃A · Ĵp +

Mp∑
α=1

ω̃α

(
ˆ̃a†αˆ̃aα +

1

2

)
,

with the paramagnetic current Ĵp =
∑Ne

l=1(−i∇l), the annihilation (creation) operator ˆ̃aα

(and creation operator) ˆ̃a†α for the dressed photon mode α, and with these new operators

the vector potential read Â = c
∑

α=1 λ̃αε̃α(
ˆ̃a†α + ˆ̃aα)/

√
2ω̃α.

To simulate the effect of the quantum fluctuation of the photon modes on the electronic

subsystem, Ref. [39] suggests replacing the photon fluctuations with the electron paramag-

netic current fluctuations in the PF Hamiltonian. Substituting the vector potential operator

Â with the matter paramagnetic current operator Ĵp in the PF Hamiltonian yields another

Hamiltonian ĤB (see below) capable of capturing photon field fluctuations through current-

current fluctuations. This allows mapping the quantum fluctuations of photon modes to

fluctuations of the electronic current, represented as (εα · Ĵp)
2. The static version of the
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Hamiltonian ĤB reads

ĤB = −1

2

Ne∑
l=1

∇2
l +

1

2

Ne∑
l ̸=k

w(rl, rk) +
Ne∑
l=1

vext(rl) +

Mp∑
α=1

ω̃α

2
−

Mp∑
α=1

λ̃2α
2ω̃2

α

(
ε̃α · Ĵp

)2

,

where the final term, a current-current correlation operator (ε̃α ·Ĵp)
2, counteracts the kinetic

energy operator and enhances the physical mass of the electron along the polarization direc-

tion as the mode strength increases. The associated physical picture is that, in the strong

coupling regime, electrons exhibit increased effective mass along the polarization direction,

resembling a more classical behavior, as they tend to accumulate in regions of minimum

external potential [40].

Similar to standard DFT calculations [43], we can use an auxiliary non-interacting sys-

tem that incorporates the interaction between light and matter, known as the Kohn-Sham

(KS) system designed to replicate the electron density of the material coupled to cavity

photons. The KS Hamiltonian incorporating the light-matter interaction can be expressed

as follows [39, 40]:

ĤKS = −1

2
∇2 + vKS(r) = −1

2
∇2 + vext(r) + vHxc(r) + vpxc(r),

where the KS potential vKS(r) consists of the external potential from the nuclei vext(r), the

Hartree and (longitudinal) exchange-correlation (xc) potential from electron-electron inter-

action vHxc(r), and the electron-photon (transverse) exchange-correlation potential vpxc(r).

The Coulomb (longitudinal) xc potential can be obtained using commonly used DFT func-

tionals like the local density approximation (LDA) or PBE [43]. On the other hand,

the electron-photon (transverse) exchange-correlation potential is approximated using the

electron-photon exchange potential with the LDA [39, 40], c.f. Eq. (3) in the main text.

To describe the interactions between the ions and the valence electrons, we use the pseu-

dopotential method to separate the core and valence electrons to reduce the computational

cost [43] and then focus only on the valence electron density. Once we solve the KS Hamil-

tonian in a self-consistent way−that is, the Hamiltonian depends on the electron density,

and the density depends on the solution of the Hamiltonian−we get the eigenvalue ϵnk and

eigenstates |ψnk⟩ for the electronic state |nk⟩ with band index n and crystal momentum k

in the Brillouin zone, i.e., ĤKS(k) |ψnk⟩ = ϵnk |ψnk⟩.
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B. Computing cavity-modified phonon dispersion and superconductivity

Once we have the ground state of the material coupled to cavity photons, we can ex-

amine its phonon properties using density functional perturbation theory (DFPT) [52]. To

incorporate the light-matter interaction, we solve the following linear system iteratively to

get the induced change of the wave function ∂ψi(r)/∂µ and the perturbation potential due

to the atomic displacement ∂vKS(r)/∂µ (or ∂qνV for each photon mode shown in the main

text): [
−1

2
∇2 + vKS(r)− εi

]
Pc
∂ψi(r)

∂µ
= −Pc

∂vKS(r)

∂µ
ψi(r),

where Pc is the projector on the conduction bands, and it can be expressed as Pc = 1− Pv

where Pv =
∑

i |ψi⟩ ⟨ψi| is the projector on the valence bands. The variable µ is a short-

hand notation of the atomic displacement uνsβ where ν is the index for the Bravais lattice

vectors, s the index for the atoms in one unit cell, and β the index for the Cartesian coor-

dinates. Compared to standard DFPT, which includes the linear responses of the external,

Hartree, and electron-electron xc potential, we here include an additional contribution from

the electron-photon exchange potential vpxLDA(r).

Upon solving the iterative and linear system, we obtain two terms resulting from the

atomic displacement perturbation: 1) the change in the wave function ∂ψi(r)/∂µ and 2) the

change in the KS potential ∂vKS(r)/∂µ. The former can be used to compute the induced

electron density from the atomic displacement, ∂ρ(r)/∂µ, which is then used to compute

the second derivative of the total energy of the matter Etot with respect to the atomic

displacement, i.e., ∂2Etot/∂µ
′∂µ [53]. These derivatives are then employed, given a phonon

wave number q, to construct the dynamical matrix, whose eigenvalues are the square of the

phonon frequencies ωνq where ν is the index for phonon modes. The dynamical matrices

computed on a coarse q-grid in the BZ also allow us to construct the interatomic force

constants [53]. Furthermore, the perturbation potential due to the atomic displacement

∂vKS(r)/∂µ allows us to compute electron-phonon coupling strengths for specific electronic

states and phonon modes [54].

Using the information for electrons and phonons, together with electron-phonon cou-

pling strengths, we can compute the superconductivity of the material coupled to photon

modes by solving the anisotropic Migdal-Eliashberg equations [55] based on first principles

methods [41, 44]. This calculation enables us to obtain the momentum-resolved supercon-
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ducting gaps ∆nk and, consequently, determine the superconducting transition temperature

Tc [41, 44]. While solving the anisotropic Eliashberg equation can be computationally chal-

lenging, we use Wannier-interpolation method implemented in open-source codes such as

EPW [56]. The main quantities used in solving the anisotropic Eliashberg equations from

first principles are as follows (please refer to Ref. [44, 56] for more details). The anisotropic

Eliashberg equations (the mass renormalization function Z and superconducting gap ∆) to

solve are

Z(nk, iωl) = 1 +
πT

NFωl

∑
mk′,l′

ωl′√
ω2
l′ +∆2(mk′, iωl′)

λ(nk,mk′, l − l′)δ(ϵnk),

Z(nk, iωl)∆(nk, iωl) =
πT

NFωl

∑
mk′,l′

∆(mk′, iωl′)√
ω2
l′ +∆2(mk′, iωl′)

× [λ(nk,mk′, l − l′)−NFVnk,mk′ ] δ(ϵnk),

where iωl = i(2l+1)πT is the fermion Matsubara frequency (l is an integer), T the temper-

ature, and NF the density of states at the Fermi level. Vnk,mk′ is the static screend Coulomb

interaction between the electronic states nk andmk′, and below we use an effective Coulomb

parameter µ∗ to take this interaction into account. The anisotropic electron-phonon coupling

matrix λ(nk,mk′, l − l′) is defined as

λ(nk,mk′, l − l′) =

ˆ ∞

0

dω
2ω

(ωl − ωl′)2 + ω2
α2F (nk,mk′, ω),

where the anisotropic Eliashberg electron-phonon spectral function α2F (nk,mk′, ω) can be

computed using

α2F (nk,mk′, ω) = NF

∑
ν

|gSEmn,ν(k,q)|2δ(ω − ων,q=k−k′),

with the screend electron-phonon matrix element gSEmn,ν(k,q) = (1/2ωνq)
1/2 gmn,ν(k,q). The

associated isotropic Eliashberg spectrual function α2F (ω) can be obtained by

α2F (ω) =
∑

nk,mk′

WnkWmk′α2F (nk,mk′, ω),

where Wnk = δ(ϵnk)/NF. The cumulative electron-phonon coupling strength is given by

λ(ω) = 2

ˆ ω

0

dω
α2F (ω)

ω
,

from which the total electron-phonon coupling strength λ can be computed by setting ω

beyond the highest phonon frequency of the material. The band- and wave-vector-dependent

electron-phonon coupling strength λnk for the electronic state |nk⟩ is defined as λnk =∑
mk′ Wmk′λ(nk,mk′, l − l′ = 0).
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C. Computational details

The ground state of MgB2 outside a cavity is obtained using the LDA (PZ) functional [57],

together with the norm-conserving pseudopotential, in Quantum Espresso (QE) [58, 59].

The relaxed crystal structure of MgB2 has a hexagonal lattice with the lattice constants

a = 3.0264 Å and c = 3.4636 Å where the lattice constant a is parallel to the Boron plane

and c is perpendicular to the plane. The atomic positions in crystal coordinates for the Mag-

nesium and two Boron atoms in the unit cell are (0, 0, 0), (1/3, 2/3, 1/2), and (2/3, 1/3, 1/2),

respectively. We use the kinetic energy cutoff of 60 Rydberg and the Monkhorst-Pack k-grid

of 24 × 24 × 24 k-points centered at the Γ point to converge the total energy within the

error of 10 meV per atom. Here we use the Marzari-Vanderbilt smearing function [60] with

a smearing value of 0.02 Rydberg. The phonon properties are computed on a coarse uniform

q-grid of 6× 6× 6 q-point using DFPT implemented in the QE PHONON package [58, 59].

The computed dynamical matrices on the coarse uniform q-grid are used to construct the in-

teratomic force constants, which are then used to interpolate the phonon dispersion shown in

the main text. The Wannier functions are constructed on a coarse k-grid of 6×6×6 k-points

using Wannier90 package [61] with the initial projections are the pz orbital for each Boron

atom and three s orbitals located at (0, 1.0, 0.5), (0.0, 0.5, 0.5), and (0.5, 0.5, 0.5) in crystal

coordinates. The electron-phonon couplings in the Bloch basis are computed on the coarse

k- and q-grids of 6× 6× 6, and then are used to construct the electron-phonon couplings in

the Wannier basis, which are used as a small set to interpolate electron-phonon couplings at

arbitrary k and q point; the electron-phonon couplings are calculated using EPW [56]. The

momentum-resolved superconducting gaps are obtained by solving the anisotropic Eliash-

berg equation implemented in EPW [44, 56]. We use a fine k-grid of 60×60×60 points and

a fine q-grid of 30 × 30 × 30. For solving the anisotropic Eliashberg equation, we use the

following conditions: the effective Coulomb potential µ∗ is 0.16, the Matsubara frequency

cutoff is 1 eV, and the Dirac broadening for electrons is 0.1 eV, while that for phonons is 0.05

meV. Note that we use the DFT-relaxed lattice constant, which can lead to lower theoretical

Tc compared to existing literature where this discrepancy can be rectified by considering

anharmonicity [62] or non-adiabatic phonon dispersion effects [63]. The calculations using

the experimental lattice constant show a similar trend to those presented in the main text.

For the ground states of MgB2 inside the cavity, we use the same conditions as those outside

14



the cavity, while additionally including the electron-photon exchange potential within the

LDA in solving the KS Hamiltonian. For the out-of-plane cavity with one effective photon

mode, we use the photon frequency of 0.03675 Hartree (70 meV), and vary the (dimension-

less) ratio of the mode strength and photon frequency, i.e., λα/ωα, from 0.14 to 1.4. For

the in-plane cavity with two effective photon modes, we use the same conditions, but its

electron-photon exchange potential is weighted by 1/2.
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FIG. 1: Cavity-modified superconductivity. a, MgB2 (Magnesium atoms in orange

and Boron atoms in green), a phonon-mediated superconductor, is put inside a Fabry–Pérot

cavity. The detailed information of the cavity and the light-matter interaction between

the cavity and MgB2 is encoded into the effective mode strength λα, frequency ωα, and

polarization εα of the effective photon modes that MgB2 is strongly coupled to. Here

we use two cavity setups: an in-plane polarized cavity with two effective photon modes

parallel to the Boron planes, and an out-of-polarized cavity with one effective photon mode

perpendicular to the Boron planes. We simulate the electronic ground state using QEDFT

and the phonon dispersion using the density functional perturbation theory including the

light-matter interaction. The electron-phonon (e-ph) coupling is modified (and enhanced)

due to the changes of the electronic states and phonons inside the cavity, leading to the

enhanced superconductivity. Cavity-induced change in electron density ∆ρ(r) on the Boron

plane in MgB2 with the pristine lattice constant modifies the phonon-mode E2g, which

mainly drives the superconductivity. b, Ab initio calculated phonon frequency ωνq for the

ν-th phonon branch at the crystal momentum q of MgB2 with the pristine lattice constant

outside and inside the in-plane and out-of-plane polarized cavity. The E2g mode softens due

to the screening of the enhanced electron density within the Boron-Boron σ regime inside

a cavity, diminishing the repulsion between Boron atoms. The ratio of the mode strength

and photon frequency (λα/ωα) is 1.0 for both cavity setups. c, Superconducting transition

temperature as a function of the bare mode strength λα and photon frequency ωα ratio

with the pristine lattice constant. The enhanced superconducting transition temperature is

mainly due to the softening E2g mode, which mainly drives the superconductivity of MgB2.
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FIG. 2: Superconducting quantities in the cavity. a, Isotropic Eliashberg function

α2F (ω) and total electron-phonon coupling λ (dashed lines) inside and outside the cavity.

The main peak intensity corresponding to the E2g phonon mode (around 70 meV) increases

inside the cavity, while its frequency slightly shifts down due to the softened E2g mode.

b, Total electron-phonon (e-ph) coupling λ as a function of the ratio of the bare mode

strength λα and photon frequency ωα; the dashed line is the total electron-phonon coupling

outside the cavity. Given a fixed photon frequency, the electron-phonon coupling increases

as the mode strength (or light-matter coupling) and saturates at large mode strengths.

c, Distribution of the electron-phonon coupling strengths, ρ(λnk), for electronic states |nk⟩

(with the band index n and crystal momentum k) at the Fermi energy inside and outside the

cavity; lower values correspond to the π sheet, and higher values to the σ sheet. The cavity

mainly modifies the electron-phonon couplings of the σ sheet. d, Diagonal electron-phonon

matrix elements g
E2g
nn (k,q = Γ) for the Γ-point phonon E2g mode outside the cavity. The

states around the Fermi surface are strongly coupled to the E2g mode. e, Cavity-induced

changes in averaged electron-phonon matrix elements (defined in the main text) due to the

E2g mode at the nesting momentum qs, which connects the electron states across the σ

sheet. The electron-phonon coupling matrix elements enhance in both cavity setups. f, Two

superconducting gaps−where the higher values correspond to the σ sheet, while the lower

ones to the π sheet−as a function of temperature inside and outside the cavity. The solid

lines are the averaged gap values for the σ sheet, while the dashed lines are for the π sheet;

we also show the histogram of the superconducting gaps at 10 K. Tc is determined when

the superconducting gaps vanish. All the calculations use the pristine lattice constant for

MgB2. The ratio of the λα and ωα used in panels a, c, d, e, and f is chosen as ≈ 0.14.
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FIG. 3: Cavity manipulation of electronic and phononic structure of MgB2. a,

Cross-sections of the cavity-induced change in electron density ∆ρ(r) with the out-of-plane

and in-plane polarization. b, Cavity-modified electronic band structure for the ratio of

the mode strength and photon frequency, λα/ωα = 1.0. The general shape of the band

structure of MgB2 inside the cavity is similar to that outside the cavity. c, Cavity-modified

phonon dispersion along the high symmetric lines in the in-plane polarized cavity for three

light-matter coupling strengths, λα/ωα = 0.14, 0.57, and 1.0. The in-plane polarized cavity

mainly modifies and softens the E2g phonon mode.
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