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Strong laser pulses can control superconductivity, inducing nonequilibrium transient
pairing by leveraging strong-light matter interaction. Here, we demonstrate theoret-
ically that equilibrium ground-state phonon-mediated superconductive pairing can
be affected through the vacuum fluctuating electromagnetic field in a cavity. Using
the recently developed ab initio quantum electrodynamical density-functional theory
approximation, we specifically investigate the phonon-mediated superconductive
behavior of MgB2 under different cavity setups and find that in the strong light–
matter coupling regime its superconducting transition temperature Tc can be enhanced
at most by ≈10% in an in-plane (or out-of-plane) polarized and realistic cavity via
photon vacuum fluctuations. The results highlight that strong light–matter coupling
in extended systems can profoundly alter material properties in a nonperturbative
way by modifying their electronic structure and phononic dispersion at the same
time. Our findings indicate a pathway to the experimental realization of light-
controlled superconductivity in solid-state materials at equilibrium via cavity materials
engineering.

quantum electrodynamical density functional theory | condensed matter physics | superconductivity |
electronic structure | cavity quantum electrodynamics

The prospect of light-controlled superconductivity has driven a vast range of recent
experimental and theoretical efforts (1–5). While strong lasers facilitate material control
in the out-of-equilibrium regime, an alternative approach involves using the quantum
fluctuations of electromagnetic fields to modify material properties at equilibrium within
cavities: the strong interaction between matter and photon fields in a cavity (6, 7)
gives rise to the emerging fields of polaritonic chemistry (8–14) and cavity materials
engineering (15, 16) that promise to revolutionize the way we perceive materials
science (1, 17). However, while there is convincing experimental evidence supporting the
modification of molecules within cavities through vacuum fluctuations (18), equivalent
findings for extended materials are scarce (19–22). Research on polaritons primarily
considers the combined response of light and matter excitations (23–28), rather than
directly investigating material changes.

Most theoretical predictions for cavity-controlled solid-state materials have relied on
model Hamiltonians (29–36). Notably, the control of superconductivity in a cavity
has been proposed and explored through various approaches (37–42). For instance,
coupling photons to phonons modifies the electron–phonon coupling and phonon
frequency (37), or generating nonequilibrium states through the quantum Eliashberg
effect (39). A few recent experiments support theoretical proposals to alter ground-state
material properties via photon fluctuations, for instance, the breakdown of topological
protection in the quantum Hall effect in two-dimensional electron gases (19, 22, 43)
and the renormalization of the critical temperature for the metal-to-insulator transition
in layered TaS2 within a Fabry-Pérot cavity (20).

However, developing efficient theoretical methods for complex light–matter coupling
in realistic extended materials within a cavity is challenging due to the vast number
of degrees of freedom required to describe light and matter on the same footing.
Quantum-electrodynamical density-functional theory (QEDFT) presents an exact and
practical solution, by shifting the complexity in the degrees of freedom into a search
for functionals of the electronic density (15, 44). As opposed to standard density-
functional theory (DFT), where a functional accounting for the electronic exchange and
correlation is required, one here needs to approximate the electron–photon interaction.
The recently developed QEDFT method (45, 46), which is inherently nonperturbative,
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can describe strong light–matter interactions in extended systems
embedded in arbitrary electromagnetic environments like optical
cavities (47).

Here, we demonstrate, using QEDFT, the tuneability of
the superconducting transition temperature (Tc) in MgB2,
a phonon-mediated superconductor, through coupling to the
vacuum fluctuations of an optical cavity. MgB2 is a conventional
phonon-mediated superconductor with a high Tc of ≈ 39
K (48). Its superconducting behavior is well described by
standard DFT methods, which correctly predict its Tc and
two anisotropic superconducting gaps originating from Boron
� and � bands (49). QEDFT predicts that the Tc of MgB2
can be enhanced by up to 73% when strongly coupled to
electromagnetic fluctuations of the cavity vacuum that are
polarized along the materials stacking planes. Rotating the cavity
polarization into the direction perpendicular to the planes,
instead, can lead to an enhancement of up to 40%. We ascribe
this change in the critical temperature to the compounding
effect of both the enhanced electron–phonon coupling and the
renormalized phonon frequencies of the ground state. QEDFT
has gradually matured to the point where it can be applied
to the simulation and analysis of light–matter interactions in
complex material systems, providing a tool for advancing material
manipulation through tailored fluctuating electromagnetic fields.
This work shows that cavity materials engineering can achieve
profound changes in equilibrium material properties, beyond the
perturbative regime.

Methodology

Light–matter coupled systems in the nonrelativistic regime are
described in quantum electrodynamics (QED) by the Pauli-Fierz
(PF) Hamiltonian (15). The effect of the electromagnetic modes
of an optical cavity can be described in terms of a few effective
modes whose coupling to matter depends on both material and
cavity properties (50). In the velocity gauge within the long-
wavelength approximation (50) the PF Hamiltonian reads as
follows (in the Hartree atomic units):

ĤPF =
1
2

Ne∑
l=1

(
−i∇l +

1
c
Â
)2

+
1
2

Ne∑
l 6=k

w(rl , rk)

+
Ne∑

l=1

vext(rl ) +
Mp∑
�=1

!�
(

â†
� â� +

1
2

)
,

[1]

where l (�) is the index for electrons (effective photon modes),
Ne (Mp) is the number of electrons (effective photon modes),
w(rl , rk) and vext(rl ) are the Coulomb interaction among
electrons and between electrons and nuclei, respectively, rl
is the position for the l th electron, !� and â� (â†

�) are
the frequency and annihilation (creation) operator of the �th
effective photon mode, respectively. The vector potential (or
photon field) operator in the long-wavelength approximation
is Â = c

∑Mp
�=1 ��"�

(
â†
� + â�

)
/
√

2!� , where c is the speed
of light and "� the polarization of the �th effective photon
mode with the effective mode strength �� =

√
4�/Ω� (the

effective mode volumeΩ�). Using the electron–photon exchange
approximation (45, 46), we reduce the degrees of freedom of
the PF Hamiltonian by recasting the problem into a purely
electronic one. We do so by mapping the electromagnetic vacuum
fluctuations (ΔÂ�) to fluctuations of the electronic paramagnetic

current (ΔĴp) of the material, i.e., ΔÂ� ∝ "� · ΔĴp (46).
Within QEDFT (15, 44), we can then apply the Kohn–Sham
(KS) scheme to formulate the problem with a purely electronic
Hamiltonian

ĤKS = −
1
2
∇

2 + vext(r) + vHxc(r) + vpxc(r),

where vext(r) is the external potential from the nuclei, vHxc(r) the
Hartree and exchange-correlation (xc) potential from electron–
electron interaction, and vpxc(r) the electron–photon exchange-
correlation potential. The Coulomb xc-potential can be obtained
using commonly used DFT functionals (51). In this work,
the electron–photon exchange-correlation potential, instead, is
approximated as the electron–photon exchange potential within
the local density approximation (LDA) (45, 46) as the solution
of the following Poisson equation

∇
2vpxLDA(r) = −

Mp∑
�=1

2�2�̃2
�

!̃2
�

("̃� · ∇)2
(

3�(r)
8�

)2/3
, [2]

where �(r) is the electron density and the tilde (˜) indicates renor-
malized quantities (Mapping Photonic Fluctuations to Electronic
Currents). Within this method, the different cavity configurations
are obtained by varying the ratio of the mode strength �� and
the effective cavity photon frequency !� , as this ratio (��/!�),
together with photon polarization, is the only parameter that af-
fects the electron–photon exchange potential in our simulations.
Here, instead of providing the details of a realistic cavity setup,
we use these two variables, �� and !� , to encode the detailed
information of the cavity setup such as the mode volume, photon
frequency, cavity material, and so on. We treat these two variables
as free parameters. The ratio of these two variables (��/!�)
can be reached up to 0.1 in phonon- and plasmon-polariton
based cavities (52, 53). We also include the electron–photon
exchange potential in solving cavity-modified phonon dispersions
with the density functional perturbation theory (Computing
Cavity-Modified Phonon Dispersion and Superconductivity). All the
computational details can be found in Computational Details and
a comprehensive description of the derivation of the electron–
photon exchange functional used here can be found in refs. 45
and 46.

Results

Cavity Modification of the Superconducting Critical Tempera-
ture. The superconductive behavior of MgB2 is modified when
it is placed inside an optical cavity, illustrated in Fig. 1A,
which is a simple optical resonator with a planar geometry. The
Tc of MgB2 outside a cavity is well described by Eliashberg
theory using the first-principles methods (49, 54), which are
constructed from the electronic and phononic structure. Hence,
cavity-renormalization of Tc can be predicted by using QEDFT
to calculate these quantities when dressed by the vacuum
fluctuations of light. We analyze two different configurations
for the MgB2 within the optical cavity. These include 1) an
out-of-plane configuration, with a single effective photon mode
polarized perpendicular to the Boron plane, and 2) an in-plane
configuration, with two effective photon modes—one polarized
along x and the other along y, with y pointing in the Boron–Boron
� bond direction.

We find that the coupling between the cavity and MgB2
dresses electrons and thereby renormalizes the forces exerted by
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A B

C

Fig. 1. Cavity-modified superconductivity. (A) MgB2 (Magnesium atoms in orange and Boron atoms in green), a phonon-mediated superconductor, is put
inside an optical cavity. The detailed information of the cavity and the light–matter interaction between the cavity and MgB2 is encoded into the effective mode
strength �� , frequency !� , and polarization "� of the effective photon modes that MgB2 is strongly coupled to. Here, we use two cavity setups: an in-plane
polarized cavity with two effective photon modes parallel to the Boron planes and an out-of-polarized cavity with one effective photon mode perpendicular to
the Boron planes. We simulate the electronic ground state using QEDFT and the phonon dispersion using the density functional perturbation theory including
the light–matter interaction. The electron–phonon coupling is modified (and enhanced) due to the changes of the electronic states and phonons inside the
cavity, leading to the enhanced superconductivity. Cavity-induced change in electron density Δ�(r) on the Boron plane in MgB2 with the pristine lattice constant
modifies the phonon-Raman-mode E2g , which mainly drives the superconductivity. (B) Ab initio calculated phonon frequency !�q for the �th phonon branch at
the crystal momentum q of MgB2 (with the fixed pristine lattice constant) outside and inside the in-plane and the out-of-plane polarized cavity. The E2g Raman
mode softens due to the screening of the enhanced electron density within the Boron–Boron � regime inside a cavity, diminishing the repulsion between Boron
atoms. The ratio of the mode strength and photon frequency (��/!� ) is 1.0 for both cavity setups. (C) Superconducting transition temperature as a function of
the bare mode strength �� and photon frequency !� ratio with the pristine lattice constant. The enhanced superconducting transition temperature is mainly
due to the softened E2g mode, which mainly drives the superconductivity of MgB2. We estimate that ��/!� can reach up to around 0.1 for a polaritonic cavity
setup.

the electrons on the nuclei. This is a clear demonstration of the
nonperturbative nature of the coupling with consequences on
both the electronic and phononic subsystems of the material.
While these nonperturbative effects due to the cavity can in
principle change the lattice unit cell of MgB2, we here consider
the DFT-relaxed cell outside the cavity. The dressing of electrons
with the photon modes changes the electron density on the Boron
plane, concentrating electrons around Boron � bonds (Fig. 1A).
In both cavity configurations, this accumulation screens the
Coulomb repulsion between Boron ions, leading to a softening
of the E2g Raman phonon frequency (Fig. 1B). The E2g mode
is the phonon mode that primarily drives superconductivity in
MgB2 (55), and therefore the cavity-induced softening of this
mode enhances the Tc up to 71 K (in-plane) and 58 K (out-
of-plane) in the respective polarized cavities (Fig. 1C ). We note
that in practice, however, the increase in Tc is limited by the
maximum achievable value of ��/!� , which is directly related to
the strength of the vacuum field fluctuations in the cavity (47).
While the paradigmatic, parallel mirror Fabry-Pérot cavity is
unlikely to show vacuum field enhancements strong enough to
drive significant changes in the Tc (50), coupling strengths of
at least ��/!� ∼ 0.1 should be achievable in phonon- and
plasmon-polariton based cavity setups (52, 53). We therefore
expect that a change in the Tc of around 5 K is experimentally
reachable with current cavity setups.

The Tc in phonon-mediated superconductors can be deter-
mined by solving the mass renormalization function and the

superconducting gap using the anisotropic Migdal–Eliashberg
theory, which involves the anisotropic electron–phonon coupling
matrix, electronic density of states at the Fermi energy, phonon
dispersion, and electronic band structure of the material (Com-
puting Cavity-Modified Phonon Dispersion and Superconductivity).
The Eliashberg spectral function quantitatively describes the
probability of an electron emitting or absorbing a phonon
at a specific frequency !ph. Fig. 2A shows that the isotropic
Eliashberg function �2F (!ph) for MgB2 is indeed changed
inside the cavity. For example, the intensity of the dominant
peak at around 70 meV corresponding to the E2g phonon mode
increases, compared to the case of the material being outside
the cavity. To estimate the changes in Tc we then calculate the
total electron–phonon coupling strength � from the isotropic
Eliashberg function (Computing Cavity-Modified Phonon Disper-
sion and Superconductivity). Increased � corresponds to higher
superconducting temperatures (56). Consistently, in Fig. 2B, �
rises with the photon mode strength �� in both in-plane and out-
of-plane polarized cavity, explaining the enhanced Tc as shown
in Fig. 1C.

NonperturbativeChanges in theElectronic andPhononic Struc-
ture. The shift in the total electron–phonon coupling strength �
may stem from changes in phonon frequency !�q and electron–
phonon matrix elements gmn,�(k, q) = 〈mk + q|∂q�V |nk〉.
These matrix elements describe the scattering between the single
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A

D E F

B C

Fig. 2. Superconducting quantities in the cavity. (A) Isotropic Eliashberg function �2F(!) and total electron–phonon coupling � (dashed lines) inside and
outside the cavity. The main peak intensity corresponding to the E2g phonon mode (around 70 meV) increases inside the cavity, while its frequency slightly
shifts down due to the softened E2g mode. (B) Total electron–phonon (e-ph) coupling � as a function of the ratio of the bare mode strength �� and photon
frequency !� ; the dashed line is the total electron–phonon coupling outside the cavity. Given a fixed photon frequency, the electron–phonon coupling increases
as the mode strength (or light–matter coupling) and saturates at large mode strengths. (C) Distribution of the electron–phonon coupling strengths, �(�nk), for
electronic states |nk〉 (with the band index n and crystal momentum k) at the Fermi energy inside and outside the cavity; lower values correspond to the � sheet,
and higher values to the � sheet. The cavity mainly modifies the electron–phonon couplings of the � sheet. (D) Diagonal electron–phonon matrix elements

g
E2g
nn (k,q = Γ) (defined in the main text) for the Γ-point phonon E2g mode outside the cavity. The states around the Fermi surface are strongly coupled to the E2g

mode. (E) Cavity-induced changes in averaged electron–phonon matrix elements (defined in the main text) due to the E2g mode at the nesting momentum qs ,
which connects the electron states across the � sheet. The electron–phonon coupling matrix elements enhance in both cavity setups. (F ) Two superconducting
gaps—where the higher values correspond to the � sheet, while the lower ones to the � sheet—as a function of temperature inside and outside the cavity. The
solid lines are the averaged gap values for the � sheet, while the dashed lines are for the � sheet; we also show the histogram of the superconducting gaps at
10 K. Tc is determined when the superconducting gaps vanish. All the calculations use the pristine lattice constant for MgB2. The ratio of the �� and !� used in
panels A and C–F is chosen as ≈0.14.

particle electronic states |nk〉 (with the band index n and crystal
momentum k) and |mk + q〉 via the ion-electron potential
change, ∂q�V , induced by the �th phonon branch at momentum
q. Note that we also include the electron–photon interaction
contribution in the ion-electron potential (Computing Cavity-
Modified Phonon Dispersion and Superconductivity). Examining
the electron–phonon matrix elements without light–matter
interaction, we find that electronic states at the Fermi surface
are strongly coupled to the zone-centered E2g mode due to the
large diagonal electron–phonon matrix elements (Fig. 2D) and in
agreement with existing literature (57). Specifically, to assess the
photon-induced changes of the electronic states across the � sheet
of the Fermi surface connected via the phonon momentum qs, we
compute the average electron–phonon matrix elements between
the E2g mode at qs and the three highest valence bands at the zone

center Γ, defined as |gn,ave(Γ, qs)| =
√∑Nb

m |gnm,�(Γ, qs)|2/Nb
(m runs over the three electronic bands and Nb = 3). We
find enhanced electron–phonon coupling in both the in-plane
and out-of-plane polarized cavity configurations (Fig. 2E). This
indicates that, in addition to the E2g mode softening, the

change in electron–phonon matrix elements is contributing to
the enhancement of Tc.

The superconductivity of MgB2 is characterized by two super-
conducting gaps associated with the pairing of electrons within
two different Fermi sheets of � and � character, respectively.
A way to discriminate the influence of the cavity on these two
sheets is to analyze the distribution of values of the band- and
wave-vector-dependent electron–phonon coupling strength at
the Fermi level (Computing Cavity-Modified Phonon Dispersion
and Superconductivity), shown in Fig. 2C. Lower values of
electron–phonon coupling strength cluster on the � sheet, and
higher values on the � sheet (49). These two sheets are affected
differently by the cavity: the � sheet is affected most, with a clear
shift toward higher values, while the � sheet remains largely
unaffected. Both in-plane and out-of-plane polarized cavity
increases these values. The consequence of this modification is
an asymmetric change of the superconducting gaps, c.f., Fig. 2F
showing the superconducting gaps of MgB2 inside and outside
the cavity. The superconducting transition temperature Tc can
be directly determined from this representation by evaluating
the vanishing points of the superconducting gaps as a function
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of temperature. The calculations yield a Tc of 41 K for MgB2
outside the cavity, which closely aligns with experimental data
(39 K). Note that we use the DFT-relaxed lattice constant, which
leads to lower theoretical Tc compared to existing literature
(around 50 K using the experimental lattice constant) where this
discrepancy can be rectified by considering anharmonicity (58)
or nonadiabatic phonon dispersion effects (59). The calculations
using the experimental lattice constant show a similar trend
as described above. The enhanced Tc primarily results from
the enhanced electron–phonon coupling and the softened E2g
phonon mode, rather than changes in the electronic states due to
the cavity. To clarify this, we performed an additional calculation
using the in-plane-polarized-cavity-modified electronic states
under the same light–matter coupling conditions (as in Fig. 2F ),
but with the interatomic force constants from the outside-cavity
case. This resulted in a Tc of 41 K, which is nearly identical to
the outside-cavity scenario.

Now that we have discussed the cavity effect on the phonons
and the electron–phonon coupling, we turn to a more detailed
analysis of the underlying renormalization of the electronic
and phononic structure of the material. Fig. 3A shows the
cavity-induced changes of the real space electron density in
the cavity. In the out-of-plane polarized cavity, the electronic
density shifts from the plane of Magnesium atoms to the bond
regime between Boron atoms in the Boron plane. Instead, in
the in-plane polarized cavity, electrons relocate from the center
of the hexagons on the Boron plane to the � bonds on the
same plane. This behavior can be understood through a simple
physical explanation. The Hamiltonian within the electron–
photon exchange approximation contains the current–current
correlation term ("̃� · Ĵp)2 (46), which counters the kinetic energy
aligned with photon field polarization. This equivalently increases
the electron’s physical mass in the polarization direction (60),
because electrons interact strongly with the virtual photons
inside the cavity. Therefore, in the in-plane polarized cavity,
the enhanced electron physics mass confines electrons closer to
the potential energy local minima on the Boron planes, resulting
in more electron density in the bond regimes, compared to the
center regime of the hexagons.

A

B C

Fig. 3. Cavity manipulation of electronic and phononic structure of MgB2. (A)
Cross-sections of the cavity-induced change in electron density Δ�(r) with the
out-of-plane and in-plane polarization. (B) Cavity-modified electronic band
structure for the ratio of the mode strength and photon frequency, ��/!� =
1.0. The general shape of the band structure of MgB2 inside the cavity is
similar to that outside the cavity. (C) Cavity-modified phonon dispersion along
the high symmetric lines in the in-plane polarized cavity for three light–matter
coupling strengths, ��/!� = 0.14, 0.57, and 1.0. The in-plane polarized cavity
mainly modifies and softens the E2g Raman phonon mode.

These changes in the electron density directly impact the
electron and phonon dispersion within the cavity. Fig. 3B
compares electronic band structures near the Fermi energy of
MgB2 outside and within a cavity. While the general shape
of the inside-cavity band structure (and Fermi surface and
density of states) resembles that outside the cavity, the light–
matter interaction induces modifications that are nonuniform
throughout the Brillouin zone, with energy shifts in the meV
range. Fig. 3C shows the modification of the phonon disper-
sion within the in-plane polarized cavity with different light–
matter couplings (��/!�) from 0.14 to 1.0. The light–matter
interaction mainly alters the E2g mode in the in-plane polarized
cavities. The large change in the phonon frequency along Γ-A
is consistent with the strong electron–phonon coupling along
that path (57), while acoustic and low-energy optical phonons
(below 50 meV) are less affected, because of their weak electron–
phonon coupling. Another way of understanding the changes
in the phonon frequency is to consider the modification of the
dressed potential energy surface (polaritonic surface) induced
by the light–matter interaction (61). Notably, the cavity affects
various phonon modes across a broad crystal momentum range
and not only around the zone center, which is within the light-
cone, i.e., within the momentum range of the photons.

Discussion and Conclusion

On general grounds, this work puts forward a mechanism of light-
enhanced superconductivity in the ground state of a material,
without exciting the matter with classical fields. This constitutes
a paradigm shift, where material phases can be modified and
explored as a function of light–matter coupling strength in
addition to standard parameters like temperature or pressure,
which has been used before to change the superconducting
temperature of MgB2 (62). The intuitive physical picture that
describes how vacuum photon fluctuations affect electrons and
phonons, and consequently phonon-mediated superconductivity
within a cavity, is as follows: electrons in the crystal, bound by
the potential landscape created by the ions, experience enhanced
localization due to the interaction with virtual photons from the
quantum vacuum. This promotes localization around potential
local minima, such as the Boron–Boron � bonds in MgB2.
The electron accumulation along these bonds screens Coulomb
repulsion between Boron ions, leading to decreased interatomic
force constants and softening of the E2g mode, which happens
to be the main phonon mode for superconductivity in MgB2.
Within our developed QEDFT scheme (45, 46) and cavity setup,
the predicted superconducting transition temperature Tc here
depends solely on the ratio of the effective mode strength �� (50)
and the photon frequency !� . High light–matter coupling
strength (��/!�) can be achieved by reducing the effective
photonic mode frequency or by decreasing the effective mode
volume (�� ∼ 1/

√
Ω�). The attainment of coupling strengths

necessary to observe enhanced Tc depends on the details of
an experimental setup, such as the mode volume, frequency,
polarization of the effective photon modes, the thickness of the
sample, and the quality of the cavity, and so on.

However, to observe enhanced Tc in MgB2 within an in-
plane-polarized cavity with a fixed photon frequency (e.g.,
150 meV), we recommend using a thin MgB2 sample, as the
effective coupling strength diminishes with thickness due to
the increased plasma frequency (60). Based on the macroscopic
dielectric function of bulk MgB2 calculated within the random
phase approximation (RPA) (Computational Details), the skin
depth of the photon field in MgB2 in the THz frequency
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region is approximately 25 nm, consistent with experimental
estimates (63). While the skin depth measures field propagation
in the material, it does not account for Fresnel reflection at
the dielectric–metal interface, which further limits cavity field
penetration. This surface reflection can be mitigated by tuning
the refractive index of the dielectric spacer (Fig. 1A) to reduce the
impedance mismatch between the cavity and the MgB2 sample.
Therefore, the sample thickness should not exceed 25 nm, and, in
general, the dielectric spacer material must be carefully selected
as it has a direct impact on the light–matter coupling in the
cavity (27, 31). We highlight that the above-proposed mechanism
of cavity-enhanced superconductivity is a general one. Still, we
anticipate it to potentially lead to a reduction in Tc for other
materials inside a cavity.

Last, we would like to mention that in our QEDFT simu-
lations, the light–matter coupling strength is treated as a free
parameter but can be computed using macroscopic quantum
electrodynamics (47), which considers the effects of the cavity
material on photon fields via the dyadic Green’s function.
Similarly, another work (42) separates the longitudinal and
vectorial components of the photon fields, showing that the
longitudinal component, which is not considered here, plays
an important role in subwavelength cavities, such as plasmonic-
based cavities.

In conclusion, we have demonstrated that modifying the
ground state of a phonon-mediated superconductor strongly
coupled to a cavity can enhance its superconducting transition
temperature. By using the advanced QEDFT method on MgB2,
we have illustrated how the interaction between light and matter
inside the cavity alters the electron density of the ground state.
This results in nonperturbative modifications of the electronic
band structure and the E2g phonon mode of MgB2, which
is the phonon directly contributing to the change in the
superconducting transition temperature. The nonperturbative
nature of the mechanism shows that cavity materials engineering
should be pursued within first-principles approaches.

Materials and Methods

Mapping Photonic Fluctuations to Electronic Currents. Starting with the
nonrelativistic PF Hamiltonian shown in the main text, Eq. 1, the quadratic
(or diamagnetic) term Â2 can be directly incorporated into the bare frequency
!� (64), thereby simplifying the equations. This transformation converts the bare
photons into dressed photons, characterized by the dressed photon frequency
!̃� . In the case of multiple modes coupled to the matter the diamagnetic
is off-diagonal, i.e., coupling different modes. Hence, the dressed photon
frequency has to be obtained by solving the eigenvalues of the following
real and symmetric matrix, W��′ = !2

����′ + Ne����′"� · "�′ (45, 46),
which can be diagonalized using an orthonormal matrixU, such thatQ= UWUT

with eigenvalues !̃2
� , for example, the dressed photon frequency for one photon

mode is!̃� =

√
!2
� + Ne�2

� . The mode strength �̃� and polarization direction
"̃� of the dressed photon mode � can be obtained via the transformation (45)

�̃� "̃� =
∑Mp
�=1 U����"� , where "� ("̃� ) is normalized. The PF Hamiltonian

with the dressed photon modes becomes

ˆ̃HPF = −
1
2

Ne∑
l=1

∇
2
l +

1
2

Ne∑
l 6=k

w(rl , rk) +

Ne∑
l=1

vext(rl)

+
1
c
ˆ̃A · Ĵp +

Mp∑
�=1

!̃�
(
ˆ̃a†
�
ˆ̃a� +

1
2

)
,

with the paramagnetic current Ĵp =
∑Ne

l=1(−i∇l), the annihilation (creation)

operator ˆ̃a� (ˆ̃a†
� ) for the dressed photon mode �, and with these new operators

the vector potential read Â = c
∑
�=1 �̃� "̃�(ˆ̃a

†
� + ˆ̃a�)/

√
2!̃� .

To simulate the effect of the quantum fluctuation of the photon modes on the
electronic subsystem, ref. 46 suggests replacing the photon fluctuations with the
electron paramagnetic current fluctuations in the PF Hamiltonian. Substituting
the vector potential operator Â with the matter paramagnetic current operator
Ĵp in the PF Hamiltonian yields another Hamiltonian ĤB (see below) capable
of capturing photon field fluctuations through current–current fluctuations. This
allows mapping the quantum fluctuations of photon modes to fluctuations
of the electronic current, represented as ("̃� · Ĵp)

2. The static version of the
Hamiltonian ĤB reads

ĤB = −
1
2

Ne∑
l=1

∇
2
l +

1
2

Ne∑
l 6=k

w(rl , rk) +

Ne∑
l=1

vext(rl)

+

Mp∑
�=1

!̃�
2
−

Mp∑
�=1

�̃2
�

2!̃2
�

(
"̃� · Ĵp

)2
,

where the final term, a current–current correlation operator ("̃� · Ĵp)
2,

counteracts the kinetic energy operator and enhances the physical mass of
the electron along the polarization direction as the mode strength increases.
The associated physical picture is that, in the strong coupling regime, electrons
exhibit increased effective mass along the polarization direction, resembling
a more classical behavior, as they tend to accumulate in regions of minimum
external potential (45, 60).

Similar to standard DFT calculations (51), we can use an auxiliary noninteract-
ing system that incorporates the interaction between light and matter, known as
the KS system designed to replicate the electron density of the material coupled
to cavity photons. The KS Hamiltonian incorporating the light–matter interaction
can be expressed as follows (45, 46):

ĤKS = −
1
2
∇

2 + vKS(r) = −
1
2
∇

2 + vext(r) + vHxc(r) + vpxc(r),

where the KS potential vKS(r) consists of the external potential from the
nuclei vext(r), the Hartree and (longitudinal) exchange-correlation (xc) potential
from electron–electron interaction vHxc(r), and the electron–photon (transverse)
exchange-correlation potential vpxc(r). The Coulomb (longitudinal) xc potential
can be obtained using commonly used DFT functionals like the local density
approximation (LDA) or PBE (51). On the other hand, the electron–photon
(transverse) exchange-correlation potential is approximated using the electron–
photon exchange potential within the LDA (45, 46), c.f., Eq. 2 in the main text.
To describe the interactions between the ions and the valence electrons, we
use the pseudopotential method to separate the core and valence electrons to
reduce the computational cost (51) and then focus only on the valence electron
density. Once we solve the KS Hamiltonian in a self-consistent way—that is, the
Hamiltonian depends on the electron density, and the density depends on the
solution of the Hamiltonian—we get the eigenvalue �nk and eigenstates | nk〉
for the electronic state |nk〉 with band index n and crystal momentum k in the
Brillouin zone, i.e., ĤKS(k)| nk〉 = �nk| nk〉.

Computing Cavity-Modified Phonon Dispersion and Superconductivity.
Once we have the ground state of the material coupled to cavity photons,
we can examine its phonon properties using density functional perturbation
theory (DFPT) (65). To incorporate the light–matter interaction, we solve
the following linear system iteratively to get the induced change of the
wave function ∂ i(r)/∂� and the perturbation potential due to the atomic
displacement ∂vKS(r)/∂� (or ∂q�V for each photon mode shown in the main
text): [

−
1
2
∇

2 + vKS(r)− "i

]
Pc

∂ i(r)
∂�

= −Pc
∂vKS(r)

∂�
 i(r),
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where Pc is the projector on the conduction bands, and it can be expressed as
Pc = 1− Pv, where Pv =

∑
i | i〉〈 i| is the projector on the valence bands.

The variable� is a shorthand notation of the atomic displacementu�s� , where �
is the index for the Bravais lattice vectors, s the index for the atoms in one unit cell,
and� the index for the Cartesian coordinates. Compared to standard DFPT, which
includes the linear responses of the external, Hartree, and electron–electron xc
potential, we here include an additional contribution from the electron–photon
exchange potential vpxLDA(r). For the electron–photon interaction, the key piece
to include in the standard DFPT is the response of the electron–photon exchange
potential (within LDA) to the change of the electron density �(r),

�vpxLDA(r)

��(r′)
=

(
3

8�

)2/3 Mp∑
�=1

��̃2
�

3!̃2
�

[
�(r′)

]−1/3
{
("̃� · ∇

′

)2 1
|r− r′|

}
,

which can be represented in any basis set. In this work, we have included this
response term in terms of the plane-wave basis set in the Quantum Espresso
(QE) PHONON package (66, 67), in addition to the electron–photon exchange
potential vpxLDA(r), which we have also implemented in the QE PW package.

Upon solving the iterative and linear system, we obtain two terms resulting
from the atomic displacement perturbation: 1) the change in the wave function
∂ i(r)/∂� and 2) the change in the KS potential ∂vKS(r)/∂�. The former can
be used to compute the induced electron density from the atomic displacement,
∂�(r)/∂�, which is then used to compute the second derivative of the
total energy of the matter Etot with respect to the atomic displacement, i.e.,
∂2Etot/∂�′∂� (68). These derivatives are then employed, given a phonon wave
number q, to construct the dynamical matrix, whose eigenvalues are the square
of the phonon frequencies !�q, where � is the index for phonon modes. The
dynamical matrices computed on a coarse q-grid in the Brillouin zone also
allow us to construct the interatomic force constants (68). Furthermore, the
perturbation potential due to the atomic displacement ∂vKS(r)/∂� allows us to
compute electron–phonon coupling strengths for specific electronic states and
phonon modes (69).

Using the information for electrons and phonons, together with electron–
phonon coupling strengths, we can compute the superconductivity of the
material coupled to photon modes by solving the anisotropic Migdal-Eliashberg
equations (70) based on first-principles methods (49, 54). This calculation
enables us to obtain the momentum-resolved superconducting gaps Δnk
and, consequently, determine the superconducting transition temperature
Tc (49, 54). While solving the anisotropic Eliashberg equation can be
computationally challenging, we can use the Wannier-interpolation method for
electronic states and electron–phonon couplings implemented in open-source
codes (71–74). The main quantities used in solving the anisotropic Eliashberg
equations from first principles are as follows (please refer to refs. 54 and 72 for
more details). The anisotropic Eliashberg equations (the mass renormalization
function Z and the superconducting gap Δ) to solve are

Z(nk, i!l) = 1 +
�T
NF!l

∑
mk′ ,l′

!l′√
!2
l′ + Δ2(mk′, i!l′)

× �(nk, mk′, l − l′)�(�nk),

Z(nk, i!l)Δ(nk, i!l) =
�T
NF!l

∑
mk′ ,l′

Δ(mk′, i!l′)√
!2
l′ + Δ2(mk′, i!l′)

×
[
�(nk, mk′, l − l′)− NFVnk,mk′

]
�(�nk),

where i!l = i(2l + 1)�T is the fermion Matsubara frequency (l is an integer),
T the temperature, and NF the density of states at the Fermi level. Vnk,mk′ is the
static screened Coulomb interaction between the electronic states nk and mk′,
and here we use an effective Coulomb parameter�∗ to take this interaction into
account. The anisotropic electron–phonon coupling matrix �(nk, mk′, l− l′) is
defined as

�(nk, mk′, l − l′) =

∫
∞

0
d!

2!
(!l − !l′)2 + !2

�2F(nk, mk′,!),

where the anisotropic Eliashberg electron–phonon spectral function
�2F(nk, mk′,!) can be computed using

�2F(nk, mk′,!) = NF
∑
�
|gSEmn,�(k, q)|

2�(!− !�,q=k−k′),

with the screend electron–phonon matrix element gSEmn,�(k, q) =(
1/2!�q

)1/2 gmn,�(k, q). The associated isotropic Eliashberg spectral function
�2F(!) can be obtained by

�2F(!) =
∑
nk,mk′

WnkWmk′�
2F(nk, mk′,!),

where Wnk = �(�nk)/NF. The cumulative electron–phonon coupling strength
is given by

�(!) = 2
∫ !

0
d!′

�2F(!′)
!′

,

from which the total electron–phonon coupling strength � can be computed
by setting ! beyond the highest phonon frequency of the material. The band-
and wave-vector-dependent electron–phonon coupling strength �nk for the
electronic state |nk〉 is defined as �nk =

∑
mk′ Wmk′�(nk, mk′, l − l′ = 0).

Computational Details. The ground state of MgB2 outside a cavity is
obtained using the LDA (PZ) functional (75), together with the norm-conserving
pseudopotential, in QE (66, 67). The DFT-relaxed crystal structure of MgB2
has a hexagonal lattice with the lattice constants a = 3.0264 Å and
c = 3.4636 Å where the lattice constant a is parallel to the Boron plane and c
is perpendicular to the plane. The atomic positions in crystal coordinates for the
Magnesium and two Boron atoms in the unit cell are (0, 0, 0), (1/3, 2/3, 1/2),
and(2/3, 1/3, 1/2), respectively.Weusethekineticenergycutoffof60Rydberg
and the Monkhorst-Pack k-grid of 24 × 24 × 24 k-points centered at the
Γ point to converge the total energy within the error of 10 meV per atom.
Here, we use the Marzari–Vanderbilt smearing function (76) with a smearing
value of 0.02 Rydberg. We calculate the skin depth using the Beer–Lambert
law, �e(!) = c/(!Im [n(!)]), where n(!) is the refractive of bulk MgB2.
The refractive index is calculated as n(!) =

√
�M(!), where �M(!) is the

macroscopic dielectric function of bulk MgB2 in the long-wavelength limit. This
complex dielectric function is calculated using linear response in DFT within
the RPA. The RPA is expected to work well because of the metallic nature of
the MgB2 sample (77, 78). For the dielectric function calculation, we use a
Monkhorst-Pack k-grid of 30 × 30 × 30 k-points, a Gaussian broadening of
0.2 eV, and include 120 electronic bands. These dielectric function calculations
were performed using the QE package. The phonon properties are computed on
a coarse uniform q-grid of 6 × 6 × 6 q-point using DFPT implemented in the
QE PHONON package (66, 67). The computed dynamical matrices on the coarse
uniform q-grid are used to construct the interatomic force constants, which are
then used to interpolate the phonon dispersion shown in the main text. The
Wannier functions are constructed on a coarsek-grid of 6×6×6k-points using
Wannier90 package (71) with the initial projections, which are the pz orbital for
each Boron atom and three s orbitals located at (0, 1.0, 0.5), (0.0, 0.5, 0.5),
and (0.5, 0.5, 0.5) in crystal coordinates. The electron–phonon couplings in the
Bloch basis are computed on the coarsek- andq-grids of 6×6×6, and then are
used to construct the electron–phonon couplings in the Wannier basis, which
are used as a small set to interpolate electron–phonon couplings at arbitrary
k and q point; the electron–phonon couplings are calculated using EPW (72).
The momentum-resolved superconducting gaps are obtained by solving the
anisotropic Eliashberg equation implemented in EPW (54, 72). We use a fine
k-grid of 60×60×60 points and a fineq-grid of 30×30×30. For solving the
anisotropic Eliashberg equation, we use the following conditions: the effective
Coulomb potential �∗ is 0.16, the Matsubara frequency cutoff is 1 eV, and the
Dirac broadening for electrons is 0.1 eV, while that for phonons is 0.05 meV. For
the ground states of MgB2 inside the cavity, we use the same conditions as those
outside the cavity, while additionally including the electron–photon exchange
potential within the LDA in solving the KS Hamiltonian. For the out-of-plane
cavity with one effective photon mode, we use the photon frequency of 0.03675

PNAS 2024 Vol. 121 No. 50 e2415061121 https://doi.org/10.1073/pnas.2415061121 7 of 9

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 9
5.

11
9.

74
.4

1 
on

 D
ec

em
be

r 
6,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
95

.1
19

.7
4.

41
.



Hartree (70 meV), and vary the (dimensionless) ratio of the mode strength and
photon frequency, i.e.,��/!� , from 0.14 to 1.4. Note that the results obtained
from our method do not change if we use another photon frequency (e.g., 700
meV) but keep the same ratio of the mode strength and photon frequency. For
the in-plane cavity with two effective photon modes, we use the same conditions,
but its electron–photon exchange potential is weighted by 1/2.

Data, Materials, and Software Availability. All study data are included in
the main text.
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