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Abstract

Neurons in the cerebral cortex receive thousands of synaptic inputs per second from thou-

sands of presynaptic neurons. How the dendritic location of inputs, their timing, strength,

and presynaptic origin, in conjunction with complex dendritic physiology, impact the transfor-

mation of synaptic input into action potential (AP) output remains generally unknown for in

vivo conditions. Here, we introduce a computational approach to reveal which properties of

the input causally underlie AP output, and how this neuronal input-output computation is

influenced by the morphology and biophysical properties of the dendrites. We demonstrate

that this approach allows dissecting of how different input populations drive in vivo observed

APs. For this purpose, we focus on fast and broadly tuned responses that pyramidal tract

neurons in layer 5 (L5PTs) of the rat barrel cortex elicit upon passive single whisker deflec-

tions. By reducing a multi-scale model that we reported previously, we show that three fea-

tures are sufficient to predict with high accuracy the sensory responses and receptive fields

of L5PTs under these specific in vivo conditions: the count of active excitatory versus inhibi-

tory synapses preceding the response, their spatial distribution on the dendrites, and the AP

history. Based on these three features, we derive an analytically tractable description of the

input-output computation of L5PTs, which enabled us to dissect how synaptic input from

thalamus and different cell types in barrel cortex contribute to these responses. We show

that the input-output computation is preserved across L5PTs despite morphological and bio-

physical diversity of their dendrites. We found that trial-to-trial variability in L5PT responses,

and cell-to-cell variability in their receptive fields, are sufficiently explained by variability in

synaptic input from the network, whereas variability in biophysical and morphological prop-

erties have minor contributions. Our approach to derive analytically tractable models of

input-output computations in L5PTs provides a roadmap to dissect network-neuron interac-

tions underlying L5PT responses across different in vivo conditions and for other cell types.
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Author summary

Revealing how synaptic inputs drive action potential output is one of the major challenges

in neuroscience research. An increasing number of approaches therefore seek to combine

detailed measurements at synaptic, cellular and network scales into biologically realistic

brain models. Indeed, such models have started to make empirically testable predictions

about the inputs that underlie in vivo observed activity patterns. However, the enormous

complexity of these models generally prevents the derivation of interpretable descriptions

that explain how neurons transform synaptic input into action potential output, and how

these input-output computations depend on synaptic, cellular and network properties.

Here we introduce an approach to reveal input-output computations that neurons in the

cerebral cortex perform upon sensory stimulation. For this purpose, we reduce a realistic

multi-scale model of the rat barrel cortex to the minimal description that accounts for in
vivo observed responses to whisker stimuli. Thereby, we identify the input-output compu-

tation that these cortical neurons perform under this in vivo condition, and we show that

this computation is preserved across neurons despite morphological and biophysical

diversity. Our approach provides analytically tractable and hence interpretable descrip-

tions of neuronal input-output computations during specific in vivo conditions.

Introduction

Dissecting how neurons transform synaptic input into action potential (AP) output is a pre-

requisite for understanding the neurobiological implementation of brain functions. Many

studies have investigated the principles of synaptic integration for dozens of dendritic stimulus

sites [1–4]. However, in the cerebral cortex, pyramidal neurons receive synaptic input from

thousands of neurons along their morphologically extensive and biophysically complex den-

drites, which they then transform into APs. When and where synapses are active on the den-

drite, the ‘spatiotemporal input patterns’, is highly variable from cell to cell, and even from

trial to trial within the same experimental condition [5–9]. As a result, which features of these

spatiotemporal synaptic input patterns determine AP output in vivo, how this transformation

depends on variability in morphological and biophysical properties, and which mathematical

operation the neuron performs–i.e., what is the ‘input-output computation’–remains unclear.

Here, we derive the input-output computation that layer 5 pyramidal tract neurons (L5PTs)

in the vibrissae-related part of the rat primary somatosensory cortex (vS1)–the barrel cortex

[10]–perform in vivo to transform synaptic inputs evoked upon passive single whisker deflec-

tions into AP output. Along their extensive and biophysically complex dendrites, these major

cortical output cells receive synaptic input patterns from different thalamocortical, intracorti-

cal and top-down corticocortical pathways (reviewed in [11]). In response to sensory stimula-

tion, L5PTs generate fast and reliable AP output with receptive fields that show large cell-to-

cell variability and which are broader than those of any other cell type in the same cortical col-

umn [12].

How do these AP responses arise from the interplay between neuron and network proper-

ties? How does the transformation of synaptic input into AP output depend on specific mor-

phological and biophysical properties of the dendrite? Joint measurement of sensory-evoked

synaptic input patterns (i.e., precise time points, dendritic locations, and origins of all active

synapses), the morphology of the dendrite, its biophysical properties (which ion channels are

active when and where on the dendrite) and AP output would be ideal to answer these ques-

tions, but are difficult to assess experimentally. Therefore, we had previously reported and
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validated a multi-scale model of the rat barrel cortex, which provides realistic estimates for the

number and locations of synaptic inputs that impinge onto L5PT dendrites upon whisker

stimulation, and how L5PTs transform these inputs into AP output [13–15]. Simulations of

the multi-scale model captured the fast and broadly tuned sensory responses of L5PTs in vivo,

provided predictions about the cellular and circuit mechanisms underlying these responses,

and thereby provided concrete predictions for how to test these mechanisms experimentally,

which we did successfully via pharmacological manipulations in vivo [14]. Thus, the multi-

scale model sets the stage to investigate which input-output computation L5PTs perform upon

sensory stimulation, and how this computation depends on the morphological and biophysical

properties of the dendrites.

Here we address these questions by introducing an approach that seeks to reduce the multi-

scale models into analytically tractable models that capture the input-output computations of

L5PTs upon single whisker deflections, while maintaining the in vivo observed trial-to-trial

and cell-to-cell variability. The reduction revealed that the input-output computation of L5PTs

can be explained by three features: the count of active synapses in a time window, their soma-

distance-dependent spatial distribution on the dendrite, and the time since the previous AP of

the L5PT. While the multi-scale model is expressed in partial differential equations, which

require numerical solvers to evaluate, the reduced models express the transformation of synap-

tic input into AP output in an analytically tractable manner. This increased interpretability

hence allows dissecting the network-neuron interactions underlying sensory responses of

L5PTs for the investigated in vivo condition.

Results

We extended our previously reported multi-scale modelling approach [14] to account for cell-

to-cell and trial-to-trial variability. For this purpose, we repeated our simulations of L5PT

responses to passive deflections of nine different whiskers, the somatotopically aligned, so-

called principal whisker (PW), and any of the eight surrounding whiskers (SW) (Fig 1A).

Whereas our previous simulations were performed on the morphology of a single in vivo
recorded L5PT, we now performed simulations for five morphologically diverse L5PTs

(Fig 1B) for which we had measured highly variable receptive fields in vivo (Fig 1C). We

embedded these morphologies into the network model of the barrel cortex to provide realistic

estimates for which neurons in thalamus and barrel cortex (Fig 1D) could provide input to

these in vivo recorded L5PTs, and where along their dendrites these inputs could occur

(Fig 1E). The network model thereby provided the spatial distributions of synaptic input pat-

terns to L5PTs from different types of excitatory and inhibitory neurons across all layers of the

barrel cortex, and from the ventral posterior medial nucleus (VPM)–the primary thalamus of

the whisker system. We embedded each morphology at eighty-one locations (S1 Fig) in and

around the barrel column of the network model that represents the C2 whisker, and activated

presynaptic neurons in the network model according to cell type- and layer-specific experi-

mental recording data from passive single whisker deflections (S2 Fig). Thereby, for each mor-

phology, each location of the network embedding, and each configuration of active neurons in

the network, we generate a unique but empirically well-constrained spatiotemporal synaptic

input pattern to L5PT dendrites (Fig 1F). The hence predicted spatiotemporal synaptic input

patterns (Fig 1G) are remarkably consistent with those observed empirically via dendritic

spine imaging [9].

To simulate how such spatiotemporal input patterns are transformed into AP output, we

converted the L5PTs into biophysically detailed multi-compartmental models (n = 7 from 5

morphologies), which capture their characteristic electrophysiological properties [16],
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Fig 1. Biophysically detailed multi-scale model of whisker deflection evoked responses in cortical pyramidal tract neurons. A: Sensory-evoked signal flow:

stimuli of single whiskers (which are arranged in ‘arcs’ and ‘rows’ on the animal’s snout) are transmitted to the brainstem (BS), from there to the VPM

thalamus, and from there to the primary sensory cortex of the vibrissal system (vS1). This pathway is somatotopically organized, with barreloids in VPM and

barrels in vS1 corresponding to the respective whiskers. B: In vivo labeled L5PT dendrite morphologies used in this study. C: Corresponding receptive fields to

passive single whisker touch, measured in vivo (upper panels). Average receptive field across 9 in vivo recorded L5PTs (lower panel). Error bars are std. D:

Network model of rat vS1 and VPM provides anatomically realistic estimates of which neurons are connected to a L5PT embedded into the network. In this

study, the simulated neurons are located in the C2 column of vS1, thus we refer to the somatotopically aligned C2 whisker as the ‘principal’ whisker, and the

adjacent whiskers as surround whiskers. Red and blue markers denote soma locations of presynaptic excitatory and inhibitory somata, respectively. E: Synapse
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including backpropagating APs, dendritic calcium APs, and responses to step current injec-

tions (Fig 1H and S1 Table). Each multi-compartmental model used different biophysical

parameters to achieve these electrophysiological properties, reflecting different densities of

active conductances in different subcellular compartments (S2 Table). Thus, the embedding

of these diverse multi-compartmental models into the network model allowed us to investigate

how variability in synaptic input, in conjunction with variability in morphological and bio-

physical properties of the dendrites, impact sensory responses of L5PTs. Simulations of each of

these multi-scale model configurations predicted the characteristic fast responses (Fig 1I) and

broad receptive fields of L5PTs (Fig 1J). Moreover, the variability of in silico responses across

multi-scale model configurations matched the cell-to-cell variability observed in vivo across

L5PTs: The distribution of response probabilities closely matches for any whisker (p-values

ranging between 0.07 and 0.92) and the means of these distributions, i.e., the ‘mean receptive

field’ is significantly correlated (R value 0.76, p = 0.017). Thus, these multi-scale model config-

urations set the stage to investigate which features of synaptic input patterns determine AP

output, and how this transformation depends on variability in morphological and biophysical

properties of the dendrites.

Input-output computation underlying sensory responses of L5PTs

We developed our reduction approach by using one of the multi-compartmental models,

whose morphology is shown as example 1 in Fig 1B. For each of its eighty-one network embed-

dings, we simulated its responses to passive deflections of the PW and the eight SWs, respec-

tively. Within this simulation data, we searched for features in the synaptic input that are most

predictive for the generation of an AP at a given millisecond—the ‘prediction time point’

(Fig 2A, methods). For this purpose, we grouped synapses according to their activation time

points (1ms bins), by their pathlength distance to the soma (50μm bins), and depending on

whether they are excitatory or inhibitory. We found that a weighted count of active excitatory

versus inhibitory synapses, where the contribution of each synapse is weighted depending on

its soma distance and activation time point, can predict AP output. We therefore determined

the spatial and temporal weights (the “spatiotemporal filter”) that maximize the AP output

prediction accuracy (methods). According to these weights (Fig 2B), the contributions of both

excitatory and inhibitory inputs to AP output decay gradually with soma distance, reaching

approximately zero at 500μm distance. Hence, primarily inputs to the proximal (i.e., basal and

apical oblique) dendrites of L5PTs are predicted to contribute to their AP output upon sensory

stimulation under this specific in vivo condition. In the temporal dimension, the contribution

of excitatory and inhibitory synapses has a time course resembling excitatory and inhibitory

postsynaptic potentials (EPSPs and IPSPs). Excitatory and inhibitory synapses contribute the

most to AP output if they were active around 4ms and 9ms before the prediction time point,

respectively. These observations were robust, independent of the method used for estimating

the weights (methods, S3 Fig). The probability to observe a sensory-evoked AP in the multi-

scale simulations increased with this weighted count of active synapses (Fig 2C), which we in

distribution originating from the neuron shown in Panel B. F: Spatiotemporal input pattern to L5PT: combining the anatomical constraints with empirical

measurements of the activity of different presynaptic populations (S1 Fig) provides spatiotemporal input patterns that the L5PT can receive after sensory

stimulation. G: Trial-to-trial activity of example synapses matching the soma distance from panel F for a principal whisker (C2) and surround whisker (D2)

stimulus. H: Biophysically detailed multi-compartmental L5PT models reproduce the cell type’s characteristic electrophysiology (left panel), i.e. back

propagation of APs (upper left), dendritic Ca-APs and somatic burst firing (upper right), as well as regular firing properties (lower row). Right panel:

biophysically detailed neuron morphologies at the moment of a dendritic Ca AP. I: Simulated response to principal whisker touch. J: Simulated receptive fields

across morphologically and biophysically diverse L5PT multi-compartmental models across 81 network embeddings capture broad and heterogeneous

receptive fields.

https://doi.org/10.1371/journal.pcbi.1011468.g001
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the following refer to as ‘weighted net input’ (WNI). The WNI predicted AP output with high

accuracy, as we quantified by the area under the receiver operating characteristic curve

(AUROC 0.949).

We revisited trials which were misclassified by the WNI and found that misclassifications

mostly occur if there was a recent AP a few milliseconds before the prediction time point. We

found that the multi-compartmental model is less excitable shortly after an AP, reflecting time

constants of the involved ion channels, and the chance of eliciting an AP is hence low, even if

the WNI is high. We therefore distinguished three categories: no AP, AP and recent AP

(Fig 2A). We show that these three categories can be separated based on the WNI and time to

previous AP (Fig 2D). To include this AP history-dependent relationship, we determined the

separating line of response trials from the others (Fig 2D black line, methods) and incorpo-

rated it as a ‘post AP penalty’, i.e., we first computed the WNI as before and then subtracted a

penalty value depending on the time since the previous AP. This penalized WNI predicted AP

output with higher accuracy (AUROC 0.990) than WNI alone. Thus, three features, the spatial

and temporal component of the WNI and the post AP penalty are sufficient to predict AP out-

put from synaptic input in the multi-scale models.

Based on these three features, we could hence describe the input-output computation of the

biophysically-detailed multi-compartmental model by an analytically tractable model. For this

Fig 2. Input-output computation of L5PTs upon single whisker deflections. A: Exemplary responses of the multi-compartmental model with respect to the

prediction time point (the time point for which the occurrence of an AP is to be predicted) for the three relevant response categories ‘AP’, ‘no AP’, and ‘recent

AP’ (AP was elicited shortly before the prediction time point). B: Spatiotemporal input filter that best separates AP and no AP trials assigns strong weight to

proximal synapses (top) active in a short time window before the prediction time point (bottom). C: Nonlinear relationship between WNI and AP probability.

WNI represents the ‘drive’ a neuron receives; the higher the WNI the higher the probability an AP will be generated. D: Weighted net input–the input filtered

by the spatiotemporal filter–separates AP and no AP trials, but not ‘recent AP’ trials, which can be distinguished based on a second measure, ‘time to previous

AP’.E: Reduced model structure. APs are generated stochastically based on the AP probability (output of the nonlinearity). If an AP is generated, subsequent

APs become less likely due to the post AP penalty, which is subtracted from the WNI. This reduced model directly relates AP output to synaptic input and

previously generated APs in the simulated in vivo condition. F: The reduced model’s responses match the biophysically detailed model across many trials (close

PSTH match) and on the single trial level (high AUROC score across all time points). Without the post AP penalty, the AUROC score drops during the

sensory-evoked response.

https://doi.org/10.1371/journal.pcbi.1011468.g002

PLOS COMPUTATIONAL BIOLOGY Modelling of input-output computations in cortex

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011468 April 16, 2024 6 / 23

https://doi.org/10.1371/journal.pcbi.1011468.g002
https://doi.org/10.1371/journal.pcbi.1011468


purpose, we assembled post AP penalty and the nonlinear relationship between WNI and AP

probability into a generalized linear model (GLM, Fig 2E). We applied the GLM to predict AP

output at different time points ranging from 25ms before to 25ms after the onset of sensory

stimulation. Notably, even though the GLM was developed to predict the peak of AP

responses, it also maintained a high AUROC score before and after this time point (Fig 2F).

On a single-trial level, the model was able to predict if an AP was elicited in the 25ms after the

sensory stimulus with an accuracy of 96.7% (S3 Table), and the timing of APs within this win-

dow was accurate to within 1.1±1.6ms (S4 Fig). Thus, the GLM accurately predicts APs

throughout the entire 50ms time interval, and the post-stimulus time histogram (PSTH) pre-

dicted by the GLM hence matched with the PSTH predicted by the multi-compartmental

model (Fig 2F).

We investigated how the performance of the GLM depends on the three features it is based

on. Without incorporating the AP history (i.e., post AP penalty) into the GLM, the AUROC

score drops during the peak response (Fig 2F, dashed line). Furthermore, when we simplified

the GLM to neglect the spatial dimension, such that the weighted count only considers the

time point of activation, but not the soma distance, the AUROC score decreased (S3A and

S3E Fig). It was also insufficient to incorporate the spatial dimension categorically by only dis-

tinguishing a proximal and a distal compartment (S3B and S3E Fig). Therefore, soma distance

and synapse activation time point need to be included at high resolution (50μm spatial bins,

1ms temporal bins) to accurately capture the input-output computation. To investigate the rel-

ative importance of the temporal and spatial filters on the prediction accuracy of the reduced

model, we replaced one of these filters at a time with a fixed filter that only provides a cutoff

value but does not weight synapses: replacing the spatial filter with weights of 1 for all inputs

with less than 500μm pathlength distance from the soma and 0 otherwise reduced the AUROC

score to 0.955. Similarly, modifying the temporal filter by assigning weights of 1 and -1 to

excitatory and inhibitory synapses that were active in the 50ms preceding the AP, respectively,

and setting the weights to 0 for all other active synapses reduced the AUROC score to 0.959.

The modifications indicate that the spatial and temporal components of the WNI contribute

equally to the prediction accuracy of the reduced model. In turn, considering the specific cell

types of the neurons from which the synaptic inputs originate did not increase the prediction

accuracy (S3C–S3E Fig). Taken together, the AP history, soma-distance dependent spatial dis-

tribution of synapses and their temporal activation pattern are necessary and sufficient features

to accurately predict APs in the investigated L5PT multi-scale model. Thus, reduced models

that are based on these three features, such as the GLM described here, provide an analytically

tractable description of the input-output computation that a L5PT with this morphology and

these biophysical properties performs upon single whisker deflections.

Input-output computation is robust to morphological and biophysical

diversity

How does this input-output computation depend on the morphological and biophysical prop-

erties of L5PTs? To address this question, we applied the reduction strategy to all multi-scale

model configurations of L5PTs with morphologically and biophysically diverse dendrites. The

reduction revealed that the shape of the spatiotemporal filters, the shape of the penalty and

nonlinearity are qualitatively similar across all L5PTs despite their morphological and biophys-

ical diversity (Fig 3A): all L5PTs count active synapses, strongly weighting proximal input that

occurs within the characteristic EPSP/IPSP-like time windows, with a similar AP-history

dependent penalty. Each reduced model achieved a high accuracy before and after the sensory

stimulus (Fig 3B), and highest accuracies during the peak response (AUROC median/min/
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max: 0.97/0.93/0.998). At single trial level, the models were able to predict if an AP was elic-

ited in the 25ms after the sensory stimulus with a mean accuracy of 90.9% ± 3.9% (min

85.0%, max 96.7%, confusion matrices for all models are provided in S3 Table) and the tim-

ing of AP times was predicted accurately to within a mean of 2.0ms (min 1.1ms, max 3.1ms,

S4 Fig). Thus, this input-output computation is robust across morphologically and biophy-

sically diverse L5PTs.

Notably, while the properties of the reduced models are qualitatively similar, they are not

identical. For example, the decay of the spatial filter with soma distance differs slightly between

reduced models, which largely reflects diameter differences of the apical trunk dendrite (S5

Fig). To what degree do these small variations in the reduced model capture differences of the

input-output computations across L5PTs? We compared the predicted PSTHs between the

multi-scale configurations of each multi-compartmental model with the respective reduced

model and found that the slight differences between their shapes are captured well by the

reduced model (S4 Fig). To quantify this similarity, we compared the time to maximum

response (latency), AP rate before the stimulus, and response probability between multi-com-

partmental models and corresponding reduced models (Fig 3C). Each reduced model gener-

ated responses which matched those of the corresponding multi-compartmental models in all

of these properties, while preserving the considerable variation across them (Fig 3D). Thus,

the small variabilities in the reduced models account for differences in the input-output com-

putation between the multi-compartmental models.

Fig 3. Input-output computation is robust to morphological and biophysical diversity. A: Reduced models inferred on the

different multi-compartmental models are qualitatively similar, with similar temporal and spatial filters, nonlinearity and post AP

penalty. B: All models have high AUROC scores, specifically during the sensory-evoked (peak) response. C: We quantify latency,

spontaneous AP rate (before the stimulus) and response probability for each pair of multi-compartmental and reduced model. D:

Comparing response properties between multi-compartmental and corresponding reduced model shows close match.

https://doi.org/10.1371/journal.pcbi.1011468.g003
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The model structure that we found to accurately predict AP output in simulations of the

multi-compartmental models is surprisingly linear. This indicates that synaptic input patterns

that mimic passive single whisker deflections during our specific in vivo condition do either

not strongly activate nonlinear dendritic mechanisms in L5PTs, or these mechanisms are acti-

vated, but do not strongly influence the prediction of AP output. To test these possibilities, we

quantified the occurrences of calcium APs and sodium currents in the dendrites, and the con-

tributions of NMDA and AMPA currents in apical and basal dendrites, respectively. For this

purpose, we recorded currents through voltage-gated ion channels, and through AMPA and

NMDA receptors during simulations of PW deflections in a multi-compartmental model

(example morphology 2). We recorded these currents for 16 locations across the basal and api-

cal dendrites, including the primary branchpoint of the apical trunk (S6A Fig). Dendritic non-

linear mechanisms were frequently activated in the simulations. For example, in the apical

tuft, we found peaks of sodium influx (S6E Fig). At the primary branchpoint, we found that

calcium APs occurred in 18% of the simulation trials (S6B Fig). The calcium APs, however,

did generally not result in somatic burst firing (response during 179 trials with calcium APs:

13% no AP, 83% 1 AP, 4% burst with 2 APs). The reduced model predicted the response

equally well for trials with and without calcium APs (86% vs 90%, p = 0.07). Moreover, in our

simulations, NMDA currents dominate in apical trunk and tuft dendrites (S6C, S6D and S6F

Fig). We compared the prediction accuracy between trials with low NMDA contribution (33rd

percentile and below) and high NMDA contribution (66th percentile and above) as measured

in the tuft dendrites. The strength of these distal NMDA contributions did not affect the pre-

diction accuracy of the reduced models (88% vs 91% for trials with low vs high NMDA contri-

butions, p = 0.17). Thus, nonlinear synaptic and dendritic mechanisms are frequently

activated in the simulations that mimic synaptic inputs to L5PTs upon passive single whisker

deflections, but either their impact on AP output is low in the investigated condition, or the

reduced models are able to capture their impact on the effective input-output computation. To

investigate this, we re-simulated all whisker-evoked responses for one multi-compartmental

model (example morphology 2) and reduced by 50% or removed NMDA conductance in all

synapses. Reducing NMDA reduced response probabilities to all whiskers (S7A and S7B Fig),

indicating that NMDA strongly contributes to AP output. When we inferred reduced models

(S7C Fig) from these modified multi-compartmental models, we found that reducing NMDA

changes both the spatial and temporal filters. More specifically, NMDA is predicted to increase

the influence of distal synapses (S7D Fig) and to increase the integration time window (S7E

Fig). Notably, nonlinear effects of NMDA thereby decrease the prediction accuracy of the lin-

ear reduced models (S7F Fig), which hence reach a maximal AUROC score of 0.99999 in the

absence of NMDA.

Network vs neuron contributions to receptive field variability

How can the large variability in L5PT responses arise from such small variability in input-out-

put computations? We repeated the simulations of all multi-scale model configurations, this

time with the reduced models instead of the multi-compartmental models. The probabilities

that a network input elicited a response (i.e., > = 1 AP 0-25ms post passive whisker deflection)

in the reduced and corresponding multi-compartmental models were highly correlated for

input from each whisker, all network embeddings, and all L5PT models (Fig 4A, Pearson cor-

relation coefficient = 0.97). Consequently, also the receptive fields were virtually identical

between the reduced and multi-compartmental models (Pearson R between receptive fields

0.96±0.01, Fig 4B and 4C). Thus, the reduced models capture the variability of responses for

each multi-compartmental model across simulation trials, and the variability of responses
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across multi-compartmental models with different network embeddings, biophysical proper-

ties, and/or dendrite morphologies.

How well do the sensory responses predicted by the reduced models match with the in vivo
data? We compared response probabilities to each whisker stimulus (PW and 8 SWs) between

in vivo data and in silico predictions (Fig 4D). The distribution of response probabilities closely

matches for any whisker (p values ranging between 0.08 and 0.77) and the means of these dis-

tributions, i.e., the ‘mean receptive field’, is significantly correlated (R value 0.77, p = 0.015).

The simulated receptive fields even contain matches to the extreme cases observed in vivo, for

example weaker response to the PW than to a SW, selective response to few whiskers, unselec-

tive response to virtually all whiskers (Fig 4E). Thus, the reduced models predict means, vari-

ance and outliers consistent with those observed in vivo, despite the small variability in input-

output computations.

Because they capture trial-to-trial and cell-to-cell variability of sensory responses as

observed across L5PTs in vivo, the reduced models can dissect how variations in network

input or neuron properties could contribute to these observations. For this purpose, we

Fig 4. Reduced models predict origins of receptive field variability. A: Comparison of responses of 7 different multi-

compartmental models and their corresponding reduced models to 9 different whisker stimuli (PW and 8 SW) in 81

different network embedding locations. Response probability is the probability that one or more APs are generated 0-

25ms after the sensory stimulus. B: Comparison of exemplary receptive field shapes shows close match between

biophysically detailed and reduced model. C: Quantification of receptive field similarity for all cell positions and

biophysically detailed models. D: Comparison between in vivo and reduced model responses to 9 different whisker stimuli

(PW and 8 SW). Green dots represent the mean response probability. E: Exemplary receptive fields of reduced models. F:

Influence of biophysics, morphology and cell position on receptive field shape, quantified by computing the correlation

coefficient between receptive fields if one of these properties is changed.

https://doi.org/10.1371/journal.pcbi.1011468.g004
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computed the pairwise correlation between receptive fields across different morphologies, bio-

physical parameters, and network embeddings (Fig 4F). We found a change in network

embedding, and therefore synaptic input patterns, to have the strongest effect (i.e., leads to the

largest drop in the Pearson correlation coefficient), followed by the neuron’s morphology and

biophysical properties. The models thereby indicate that variations in network input are the

primary determinant of receptive field variability from cell to cell, whereas variations in mor-

phology and biophysics play a minor role. Thus, the reduced models predict that L5PTs with

diverse morphologies and biophysical properties perform the same input-output computation

upon passive single whisker deflections in anesthetized rats, and the variability of their

responses across trials and cells is determined by the variability in input that they receive from

the network–i.e., from VPM thalamus and barrel cortex.

Contribution of different input pathways to sensory responses

Which presynaptic neuron populations underlie the variable AP responses? While so far, we

only distinguished between excitatory and inhibitory cells, the network model provides infor-

mation about the location and cell type of the neuron from which each active synapse origi-

nates [15], for both thalamocortical (i.e., VPM) and excitatory intracortical cell types:

pyramidal neurons in L2/3/4 (L2PY, L3PY, L4PY), spiny neurons in L4 (L4SP), intratelence-

phalic neurons in L5 (L5IT), L5PT, corticocortical neurons at the L5/6 border (L6CC) and in

deep L6 (L6INV), and corticothalamic neurons in L6 (L6CT). To dissect how these presynaptic

populations contribute to AP output, we utilized the reduced models and calculated the WNI

separately for each cell type across whisker stimuli and network embeddings (i.e., we applied

the spatiotemporal filters to synaptic input from each presynaptic cell type one at a time,

Fig 5A). First, we analyzed L5PTs embedded at the center of the barrel column that is somato-

topically aligned with the PW defined in this study (i.e., C2). The analysis shows that presynap-

tic neurons contribute in two ways to APs: by their spontaneous activity preceding the

stimulus (‘baseline WNI’) and/or by their increase in activity upon whisker deflection (’sen-

sory-evoked WNI’). Predominantly, L5PTs contribute to the baseline WNI (see Fig 5A base-

line), due to their high spontaneous firing rates [12,17]. To isolate the effect of the sensory-

evoked WNI, we subtracted the baselines (Fig 5B). After the stimulus, VPM provides the first

sensory-evoked contribution to the WNI, followed by L6CC, which is the first intracortical cell

type that responds reliably to VPM input [14]. For a SW stimulus (Fig 5C), the situation is dif-

ferent: VPM contributes little to AP output, while L6CCs provide the main drive. Thus, the

reduced models predict that depending on the stimulated whisker, thalamocortical and intra-

cortical pathways–primarily VPM and L6CCs–contribute differently to the sensory-evoked

response.

Could variability in input from these two pathways underlie variations in the receptive

fields across L5PTs? We computed, which fraction of the WNI is provided by VPM versus

L6CC depending on the network embedding. This analysis revealed that L5PTs receive differ-

ent amounts of input from these two pathways depending on their location (Fig 5D). As a

result, L6CCs provide strong input to L5PTs for both PW and SW stimuli, whereas VPM pro-

vides strong input for PW stimuli only. Inactivating L6CCs–a manipulation which we per-

formed previously in silico and in vivo [14]–results in narrow receptive fields, as it largely

abolishes L5PT responses to SWs, but it also reduces the probability of PW responses. We

repeated this manipulation now with the reduced models. Indeed, inactivation of L6CCs

resulted in a major reduction of all sensory responses, and a narrowing of receptive fields

across all models and network embeddings (Fig 5E). Thus, the reduced models capture the
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origins of the fast and broadly tuned responses that L5PTs in barrel cortex elicit upon single

whisker deflections–i.e., drive to proximal dendrites via the VPM➔L6CC➔L5PT pathway

[14].

Discussion

In this paper we introduce a computational approach for dissecting network-neuron interac-

tions that underlie sensory-evoked responses in cortex. By deriving analytically tractable mod-

els from biologically-detailed multi-scale models of L5PTs in barrel cortex, we identify three

Fig 5. Reduced models predict contribution of input pathways to sensory responses. A: Absolute contribution of

presynaptic populations to WNI following a PW stimulus to a model located at the center of the C2 column: pyramidal

neurons in L2/3 (L2PY, L3PY), spiny neurons in L4 (L4SP), intratelencephalic neurons in L5 (L5IT), L5PT,

corticocortical neurons at the L5/6 border (L6CC), and relay cells in the ventral posterior medial nucleus of thalamus

(VPM). Despite the lack of sensory-evoked responses by L4PY, L6CT and L6INV [14], their contributions were

considered in the overall WNI calculations (Figs 2 and 3). B: Sensory-evoked contribution (i.e. absolute contribution

minus baseline for each input pathway) of presynaptic populations to WNI following a PW stimulus. C: Sensory-

evoked contribution of presynaptic populations to WNI following a SW stimulus. D: Contribution of the main input

pathways–VPM and L6CC–depending on the soma location of the L5PT model in a 9x9 grid across the C2 column for

a PW stimulus. The black circle denotes the C2 column border. E: Comparison between model responses to 9 different

whisker stimuli (PW and 8 SW) under control conditions and when removing sensory-evoked input from L6CC.

Removing evoked L6CC activity attenuates responses, in particular to surround whiskers.

https://doi.org/10.1371/journal.pcbi.1011468.g005
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features that are sufficient to predict the sensory responses and receptive fields that these neu-

rons show in vivo upon passive deflections of single facial whiskers. By generating a GLM,

which is based on these features, we demonstrate that the input-output computation is robust

against variations in morphology and biophysical properties of the dendrites. Diversity in den-

dritic properties is hence predicted to have only a minor contribution to trial-to-trial and cell-

to-cell variability of sensory-evoked responses and receptive fields. Instead, we show that varia-

tion in network input–i.e., from VPM thalamus and barrel cortex–is sufficient to account for

the in vivo observed response variability.

The model reduction revealed network-neuron interactions underlying sensory-evoked

responses of L5PTs. We recently showed that L6CCs, which respond first to sensory stimula-

tion and which provide direct input to L5PTs, are required for the fast and broadly tuned

responses of L5PTs [14]. This conclusion is also supported by the findings in this study. How-

ever, the drive by L6CCs does not imply that the upper layers cannot exert influence on the

sensory-evoked responses of L5PTs. Instead, based on the present results we would predict

that any inputs that neurons in the upper layers provide to the proximal dendrites of L5PTs,

and which precede their response, will be integrated according to the input-output computa-

tion shown in this study. Thus, the upper layers can influence sensory-evoked responses of

L5PTs, for example by providing inputs that are driven by non-sensory information streams,

as has been suggested previously [18].

We want to emphasize that the reduced models are derived for one specific in vivo condi-

tion–passive deflections of single whiskers in anaesthetized rats. While we find that the input-

output computation of L5PTs under this condition can be captured in very simple models, this

is likely not the case in general. Previous studies have shown how to convert multi-compart-

mental models into deep artificial neural networks [19], simplified conductance based models

[20–22] or stacks of linear-nonlinear units [23], which maintain high accuracy throughout a

wide range of input conditions. All of these models are highly complex–for example Beniaguev

et al. (2021) find that a 7-layer convolutional network is necessary to capture the immense

computational power of a single neuron with NMDA synapses. Here, we have explored an

orthogonal approach: by limiting the synaptic input conditions to those present in one specific

experimental condition and thereby compromising on the generalizability of the model to

other input scenarios, we can derive accurate yet analytically tractable models that reveal the

simplest interpretation for how in vivo observed responses arise from the complex interplay

between neuronal and network properties. Our focus on one specific in vivo condition was fur-

ther motivated by a recent theoretical study which showed that synaptic input patterns can

modify dendritic compartmentalization [24]. Thus, for the generation of interpretable models

that accurately capture input-output computations across in vivo conditions, it is likely neces-

sary to apply our reduction approach to each of these in vivo conditions separately.

Generating interpretable reduced models for another in vivo condition would require first a

multi-scale model that accounts for the spatiotemporal input patterns and response variability

of this condition. In this new condition, additional features and a more detailed description of

passive and/or active properties of the dendrites may be required to accurately predict AP out-

put. For example, based on passive properties, the shape of the EPSP evoked by a synapse acti-

vation depends on its distance to the soma, and neurons may exploit this to enhance their

computational capabilities [25]. Additionally, both excitatory and inhibitory synapses can have

a net inhibitory effect via shunting inhibition, which is not featured in our reduced models [2].

Furthermore, even though we demonstrate that the reduced models capture effects of NMDA

in the properties of their spatial and temporal filters, more complex nonlinear model struc-

tures may be necessary to capture more complex in vivo input conditions. Similarly, dendrites

have active properties by which they e.g. generate dendritic calcium APs that can modulate
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sensory responses with bursts of APs [26]. In awake animals, specifically the occurrence of

such bursts is increased in the responses that L5PTs in barrel cortex elicit upon passive whisker

deflections [27] and during active sensing [28,29]. The GLMs derived here cannot account for

bursts (S8 Fig). Revisiting trials which are misclassified by the current reduced model and

determining which additional features are needed to accurately predict burst responses would

thereby result in a new minimal description of the input-output computation performed by

neurons under this new experimental condition.

Many other modelling approaches exist that express input-output computations of single

neurons. A popular choice for modelling how neurons respond to network input are leaky

integrate-and-fire models, which are computationally efficient and highly interpretable but

have no representation of the constituents of a biological neuron, and a priori assume the

input-output computation. In contrast, our approach starts with a set of morphologically and

biophysically diverse neuron models, and incorporates electrophysiological data to capture the

characteristic dendritic and somatic properties. Next, the input-output computation is derived
by exposing these detailed models to well-constrained spatiotemporal synaptic input patterns

of one specific in vivo condition. The input-output computations are captured in reduced

models which inherit the properties of the detailed models; in other words, the reduced models

are equivalent to the detailed models thereby representing a biological neuron. Our reduced

models are computationally as efficient as leaky integrate-and fire models, but are based on

three features that are necessary and sufficient to capture the input-output computation of

L5PTs for the investigated condition. As they are derived from morphologically and biophysi-

cally diverse models, they account for biological variability in dendritic properties. Thereby,

the reduced models set the stage for simulations of networks with high biological realism at

similar computational costs to integrate-and-fire networks.

While presently we rely on a multi-scale model as the basis for our reduction approach, in

the coming years, large-scale voltage-imaging and connectome data at electron microscopic

resolution may become available. Such experimental approaches could provide data at a simi-

lar level of detail to our multi-scale models. The reduction approach we present here can

hence be readily applied to such future experimental data, and thereby facilitate interpretation

of how the observed activity arises from the complex interplay between neuronal and network

properties. Thus, our approach may provide a roadmap to reveal input-output computations

and underlying network-neuron interactions across different in vivo conditions and for differ-

ent cell types.

Methods

Ethics statement

No animal experiments were carried out in this study. The previously reported animal experi-

ments [12], were carried out after evaluation and approval by the local German authorities,

and in accordance with the animal welfare guidelines of the Max Planck Society.

Extracellular recordings

We reported the data for receptive fields (RFs) and morphologies used in this study previously

[12]. Briefly, Wistar rats (P25-30, both sexes) were anesthetized with urethane and responses

to passive single whisker deflections (applied with a piezo manipulator) of the PW and SWs

were recorded via a cell-attached pipette. The in vivo recorded neurons were filled with biocy-

tin and morphologically reconstructed to identify their cell types. We determined the PW by

identifying the barrel column in which the soma was located–i.e., the PW is not necessarily the
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one that evoked the strongest response. The in vivo data for L5PTs used in this study com-

prised exclusively L5PTs located in the D2 column.

Morphological reconstructions

Neuronal structures were extracted from image stacks using a previously reported automated

tracing software [30]. For reconstruction of biocytin labeled neurons, images were acquired

using a confocal laser scanning system (Leica Application Suite Advanced Fluorescence SP5;

Leica Microsystems). 3D image stacks of up to 2.5mm × 2.5mm × 0.05 mm were acquired at

0.092 × 0.092 × 0.5μm per voxel (63x magnification, NA 1.3). Image stacks were acquired for

each of 45–48 consecutive 50μm thick tangential brain slices that range from the pial surface to

the white matter. Manual proof-editing of individual sections, and automated alignment

across sections were performed using custom-designed software [31]. Pia, barrel and white

matter outlines were manually drawn on low-resolution images (4x magnification dry objec-

tive). Using these anatomical reference structures, all reconstructed morphologies were regis-

tered to a standardized 3D reference frame of rat vS1 [32].

Multi-compartmental models

We selected 5 L5PT reconstructions that are representative of the morphological variability of

this cell type. Multi-compartmental models were generated for these morphologies as

described previously [14,16]. Briefly, a simplified axon morphology was attached to the soma

of the reconstructed L5PT dendrite morphology [33]. The axon consisted of an axon hillock

with a diameter tapering from 3μm to 1.75μm over a length of 20μm, an axon initial segment

of 30μm length and diameter tapering from 1.75μm to 1μm diameter, and 1 mm of myelinated

axon (diameter of 1μm). Next, a multi-objective evolutionary algorithm was used to find

parameters for the passive leak conductance and the density of Hodgkin-Huxley type ion

channels on soma, basal dendrite, apical dendrite and axon initial segment, such that the neu-

ron model is able to reproduce characteristic electrophysiological responses to somatic and

dendritic current injections of L5PTs within the experimentally observed variability, including

back-propagating APs, calcium APs, and AP responses to prolonged somatic current injec-

tions [16]. We augmented the original biophysical model of L5PTs [14,16] with two ion chan-

nel parameters as previously described [34]: in accordance with a previous report [35], the

density of the fast non-inactivating potassium channels (Kv3.1) was allowed to linearly

decrease with soma distance until it reaches a minimum density (i.e., the slope and minimum

density are two additional parameters, see [34]). The diameter of the apical dendrites was opti-

mized by a scaling factor between 0.3 and 3. We incorporated the IBEA algorithm [36] for

optimization. The optimization was terminated if there was no progress or when acceptable

models had been found. We repeated the optimization process several times. From each inde-

pendent run, we selected one model for which the maximal deviation from the experimental

mean in units of standard deviation across all objectives was minimal (0.9–1.9 mean STDs

across objectives).

Network embeddings

Cell type-specific thalamocortical (from the ventral posteromedial thalamic nucleus (VPM)

which is the primary thalamic nucleus of the whisker) and intracortical (from excitatory and

inhibitory cells in vS1) connections are derived from an anatomically realistic circuit model of

rat vS1 [13], a procedure, which has been described in detail previously [14]. We embedded

the dendrite morphologies selected for multi-compartmental modelling in the network model

at 81 locations within the cortical barrel column representing the C2 whisker, which is located
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approximately in the center of vS1. For all in silico data presented in this study, the PW is

hence the C2 whisker. Thus, the morphologies of the in vivo recorded L5PTs were registered

to the C2 column, while preserving their in vivo soma depths and laminar dendrite distribu-

tions that was observed empirically in the D2 column [32]. The locations were the column cen-

ter, and equally spaced grid with a distance of 50μm between adjacent somata. For each of the

81 locations, we estimated the location of presynaptic neurons in VPM and vS1 that provide

input to the respective L5PT (Fig 1D) and where along the L5PT dendrite they synapse

(Fig 1E).

Synapse models

Synapse models and synaptic parameters (rise and decay times, release probabilities, reversal

potentials) were reported previously [14]. Briefly, conductance-based synapses were modeled

with a double-exponential time course. Excitatory synapses contained both AMPA receptors

(AMPARs) and NMDARs in 1:1 ratio. Inhibitory synapses contained GABA ARs. The peak

conductance of excitatory synapses from different presynaptic cell types was determined by

assigning the same peak conductance to all synapses of the same cell type, activating all con-

nections of the same cell type (i.e., all synapses originating from the same presynaptic neurons)

one at a time, and comparing parameters of the resulting unitary postsynaptic potential

(uPSP) amplitude distribution (mean, median and maximum) for a fixed peak conductance

with experimental measurements in vitro (IC input [37]) or in vivo (TC input [18]). The peak

conductance for synaptic inputs from each cell type was systematically varied until the squared

differences between parameters of the in silico and in vitro/in vivo uPSP amplitude distribu-

tions were minimized (i.e., the mean, median and maximum of the distributions were used,

and mean and median were weighted twice relative to the maximum). This procedure was

repeated for each multi-compartmental model using the connectivity model for the location in

the center of the C2 column. The peak conductance at inhibitory synapses was fixed at 1nS

[17].

Synaptic input patterns

Synaptic input patterns to the L5PT model were estimated as described previously [14]. Briefly,

we first chose the whisker stimulus. Then presynaptic neurons were grouped by their cell type

and the column in which they are located. For each column, the relative position to the stimu-

lated whisker was determined. Neurons in this column were activated based on the electro-

physiologically recorded responses for this cell type and relative position. Each AP in a

presynaptic neuron is registered at all synapses between the presynaptic neuron and the L5PT

model without delay and may cause a conductance change, depending on the release probabil-

ity of the synapse. Depending on the network embedding, neurons receive different ratios of

excitatory and inhibitory inputs, which is not guaranteed to maintain functional E/I balance

[38]. We therefore introduced a scaling factor for evoked inhibitory input strength, which we

constrained based on the empirically observed PW response probabilities. The scaling factors

ranged between 0.79 and 1.56 depending on the multi-compartmental model.

Multi-compartmental model simulation data

Simulations were performed using Python 2.7, dask [39] and NEURON 7.4 [40]. We simulated

1000 trials for each of the 9 multi-compartmental models and each of the 81 locations and 9

whisker stimuli (PW, all 8 SWs). Additionally, the database contained 81000 trials of one 2nd

SW (E2), which was however not incorporated in the analysis. This results in 810000
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simulation trials per multi-compartmental model, which reflects the effect of biophysics, mor-

phology, network embedding and stimulus on sensory-evoked responses.

Reduced model inference

We performed the reduced model inference for each multi-compartmental model separately.

We split the multi-compartmental model dataset for the respective model into a training and

test dataset (split ratio: 70% to 30%, respectively). Synapses are binned based on their time

point of activation (1ms bins) and soma distance (50 micron bins). We excluded trials of the

recent AP category (in which there was an AP in the last 50ms). Spatial and temporal filters

were constructed as a weighted sum of basis functions fi and gj. The soma distance dependent

weight wz and the time dependent weight wτ of a synapse are given by

wt ¼
X

i

aifiðtÞ

wz ¼
X

j

bjgjðzÞ

where ai and bj are free parameters.

We used raised cosine functions [41] as basis functions. The temporal basis functions fi

were:

fi tð Þ ¼
1

2
cosðk � log½tþ c� � �iÞ þ

1

2

for τ such that k�log(t + c) � [ϕi – π, ϕi + π] and 0 elsewhere. Values used were k = 3, c = 5, and

φ � [3, 12]. Analogously, the spatial basis functions gi were:

gj zð Þ ¼
1

2
cosðk � log½z þ c� � �jÞ þ

1

2

for z such that k�log(z + c) � [ϕi – π, ϕi + π] and 0 elsewhere. Values used were k = 2, c = 1, and

φ � [1, 11]. The basis functions are visualized in S9 Fig.

Using the spatiotemporal filters, we compute a weighted sum of active synapses at a time

point t, in the following referred to as weighted net input (WNI). The WNI is computed as fol-

lows:

WNIðtÞ ¼
X

t;z

nz;t� t;E � wt;E � wz;E þ
X

t;z

nz;t� t;I � wt;I � wz;I

where, τ � [0, 80ms] is the time before t, z � [0, 1300μm] is the distance of the synapse from the

soma, and nz,t–τ is the number of active synapses at a given 1ms time and 50 micron soma dis-

tance bin. wτ and wz are the temporal and spatial filter, respectively. n, wτ and wz are split by

synapse type, as indicated by the subscripts E (excitatory) and I (inhibitory).

To adjust the free parameters (ai and bj for excitatory and inhibitory input) which deter-

mine the shape of the spatial and temporal filters, we use a gradient-free optimization method

(COBYLA, implemented in SciPy: [42]) to maximize the area under the receiver operating

characteristic curve (AUROC, see section ‘Analysis’) between the WNI and AP output for a

selected 1ms time bin. The 1ms time bin selected for the optimization is in the following

referred to as the inference time point tinference. For each multi-compartmental model, we per-

formed this optimization for tinference � [0,25]. We then manually selected one inference time

point that resulted in reduced models which generalized well to other time points. The selected

inference time point of each selected model is visualized in S4 Fig. Finally, we normalized the
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spatial and temporal filters such that the peak of the temporal filter is 1 for excitatory synapses

and -1 for inhibitory synapses, and the value of the spatial filter for excitatory synapses at spa-

tial bin 0 is 1.

In order to calculate the spiking probability for a given WNI value, we used these filters to

calculate the WNI for all multi-compartmental model simulation trials from the training data-

set at tinference, and recorded whether a AP occurred at this time bin or not. The trials were

then binned by WNI. The AP probability for each bin corresponds to the proportion of trials

that produced an output AP in the multi-compartmental model simulation (Fig 2C). Bins with

few data points were combined to ensure a minimum of ten data points per bin. Linear inter-

polation was used to find the spiking probability corresponding to any WNI value, and WNI

values greater/smaller than values seen in the biophysical model simulation were assigned the

highest/lowest spiking probability respectively. We hereafter refer to this as the “nonlinearity”

function. In order to estimate the effect of recent APs on spiking probability, WNI values were

plotted against the time since the previous AP (Fig 2D), and a boundary was drawn to best sep-

arate spiking from non-spiking trials as follows. We dropped points in the lowest 5% of all

WNI values (to remove the effect of outliers) and then drew a boundary along the minimum

remaining spiking WNI values. This boundary was normalized such that it is zero for time to

previous AP!1 by subtracting the respective offset. We found this two-step procedure (first

estimate spatiotemporal filters based on a dataset in which recent APs are filtered out, second

determine the post AP penalty based on these filters) to be more robust than a joint inference

of both. WNI with penalty applied maintains a high AUROC over all stimulus periods

(Fig 2F), while the uncorrected AUROC drops after the sensory stimulus.

Reduced model simulations

After the inference of the reduced models, we computed the WNI all time points for which we

wish to predict the occurrence of APs (in the manuscript referred to as a prediction time

point). AP output was generated iteratively for one millisecond time bin at a time. For each

time point, we computed the WNI by applying the temporal and spatial filter to the synaptic

input of the preceding 80ms. The WNI was transformed to an AP probability based on the

nonlinearity derived above. APs were randomly sampled based on this probability. If an AP

occurred, the WNI of consecutive time points was updated based on the post AP penalty.

Analysis

‘AP probability’ is used to denote the probability that an AP is evoked within a 1ms time bin.

‘Response probability’ denotes the probability that one or more APs are generated in the 25ms

following a whisker stimulus. ‘Accuracy’ is the percentage of trials in which the multi-scale

and reduced model agree on whether or not an AP is elicited in a 25ms window following the

whisker stimulus. We used the SciPy function ‘metrics.roc_auc_score’ to compute the

AUROC score, which by default uses the full range of values (i.e. thresholds are automatically

chosen such that the false positive rate varies between 0% and 100%). Distributions of response

probabilities were compared with the two-sided Kolmogorov-Smirnov test using the SciPy

function ‘scipy.stats.ks_2samp’.

Supporting information

S1 Fig. Network embeddings at 81 positions in and around the C2 column of the five in
vivo reconstructed morphologies.

(TIF)
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S2 Fig. Cell type and stimulus specific activity used to constrain the multi-scale model. A:

Average whisker receptive fields of intracortical and thalamic cell types. B: Average post-stim-

ulus time histogram (PSTH) of intracortical cell types.

(TIF)

S3 Fig. Selection of features and inference method. A-D: Spatiotemporal filters are robust,

independent of the method used for estimating the filters and the selected input features. Our

approach: Optimizing superposition of basis functions, LDA: linear discriminant analysis,

SVM: linear support vector machine. E: Prediction accuracy for different input features and

inference methods. Temporal (top row panel A): weights are assigned depending on the time

point of activation of synapses (‘time before prediction time point’) independent of their soma

distance. Temporal (prox & distal): Additionally, synapses are grouped in ‘proximal’ and ‘dis-

tal’ based on a soma distance cutoff of 500 micrometers. Temporal & cell type: Synapses are

grouped by presynaptic cell type. (L2: Temporal & cell type (prox & dist): Additionally, synap-

ses are grouped in ‘proximal’ and ‘distal’ based on a soma distance cutoff of 500 micrometers.

Temporal & spatial: synapses are weighted depending on soma distance and time point. This

configuration performed best and has been used throughout the main manuscript.

(TIF)

S4 Fig. Spike timing in all multi-compartmental (black) versus corresponding reduced

models (blue). Rows correspond to each multi-compartmental model. The first row corre-

sponds to example 1 in Fig 1 and the reduced model in Fig 2. Columns are from left to right:

PSTHs of multi-compartmental and reduced models for a PW stimulus, PSTHs of multi-com-

partmental and reduced models for a PW and the eight SW stimuli (vertical lines reflect infer-

ence time points–i.e., the time point on which the respective GLM was trained), raster plots of

20 example trials with a PW stimulus, deviation in ms between APs predicted by the reduced

vs. multi-compartmental model for PW and SW stimuli.

(TIF)

S5 Fig. Differences in the decay of the spatial filter can largely be explained by the diameter

of the dendritic trunk. A: Excitatory spatial filters for the seven models, as in Fig 3. B: spatial

filter height at the 15th spatial bin (corresponding to a soma distance of 700 to 750 microns)

versus the mean trunk diameter. C: as B, but for the diameter at the primary bifurcation point

of the neuron.

(TIF)

S6 Fig. Active nonlinear mechanisms in simulations of passive whisker deflection with bio-

physically detailed multi-compartmental models. A: example morphology 2 (from Fig 1),

for which we re-simulated 1000 PW stimuli while recording synaptic AMPA and NMDA cur-

rents, ion currents and the transmembrane potential from the marked branches. B: example

trial with a 2 AP burst response at the soma, a Ca-AP at the primary bifurcation point (BP),

and AMPA and NMDA currents of an example synapse at the example branch. We quantified

the charge exchanged through the AMPA and NMDA receptors of each synapse during the

25ms window following the whisker stimulus (‘response window’). C: synaptic currents of all

synapses recorded on distal branches. Yellow lines are synapses on the example branch. D: as

C, but for basal dendrites. E: Sodium currents recorded at distal dendritic branches. The yel-

low line is the example branch. F: Ratio of NMDA/AMPA area under the curve (AUC) across

1000 simulation trials.

(TIF)
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S7 Fig. NMDA influences sensory-evoked responses and input-output computation. A:

Simulated receptive fields to passive single whisker deflections for one L5PT multi-compart-

mental model across 81 network embeddings, with NMDA conductance set to 100%, 50% and

0% of control value. B: Response probability to a principal whisker stimulus depending on the

amount of NMDA. C: Spatial and temporal filters (red: excitatory synapses, blue: inhibitory

synapses) inferred from multi-compartmental model with different amount of NMDA. D-E:

Width of spatial and temporal filters depending on the amount of NMDA. F: AUROC score of

reduced model (GLM) depending on the amount of NMDA in the multi-compartmental

model.

(TIF)

S8 Fig. AP counts are not well estimated by the reduced model. Predicted mean number of

APs in response to a whisker stimulus for 7 multi-compartmental/reduced models at 81 differ-

ent positions, for PW and 8 SW stimuli deviates from the multi-compartmental models. In

comparison, response probability (See Fig 3) is very well captured by the reduced models. This

indicates that the mechanisms discriminating single AP responses from burst responses are

not well captured by the reduced model.

(TIF)

S9 Fig. Basis functions for temporal (left) and spatial (right) filters.

(TIF)

S1 Table. Electrophysiological responses of the multi-compartmental models used in this

study determined from the stimulus protocols shown in Fig 1H.

(DOCX)

S2 Table. Biophysical parameters of multi-compartmental models used in this study.

(DOCX)

S3 Table. Single trial accuracy of reduced models versus multi-compartmental models.

Tables are confusion matrices representing the number of trials in which at least one AP was

elicited in the response window (25ms post whisker stimulus) in the biophysically detailed

multi-compartmental models (bio) and reduced models, respectively. Data is provided for all

whisker stimuli, i.e., the principal and 8 surround whiskers. The shaded value is the overall

accuracy (i.e., the percentage of simulation trials in which the reduced and biophysically

detailed model match).

(DOCX)
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