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ABSTRACT 

The human brain is a complex system, whose activity exhibits flexible and continuous reorganization across 
space and time. The decomposition of whole-brain recordings into harmonic modes has revealed a 
repertoire of gradient-like activity patterns associated with distinct brain functions. However, the way these 
activity patterns are expressed over time with their changes in various brain states remains unclear. Here, we 
investigate healthy participants taking the serotonergic psychedelic N , N -dimethyltryptamine (DMT) with 
the Harmonic Decomposition of Spacetime (HADES) framework that can characterize how different 
harmonic modes defined in space are expressed over time. HADES demonstrates significant decreases in 
contributions across most low-frequency harmonic modes in the DMT-induced brain state. When 
normalizing the contributions by condition (DMT and non-DMT), we detect a decrease specifically in the 
second functional harmonic, which represents the uni- to transmodal functional hierarchy of the brain, 
supporting the leading hypothesis that functional hierarchy is changed in psychedelics. Moreover, HADES’ 
dynamic spacetime measures of fractional occupancy, life time and latent space provide a precise description 
of the significant changes of the spacetime hierarchical organization of brain activity in the psychedelic state. 
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various altered states of consciousness [8 ]. Despite 
such progress, it remains unknown what underlying 
mechanisms drive, on one hand, the gradient-like or- 
ganization of cortical topography, and on the other, 
the waning and waxing of the brain’s spatiotemporal 
patterns of activity. 

Here we investigate one of the most potent 
psychedelic (i.e. ‘mind-manifesting’) experiences in- 
duced by the N , N -dimethyltryptamine (DMT)—
a naturally occurring serotonergic psychedelic [9 ]. 
Unli ke psi locybin and lysergic acid diethylamide, 
its expression is marked by a short duration of the 
psychedelic experience. It is often associated with al- 
terations in visual and somatic effects. At high doses, 
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NTRODUCTION 

he brain is endowed with complex dynamics and
an be perceived along spatial and temporal dimen-
ions [1 ]. Traditionally, neuroscience has focused on
elineating and studying localized cortical regions to
ap brain function in a temporarily static fashion
2 ]. However, recent developments in neuroscience
ave started to indicate more spatially continuous
epresentations of functional topography [3 ,4 ], and
t the same time to stress the importance of tem-
orally varying brain dynamics [5 ]. Indeed, the no-
ion of brain spacetime has been described as a ‘com-
on currency’ between the neuronal and mental

rain features [6 ,7 ], and has been used to delineate 
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 complete dissociation from the external environ-
ent precedes an immersion into mental worlds or
imensions described as ‘other’ but not less ‘real’
han the one inhabited in normal waking conscious-
ess. Such experiences correlate with subjective rat-
ng items such as ‘I experienced a different reality
r dimension’, ‘I saw geometric patterns’ and ‘I felt
nusual bodily sensations’ [10 ,11 ]. It is these quali-
ies of one’s conscious experience that motivate a re-
ewed interest in DMT drawing parallels with phe-
omena such as the near-death experience (NDE)
nd dreaming [12 ]. 
Furthermore, like other psychedelics, DMT may

ave clinical relevance and is currently being trialled
or the treatment of depressive symptoms [13 ,14 ].
tudies with Ayahuasca, containing DMT itself as
ell as monoamine oxidase inhibitors (MAOIs),
ave shown promising results in patients with de-
ression [15 ]. However, further investigations ex-
loring the neural and plasticity dynamics of DMT
xperiences are necessary to provide mechanistic
ccounts for the relevance of DMT and related
sychedelics for the treatment of mental health dis-
rders [16 –18 ]. 
In the brain, psychedelics enhance the richness

f spatiotemporal dynamics along both the tempo-
al and spatial dimensions. This has been corrobo-
ated by repertoire broadening of functional states
nd increases in temporal complexity as well as shift-
ng of the brain to a more integrated state with the
ubversion of functional systems [19 –22 ]. Consis-
ently, neuroimaging DMT has revealed an increase
n global functional connectivity—featuring a func-
ional network disintegration and desegregation that
s a reliable feature of the psychedelic state, and a
ollapse of the unimodal to transmodal functional
radient [11 ]. Taken together, the current findings
nd subjective reports are in line with the entropic
23 ,24 ] and anarchic brain [25 ] models, where an in-
rease in entropy of spontaneous brain activity par-
llels the undermining of hierarchically organized
rain function [23 –25 ]. 
Here, we studied DMT with the Harmonic De-

omposition of Spacetime (HADES) framework,
hich can describe the brain’s hierarchical process-
ng across both spatial and temporal dimensions.
istorically, Brodmann’s interactive atlas of cellu-

ar morphology and organization has given rise to
he view of functional specialization of individual
rain areas [26 ,27 ]. Spatially, this suggests a sharp
elineation between cortical areas in terms of their
natomy and function. However, supported by evo-
utionary and developmental neuroscience [28 ,29 ],
ortical gradients have challenged this view by sug-
esting gradually varying boundaries between and
ithin brain regions, both in terms of function and
Page 2 of 10
anatomy [3 ,4 ,30 ]. Functionally, gradient-like organi- 
zation proposes an intrinsic coordinate system of hu- 
man brain organization continuously varying from 

unimodal to transmodal cortical areas [3 ,31 ]. Sim- 
ilarly, topographical maps of retinotopy, somato- 
topy and tonotopy have shown smooth variation of 
anatomy and function within brain areas [32 –35 ]. 

Along the temporal dimension, studies of dy- 
namic functional connectivity in functional mag- 
netic resonance imaging (fMRI) have revealed the 
importance of characterizing the temporal features 
of brain activity as opposed to the static picture 
described by known resting-state net works [5 ,3 6 ]. 
Such approaches describe temporal functional con- 
nectivity in terms of sliding-window analysis [37 ], 
by considering the most salient events in the time- 
series [38 ,39 ] constrained by structural connectiv- 
ity [40 ,41 ], as a temporal process of hidden states
[42 ,43 ] or as a temporal trajectory in a landscape of
attractors [44 ,45 ]. Broadly, these approaches share 
the description of complex brain dynamics in terms 
of spatial patterns expressed in time and therefore 
can be represented in terms of the patterns’ frac- 
tional occupancy, lifetimes or probability of transi- 
tions. Uniquely, in this paper, HADES brings this 
dynamic perspective to the functional gradients and 
their temporal expression. 

Importantly, HADES characterizes the brain’s 
spatiotemporal activity in an atlas-free manner in 
terms of functional gradients (functional harmon- 
ics) defined in space and expressed over time. To 
that end, we derived functional harmonics (FHs) 
[4 ] and their temporal expression by decomposing 
fMRI data into FHs via harmonic decomposition 
[46 ]. The motivation for HADES is to reproduce 
the spatially distributed multiscale nature of func- 
tional gradients while accounting for their temporal 
evolution, and therefore focus the analysis on the 
functional gradients over time. In practice, HADES, 
as the decomposition of space and time, can be 
extended to any modality to obtain the spatial con- 
figuration of the modes over time. In this paper, the 
analysis of FHs renders HADES a unimodal applica- 
tion, which distinguishes it from other methods that 
estimate harmonic modes from the structural in- 
formation (either from the anatomical connectome 
[47 ] or surface mesh [48 ]). 

We analysed the fMRI data of the DMT-induced 
brain state with HADES. This allowed us to test 
the anarchic brain or ‘Relaxed Beliefs Under 
Psychedelics’ (REBUS) model, as well as find- 
ings of enhanced signatures of criticality under these 
compounds [21 ,46 ,49 ]. We hypothesized that the 
DMT state is associated with a flatter spacetime 
hierarchy of cortical functional organization with 
enhanced integrative properties across the cortex. 
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Figure 1. Overview of HArmonic DEcomposition of Spacetime (HADES) framework. (A) Here we used HADES to analyse data from DMT-induced resting- 
state fMRI in healthy participants and show the design for this experiment. (B) HADES uses the dense functional connectome constructed from the 
HCP S1200 release of 812 subjects to (C) construct a graph representation as a sparse, symmetric, and binary adjacency matrix of the dense functional 
connectome. (D) First, functional harmonics ( ψk (x)) are obtained from the Laplacian decomposition of the sparse adjacency matrix. (E) Functional har- 
monic decomposition is computed by projecting individual harmonics on the fMRI timeseries (surface representation) and calculating their contributions. 
(F) From this decomposition, HADES can be used to compute spatiotemporal measures for the first 11 FHs and 0th global FH—absolute contribution and 
condition normalized absolute contribution on any neuroimaging dataset. (G) Importantly, HADES can also be used to construct dynamic measures for 
the first 11 FHs and 0th global FH—fractional occupancy, life times and transition matrix. (H) These measures can be used as latent space representation 
in terms of temporal trajectory embedded in the functional harmonic space. 
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ESULTS 

ADES describes the spatiotemporal dynamics in
erms of spatial bases (defined from the brain’s com-
unication structure) and the spatial bases func-
ional contributions to the fMRI recording evolv-
ng in time. To do so, we first constructed dense
unctional connectome from the Human Connec-
ome Project (HCP) S1200 release of 812 sub-
ects (Fig. 1 B). The dense functional connectome
as represented as a sparse, symmetric, and binary
djacency matrix (Fig. 1 C) and decomposed into
he functional harmonics ( ψk (x)) using the eigen-
ecomposition of the graph Laplacian applied to the
ense functional connectome (Fig. 1 D). Consistent
ith [4 ], we focused our analysis on the first 11 low-
st functional harmonics together with the 0th global
armonic. We analysed functional significance of the
unctional harmonics by comparing them to the Yeo
even and 17th functional networks ( Fig. S1). To
btain the temporal signature, we further projected
he individual harmonics on the fMRI timeseries (in
urface representation), using functional harmonic
ecomposition, and thus calculated the FHs tem-
oral weights (Fig. 1 E). We reconstructed the time-
Page 3 of 10
series with a few harmonics to motivate the simi- 
larity to the empirical data ( Fig. S2). Then, using 
a collection of spatiotemporal and dynamic mea- 
sures (Fig. 1 F and G) and latent space representation
(Fig. 1 H), we applied HADES to study the DMT
state and its functional reorganization in terms of flat- 
tening of functional hierarchies and integrative prop- 
erties across the cortex. 

Absolute contribution across functional 
harmonics 
To quantify contributions of individual harmonics in 
the different conditions, we computed the absolute 
and condition-normalized absolute contributions of 
each harmonic (Fig. 2 A). The absolute contribution 
results show a decrease in the DMT-induced state 
(compared to DMT before injection and placebo- 
induced states) across most of the 11 FHs except 
of the 0th global FH. This is contrasted by the
condition-normalized absolute contribution results 
demonstrating an increase in the global FH and a de- 
crease in FH 2 after DMT injection versus before in-
jection and the placebo data (Fig. 2 B). Spider plots in

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae124#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae124#supplementary-data
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Figure 2. Spatiotemporal analysis of DMT and placebo neuroimaging data. The harmonic spatiotemporal analysis of the neuroimaging data shows that 
the contribution of functional harmonic ψ2 (FH ψ2 ) is very significantly reduced ( P < 0.05, Bonferroni corrected) when participants were given DMT, 
both in terms of absolute and normalized contribution. (A) Specifically, the absolute contribution across the first 11 FHs and the 0th global FH is shown 
both visually, on a spider plot, and statistically for individual FH across the four DMT-based conditions. The results show a decrease in the DMT-induced 
state (compared to DMT before injection and the placebo state) across many of the 11 FHs except the global FH ψ0 (green star: P < 0.05, Bonferroni 
corrected paired t-test; red star: P < 0.05, not Bonferroni corrected paired t-test). (B) Equally, we show the normalized absolute contribution across the 
first 11 FHs and the 0th global FH represented both visually, on a spider plot, and statistically for individual FHs across the four DMT-based conditions. 
Again, the results demonstrate an increase in the global FH ψ0 but specifically a decrease in FH ψ2 compared to DMT before injection and the placebo 
state (green star: P < 0.05, Bonferroni corrected paired t-test; red star: P < 0.05 not, Bonferroni corrected paired t-test). 
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ig. 2 A and B represent a visual redistribution of FHs
cross different conditions for the two measures. 

ynamic measures of HADES 

o assess the temporal evolution of FH weights, we
pply a winner-takes-all approach whereby we select
he most prominent FH at every time point and com-
ute fractional occupancy (FO) and lifetimes (LT)
f each FH. In Fig. 3 A and B, we show results when
hoosing the 11 FHs. We excluded the 0th FH in
his analysis to focus on the dynamical properties of
unctionally resolved FHs. As before, strongest sta-
istical significance for FO and LT is observed in ψ2 
Fig. 3 C). Furthermore, we computed the first or-
er Markov process in terms of the Transition Proba-
ility Matrix (TPM) ( Fig. S3A).We report statistics
or the two DMT conditions ( P -value < 0.05, uncor-
ected paired t-test). 

atent space 

unctional harmonics were used as the basis of a
atent space representation in which the temporal
Page 4 of 10
trajectory of the brain dynamics was embedded in 
the latent space representation of the 11 FHs and 
the 0th global FH (Fig. 4 A, here visualized for the
first three FHs with colour shading representing the 
temporal trajectory). To further analyse how the 
temporal embedding in this latent space changes, 
we defined the expansion/contraction of the trajec- 
tory in terms of the latent dimension spread. The 
DMT-induced state contracts the contribution of the 
FHs across the board. Latent dimension spread was 
computed for all 11 FHs and the 0th global FH i.e.
12th dimensional space for the four conditions. We 
also report its statistics (green star P -value < 0.05 
Bonferroni corrected paired t-test). The tempo- 
ral trajectory significantly contracts in the DMT- 
induced state. 

DISCUSSION 

In this study, we analysed spacetime hierarchy of the 
DMT-induced brain state in healthy participants us- 
ing the HADES framework. We found a significant 
change of brain spacetime hierarchy in line with the 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwae124#supplementary-data
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Figure 3. Dynamic analysis for the 11 FHs. Extending the spatial analysis into the spatiotemporal domain shows that functional harmonic ψ2 (FH ψ2 ) 
is significantly reduced in the DMT condition. (A) Specifically, fractional occupancy was found to be statistically different in the ψ2 . (B) Lifetimes were 
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heoretical predictions of the REBUS theory [25 ]

nd the anarchic brain hypothesis, integrating Fris-
on’s free-energy principle [50 ] with Carhart-Harris’
ntropic brain hypothesis [23 ,24 ]. 
Page 5 of 10
Consistent with previous literature, we have 
demonstrated the functional relevance of functional 
harmonics [4 ]. Moreover, we have demonstrated 
that an empirical fMRI signal can be accurately 
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econstructed with a subset of functional har-
onics. Applying HADES to the DMT-induced
tate has shown decreases in absolute contribution
cross most FHs, while the global FH has remained
nchanged. However, when looking at condition-
ormalized absolute contribution in individual
ubjects, a decrease in FH ψ2 was mirrored by an in-
rease in the global harmonic. These results motivate
 non-trivial reconfiguration whereby the DMT-
nduced state decreases in overall magnitude with a
elative increase towards the global substate and a de-
rease of FH ψ2 representative of the functional hi-
rarchies of the brain. This was further reinforced by
he analysis of functional harmonic dynamics with
ecreases both in fractional occupancy and lifetimes
f FH ψ2 demonstrating further dynamic collapse of
his harmonic. Last, when the temporal trajectories
ere embedded in the latent space of the functional
armonic, the DMT-induced state showed signifi-
ant contraction of its temporal trajectory spread. 
Remarkably, FH ψ2 resembles the so-called

principal gradient’—i.e. a unimodal to transmodal
radient previously found to explain the greatest
roportion of variance in a principal components
nalysis of cortical functional connectivity [3 ]. This
radient has been proposed to reflect a hierarchy of
rain function from low- to high-order cognitive net-
orks. This is in line with several theories of brain
rganization; namely REBUS and the anarchic brain
here functional hierarchies are undermined under
sychedelics [34 ,38 ,50 ], Temporo-spatial Theory
f Consciousness where temporo-spatial nested-
ess becomes abnormal resulting in loss of spatial
opographic organization [51 ], and the Operational
pacetime Theory where operational spacetime is
ypothesized to be altered reflecting disruptions in
he phenomenal spacetime [52 ]. Furthermore, the
elative increase in global FH speaks to a less func-
ionally defined and more integrated global substate
nder the influence of DMT. Indeed, at the RSN
evel, psychedelic-induced states have been shown
o subvert within-functional network connectivity,
specially in higher-order frontoparietal and default
ode networks [11 ,22 ,53 ,54 ], while enhancing
etween-network connectivity and overall global
nd integrative tendencies [11 ,19 ]. 
Traditionally, neuroscience has focused on delin-

ating and studying localized cortical regions to map
he brain’s function. Such an approach has been of
mportance albeit with fragmented insights as to how
ultiscale brain organization gives rise to complex
patiotemporal dynamics and ultimately behaviour.
 recent development in system neuroscience has
een that of cortical gradients [3 ]. This proposes
n intrinsic coordinate system of human brain or-
anization continuously varying from unimodal to
Page 6 of 10
transmodal cortical areas [31 ]. Gradient-type orga- 
nization has been demonstrated in terms of myeli- 
nation [55 ], anatomical structure [30 ], white matter 
tract length [56 ], evolutionary expansion [57 ], on- 
togenetic expansion [58 ], temporal processing [59 ], 
semantic processing [60 ] and physiologically cou- 
pled travelling waves [61 ]. The framework of mul- 
tidimensional harmonic representation and decom- 
position [4 ,46 ,47 ] adds to this list by decomposing
brain activity maps into frequency-specific commu- 
nication channels that unveil contributions of con- 
nectivity gradients and cortical parcellations to brain 
function. HADES extends these frameworks by con- 
sidering the dynamic aspects of these frequency- 
specific channels of functional communication. 

The brain as a complex system has been hypoth- 
esized to manifest hierarchies across time and space. 
Indeed, such a nested organization was suggested 
both in terms of the structural architecture of the 
brain as well as its temporal frequencies [62 ,63 ]. 
Functional harmonics are by construction intrinsi- 
cally ordered according to their spatial frequencies 
and as such provide a multiscale representation 
of brain activity across cortical space. Intuitively, 
spatial frequencies relate to temporal frequencies 
of osci l lations where global spatial frequencies of 
harmonics reflect slow osci l lations and local spatial 
frequencies of harmonics reflect fast osci l lations. 
Drawing a closer relationship between the spatial 
and temporal scales is an important further step 
(possibly explore with M/EEG modalities) as the 
relevance of intrinsic neuronal timescales (INT) 
have been proposed for input sharing [64 ] with 
a hierarchical organization closely relating to the 
spatial organization of FH ψ2 [57 ]. This hierarchical 
organization is important for temporal integration 
and segregation of input stimuli [65 ], with Default 
Mode Network possibly sitting at the apex integrat- 
ing information over long timescales [66 ]. Indeed, 
recent work has shown how this temporal hierar- 
chy changes in rest and task MEG data [67 ]. Yet
how the changes in spatial distribution of the INT 

maps on the temporal frequencies of the functional 
harmonics remains to be seen. This could in part 
be due to the conceptual difference between the 
approaches whereby functional harmonics associate 
temporal frequenc y to indiv idual harmonics, while 
INT mostly pertains to individual nodes. 

Previously, connectome harmonics have been 
used to decompose the brain’s spatiotemporal activ- 
ity into a combination of time-varying contributions 
[46 ]. Using long-range and local connectivity as an 
underlying structure has been relevant in exploring 
the structure-function relationship of large-scale 
brain organization [47 ]. However, it seems that 
structural connectivity alone cannot explain the 
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mergence of rich and spontaneous activity of the
uman brain [68 ,69 ]. First, neocortex is endowed
ith remarkable heterogeneity in cytoarchitecture.
his wi l l result in various computational differ-
ntiations across the cortex, for example in terms
f temporal processing [59 ]. Second, the neuro-
odulatory system is known to alter the electrical
omposition of neurons and thus exercise non-linear
ffects on the emergent activity of various micro-
ircuits across the brain [70 ,71 ]. The hypothesis
ere is that the communication structure of dense
C has implicitly embedded within it information
n anatomical structure, cortical computational
eterogeneity as well as neuromodulatory expres-
ion and as such serves as a prominent candidate
o be used for the derivation of fundamental func-
ional building blocks of spatiotemporal activity
4 ]. This in turn is expanded upon in the HADES
ramework with dynamic measures and latent space
mbeddings, whereby the emphasis is on the impor-
ance of the temporal dimension along which these
patiotemporal blocks building unfold. 
Latent space representation has become an im-

ortant research topic in neuroscience due to its abil-
ty to retrieve meaningful features contained in large
nd complex datasets [72 ]. It is possible to identify
atterns and relationships in a lower-dimensional
pace between regions and between cognitive pro-
esses as the underlying computations giving rise
o cognitive functions are likely to be integrated
1 ]. There are many techniques that serve this pur-
ose from more traditional linear approaches such
s singular value decomposition or principal com-
onent analysis [73 ], to popular techniques based
n independent component analysis [74 ]. More re-
ent works use autoencoders as an elegant way of
ompressing the fMRI signal while accounting for
on-linearity in the data [75 ]. Here, we chose func-
ional harmonics as they preserve nonlinear relation-
hip between regions and have multiscale and in-
erpretable representation of its latent dimensions
4 ,76 ]. However, it is to be noted that the idea of
ADES as a framework goes beyond the actual rep-
esentation of the dimension of the latent space (here
n terms of functional harmonics) as it attempts to
ombine the spatial and temporal representation of
omplex brain dynamics. Moreover, in theory, other
echniques could be applied in a similar way as to ac-
ount for the complex spatiotemporal activity of the
uman brain. 
A limitation of the current approach for describ-

ng functional harmonics propagating in time is that
t might be too reductionist. ‘Winner-takes-all’ is a
owerful technique summarizing the brain’s dynam-
cs in terms of fractional occupancy and lifetimes
f the functional harmonics. However, it considers
Page 7 of 10
only one FH to be active at a given timepoint and
as such might neglect other potential important 
information included in other FHs. Future work 
should implement weighted contributions of indi- 
vidual FHs at given timepoints and as such more
completely describe the multidimensional represen- 
tation of spatiotemporal dynamics. Another aspect 
for repeatability and robustness of the functional 
harmonics is the choice of the binarization of the 
adjacency matrix. Future work should for example 
investigate how the nearest-neighbours approach 
compares to distance-dependent binarizations [77 ] 
or data-driven topological approach [78 ]. 

CONCLUSION 

Taken all together, in this study we have examined 
the spatiotemporal dynamics of the brain under 
DMT with the sensitive and robust new HADES 
framework, which uses FHs derived from the brain’s 
communication structure to model dynamics as 
weighted contributions of FHs evolving in time. 
Overall, we corroborate the REBUS and anarchic 
brain model of psychedelic action by demonstrating 
dynamic changes to brain’s functional spacetime 
hierarchies. 

METHODS 

Detailed methods and materials are given in the on- 
line supplementary data. 

CODE AVAILABILITY 

Codes to apply the HADES framework and to follow
the DMT analysis can be found publicly available at 
https://github.com/jvohryzek/HADES

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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