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Abstract
We obtain the exponent of distribution 1∕2 + 1∕30

for the ternary divisor function 𝑑3 to square-free
and prime power moduli, improving the previous
results of Fouvry–Kowalski–Michel, Heath-Brown and
Friedlander–Iwaniec. The key input is certain estimates
on bilinear sums with 𝐺𝐿(2) coefficients obtained using
the delta symbol approach.
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1 INTRODUCTION

Given an arithmetically interesting function 𝑓 ∶ ℕ → ℂ and 𝑞 of reasonable size, we expect that∑
𝑛⩽𝑋

𝑛=𝑎(𝑞)

𝑓(𝑛) ∼
1

𝜙(𝑞)

∑
𝑛⩽𝑋

(𝑛,𝑞)=1

𝑓(𝑛), (1.1)

for each (𝑎, 𝑞) = 1. It is a fundamental problem in number theory to show that the above asymp-
totic holds for 𝑞 as large as possible. To this end, we call a positive number 𝛿 an exponent of
distribution for 𝑓 restricted to a set  of moduli, if for any 𝑞 ∈  with 𝑞 ⩽ 𝑋𝛿−𝜖 and any residue
class 𝑎 (mod 𝑞) with (𝑎, 𝑞) = 1, the asymptotic formula

∑
𝑛⩽𝑋

𝑛=𝑎(𝑞)

𝑓(𝑛) =
1

𝜙(𝑞)

∑
𝑛⩽𝑋

(𝑛,𝑞)=1

𝑓(𝑛) + 𝑂

(
𝑋

𝑞(log𝑋)𝐴

)

holds for any 𝐴 > 0 and 𝑋 ⩾ 2.
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For the very important Von Mangoldt function Λ(𝑛), the classical Siegel–Walfisz theorem
implies that the above asymptotics hold for 𝑞 ⩽ (log𝑋)𝐵(𝐴), where 𝐵(𝐴) > 0 depends on 𝐴,
whereas the GRH predicts 𝑞 ⩽ 𝑋1∕2−𝜖. The celebrated Bombieri–Vinogradov theorem confirms
this prediction on an average over the moduli.
Another important class of examples comes from the k-fold divisor function

𝑑𝑘(𝑛) =
∑

𝑛1𝑛2⋯𝑛𝑘=𝑛

1.

It is widely believed that 𝛿 = 1 is a exponent of distribution for all 𝑘 ⩾ 2. This has deep conse-
quences for our understanding of primeswhich goes far beyond the direct reach of theGeneralized
Riemann hypothesis. For 𝑘 = 2, the best known exponent of distribution is 𝛿 = 2∕3 due to Selberg
(unpublished), Hooley [15] and Heath-Brown [13]. Several authors have achieved improvement
to 𝛿 = 2∕3 in special cases. See [3, 4, 6, 7].
The only other case known for surpassing the ‘Bombieri–Vinogradov range’ 𝛿 = 1∕2 is when

𝑘 = 3. Let us briefly take a look at the previous approaches. After an application of the 𝐺𝐿(3)
Voronoi summation formula to the left-hand side of (1.1) (or equivalently, a three-fold application
of the Poisson summation formula), one observes that to beat the 𝛿3 = 1∕2 barrier, one needs
non-trivial estimates for ∑

𝑚∼𝑞

𝑑3(𝑚)Kl3(𝑎𝑚, 𝑞), (1.2)

where Kl3(⋯) is the hyper-Kloosterman sum. Opening the divisor function
𝑑3(𝑚) =

∑
𝑚1𝑚2𝑚3=𝑚

1 and dividing the𝑚𝑖-sum into dyadic blocks𝑚𝑖 ∼ 𝑌𝑖 with𝑌1 ⩽ 𝑌2 ⩽ 𝑌3,
it suffices to obtain non-trivial estimates for∑

𝑚1∼𝑌

∑
𝑚2∼𝑞∕𝑌

𝑑(𝑚2)Kl3(𝑎𝑚1𝑚2, 𝑞) (1.3)

for each 𝑌 ⩽ 𝑞1∕3. When 𝑌 is not too small, good estimates can be obtained by applying Cauchy–
Schwarz inequality to (1.3) keeping the𝑚2 variable outside the absolute value square followed by
a Poisson summation in the 𝑚2-sum. Therefore, the main effort lies in obtaining good estimates
for (1.3) when 𝑌 is small. Alternatively, by applying the 𝐺𝐿(2) Voronoi summation formula to the
𝑚2-sum in (1.3), one can also consider∑

𝑚1∼𝑌

∑
𝑚2∼𝑞𝑌

𝑑(𝑚2)𝑒(𝑎𝑚1𝑚2∕𝑞). (1.4)

In their groundbreakingwork, Friedlander and Iwaniec [11] successfully obtained non-trivial esti-
mates for (1.4) which led to the exponent 𝛿3 = 1∕2 + 1∕230. More precisely, their main input was
non-trivial estimates for the short exponential sums∑

ℎ∼𝐻

∑
𝑚∼𝑀

∑
𝑛∼𝑁

𝑒(ℎ𝑚𝑛∕𝑞), (1.5)

which is a further decomposition of (1.4), using the ‘shifting by 𝑎𝑏’ technique. Heath-Brown [14]
improved the exponent to 𝛿3 = 1∕2 + 1∕82 by utilising amore elementary treatment of (1.5) based
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on the methods of Heath-Brown [12] and Balasubramanian, Conrey and Heath-Brown [2]. Since
both of these approaches were based on decomposing the sum (1.3) into multiple exponential
sums (1.5), they were far from optimal.
With a more structural approach by viewing the divisor function 𝑑(𝑚2) in (1.3) as the Fourier

coefficients of Eisenstein series, Fouvry, Kowalski andMichel [10] were able to produce the expo-
nent 𝛿3 = 1∕2 + 1∕46 for prime moduli improving the previous results. Their key input was the
estimates for short sums of 𝐺𝐿(2) coefficients∑

𝑚∼𝑀

𝜆(𝑚)𝐾(𝑚) (1.6)

twisted by general trace functions 𝐾(⋯) of prime modulus, which they obtained in [9] using the
𝐺𝐿(2) spectral theory. Note that the relevant estimate for (1.6) (when 𝜆(𝑚) = 𝑑(𝑚)) was obtained
in the separate paper [8], which required additional arguments to isolate its contribution from the
continuous spectrum. They further improved their exponent to 𝛿3 = 1∕2 + 1∕34 on an average
over the moduli by combining their results with the estimates for sums of Kloosterman sums pio-
neered by Deshouillers and Iwaniec. P. Xi [22] obtained the exponent 𝛿3 = 1∕2 + 1∕34 for moduli
with special factorisation using the 𝑞-analogue of the van der Corput method.
In this paper, we go even further and utilise the complete bilinear structure in (1.3), which

results in an improvement over all the above exponents. We use the delta symbol approach to
obtain non-trivial estimates for bilinear sums (1.3) involving 𝐺𝐿(2) coefficients. The method pro-
vides a uniform treatment for the holomorphic/Maass and Eisenstein cases and essentially covers
all moduli.

Theorem1.1. Let 𝜖 > 0 and 𝑎 be a non-zero integer. For every square-free 𝑞 ⩾ 1 and every odd prime
power 𝑞 = 𝑝𝛾, 𝛾 ⩾ 28 with (𝑎, 𝑞) = 1 and satisfying

𝑞 ⩽ 𝑋1∕2+1∕30−𝜖,

we have ∑
𝑛⩽𝑋

𝑛=𝑎(𝑞)

𝑑3(𝑛) =
1

𝜙(𝑞)

∑
𝑛⩽𝑋

(𝑛,𝑞)=1

𝑑3(𝑛) + 𝑂(𝑋1−𝜖∕𝑞),

where the implied constant depends only on 𝜖.

Remarks.

∙ We have considered the complementary cases of square-free and prime power, but it is possible
to merge the arguments to cover all natural numbers and, in particular, to close the gap from
𝛾 ⩾ 28 in Theorem 1.1 to 𝛾 ⩾ 2. All one needs is a version of Lemma 2.4with restriction𝑢 ⩽ 4𝛾∕5

lifted to 𝑢 ⩽ 𝛾 − 1 for 𝛾 ⩾ 2. The current estimation of the character sum leads to complicated
counting arguments, which we decided to avoid for the exposition’s simplicity.

∙ For 𝑞 = 𝑝𝛾, the methods of this paper can produce a better exponent 𝛿 > 1∕2 + 1∕30 by using
the𝑝-adic stationary phase analysis followed by an exponent pair estimate (see [20, Theorem2])
to bound certain average of the product of two Kloosterman sums non-trivially. See the remarks
just before Lemma 5.2 and Remark 3.
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4 of 42 SHARMA

∙ The exponents can be further improved by combining our estimates with the Kloostermania
techniques when averaging over the moduli.

The key input is the following estimate for the bilinear sums with 𝐺𝐿(2) coefficients obtained
using the separation of oscillation technique.

For𝑚, 𝑞 ⩾ 1, let K̃l3(𝑚, 𝑞) denote the normalised hyper-Kloosterman sum

K̃l3(𝑚, 𝑞) =
1

𝑞

∑∗

𝑥,𝑦 (𝑞)

𝑒

(
𝑚𝑥 + 𝑦 + 𝑥𝑦

𝑞

)
. (1.7)

Let 𝜆(𝑛) denote the 𝑛th Fourier coefficient of an 𝑆𝐿(2, ℤ) holomorphic cusp form or Maass cusp
form or the Eisenstein series 𝐸(𝑧, 1∕2 + 𝑤) for a complex number

𝑤 ≪ 𝑞𝜖.

Note that in the case of Eisenstein series, 𝜆(𝑛) = 𝜎−2𝑤(𝑛), which will be the relevant case for
the application to Theorem 1.1. We fix a smooth function 𝑉(𝑥) compactly supported in ℝ>0 and
satisfying 𝑉(𝑗)(𝑥) ≪𝑗,𝜖 𝑞

𝑗𝜖, 𝑗 ⩾ 0.

Theorem1.2. Let𝑞 ⩾ 1 be square-free,𝑏 ∈ ℤ co-prime to𝑞 and𝜆(𝑛), K̃l3(⋯) be as above. Let𝒩 ⊂ ℤ

be a set of𝑁 consecutive integers and let {𝛼𝑛}𝑛∈𝒩 be a sequence of complex numbers with |𝛼𝑛| ≪ 1.
Suppose𝑀 ⩾ 1 is such that𝑁 ⩽ 𝑞1∕2(1 +𝑀∕𝑞)−2, then∑

𝑛∈𝒩

∑
𝑚⩾1

𝛼𝑛𝜆(𝑚)K̃l3(𝑚𝑛𝑏, 𝑞)𝑉(𝑚∕𝑀) ≪𝜖 𝑞
3∕8+𝜖𝑀1∕2𝑁3∕4(1 +𝑀∕𝑞)1∕2

+ 𝑞−1∕4+𝜖𝑀𝑁3∕2(1 +𝑀∕𝑞) + 𝑁𝑞3∕4+𝜖(1 + 𝑀∕𝑞)1∕2.

The flexibility of the method allows us to obtain stronger estimates for moduli with special
factorisation.

Theorem 1.3. Let 𝑞 = 𝑝𝛾, 𝛾 ⩾ 2 and 𝑝 > 2. With the notations of Theorem 1.2, suppose that 𝑁 ⩽

𝑞1∕5(1 +𝑀∕𝑞)−2. Then∑
𝑛∈𝒩

∑
𝑚⩾1

𝛼𝑛𝜆(𝑚)K̃l3(𝑚𝑛𝑏, 𝑞)𝑉(𝑚∕𝑀) ≪𝜖 𝑝
7∕12𝑞1∕3+𝜖𝑀1∕2𝑁5∕6(1 +𝑀∕𝑞)2∕3 + 𝑞13∕20+𝜖𝑁.

Remarks.

∙ Each (1 + 𝑀∕𝑞) factor that appears in last two theorems can be eliminated by first dualising the
𝐺𝐿(2) sum when𝑀 ≫ 𝑞 and proceeding same as below. The restriction 𝑁 ⩽ 𝑞1∕5(1 +𝑀∕𝑞)−2

in Theorem 1.3 is for the sake of technical simplicity and can be easily extended to𝑁 ⩽ 𝑞1∕2(1 +

𝑀∕𝑝)−2 with additional computations.
∙ The choice of the trace function Kl3(⋯) in Theorems 1.2 and 1.3 is made for its application
towards Theorem 1.1, but the results should hold for more general trace functions (see [9] for
examples).
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BILINEAR SUMSWITH 𝐺𝐿(2) COEFFICIENTS AND THE EXPONENT OF DISTRIBUTION OF 𝐷3 5 of 42

∙ Choosing𝒩 = {1} and 𝛼1 = 1, the two theorems give∑
𝑚∼𝑀

𝜆(𝑚)K̃l3(𝑚𝑏, 𝑞) ≪𝜖 𝑞
𝜖
(
𝑀1∕2𝑞3∕8 + 𝑀∕𝑞1∕4 + 𝑞3∕4

)
, (1.8)

and ∑
𝑚∼𝑀

𝜆(𝑚)K̃l3(𝑚𝑏, 𝑞) ≪𝜖 𝑞
𝜖(𝑀1∕2𝑞1∕3 + 𝑞13∕20).

when 𝑀 ⩽ 𝑞. These are non-trivial as long as 𝑀 ≫ 𝑞3∕4+𝜖, which is the ‘Burgess range’, and
𝑀 ≫ 𝑞2∕3+𝜖, which is the ‘Weyl range’, respectively. Hence, with the additional cancellation in
the 𝑛-sum, Theorem 1.3 is, on average, of sub-Weyl strength (with twists by trace functions).
In the square-free case, the ‘𝑁𝑞3∕4’ term in Theorem 1.1, which pops out as an additional term
from a certain zero-frequency, prevents us from going beyond Burgess. It would be of interest
to get an improvement over this term.

∙ For composite moduli 𝑞 = 𝑝1𝑝2, with 𝑝1 ≍ 𝑞𝛼, 𝛼 > 0 not too large, estimates somewhere
between the Weyl and the Burgess range can be obtained using a similar approach.

Remark 1 (Notation). In this paper, the notation 𝛼 ≪ 𝐴 will mean that for any 𝜖 > 0, there is a
constant 𝑐 such that |𝛼| ⩽ 𝑐𝐴𝑋𝜖. The dependence of the constant on 𝜖, when occurring, will be
ignored. We will follow the usual 𝜖-convention: the letter 𝜖 denotes sufficiently small positive
quantity thatmay change from line to line.Wewill also use the phrase “negligible error” bywhich
we mean an error term 𝑂𝐵(𝑋

−𝐵) for an arbitrary 𝐵 > 0. The notation 𝑥 = 𝑦(𝑞) will mean 𝑥 ≡
𝑦 mod 𝑞 throughout the paper.

2 PRELIMINARIES

2.1 Voronoi summation formula for 𝒅𝟑(𝒏)

We use the version due to X. Li [19]. Let

𝜎0,0(𝑘, 𝑙) =
∑
𝑑1|𝑙

∑
𝑑2| 𝑙

𝑑1
(𝑑2,𝑘)=1

1 =
∑
𝑎|(𝑘,𝑙) 𝜇(𝑎)𝑑3(𝑙∕𝑎). (2.1)

For 𝜙(𝑦) ∈ 𝐶𝑐(0,∞), 𝑘 = 0, 1 and 𝜎 > −1 − 2𝑘, set

Φ𝑘(𝑦) =
1

2𝜋𝑖 ∫(𝜎)(𝜋
3𝑦)−𝑠 ⋅

Γ
(
1+𝑠+2𝑘

2

)3
Γ
(
−𝑠

2

)3 𝜙̃(−𝑠 − 𝑘) 𝑑𝑠, (2.2)

where 𝜙̃ is the Mellin transform of 𝜙, and

Φ±(𝑦) = Φ0(𝑦) ±
1

𝑖𝜋3𝑦
Φ1(𝑦). (2.3)
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6 of 42 SHARMA

Lemma 2.1 (X. Li). For integers 𝑎, 𝑞 ⩾ 1 with (𝑎, 𝑞) = 1, with the above notation, we have∑
𝑛⩾1

𝑑3(𝑛)𝑒(𝑎𝑛∕𝑞)𝜙(𝑛)

=
1

𝑞 ∫
∞

0
𝑃(log 𝑦, 𝑞)𝜙(𝑦)𝑑𝑦

+
𝑞

2𝜋3∕2

∑
±

∑
𝑟|𝑞

∑
𝑚⩾1

1

𝑟𝑚

∑
𝑟1|𝑟

∑
𝑟2| 𝑟

𝑟1

𝜎0,0(𝑟∕(𝑟1𝑟2),𝑚)𝑆(±𝑚, 𝑎; 𝑞∕𝑟)Φ±(𝑚𝑟2∕𝑞),

where 𝑃(𝑦, 𝑞) = 𝐴0(𝑞) + 𝐴1(𝑞)𝑦 + 𝐴2(𝑞)𝑦
2 is a quadratic polynomial whose coefficients depend

only on 𝑞.

When 𝜙 is a nice weight function, the corresponding transform Φ± also behaves nicely as
conveyed by the following lemma.

Lemma 2.2. Suppose that the smooth function 𝜙(𝑦) is supported in [𝑋, 2𝑋], 𝑋 ⩾ 1 and satisfies
𝑦𝑗𝜙(𝑗)(𝑦) ≪𝑗 1, 𝑗 ⩾ 0. Then, Φ±(𝑦) ≪𝐵 𝑋−𝐵 unless 𝑦𝑋 ≪ 𝑋𝜖 in which case

𝑦𝑗Φ
(𝑗)
± (𝑦) ≪𝑗 min{𝑦𝑋, 1}.

Proof. From (2.3), it is enough to prove the lemma for Φ0(𝑦). From the definition (2.2), we have
for 𝑗 ⩾ 0,

𝑦𝑗Φ
(𝑗)
0
(𝑦) = (−1)𝑗

1

2𝜋𝑖 ∫(𝜎) 𝑠(𝑠 + 1)⋯ (𝑠 + 𝑗)(𝜋3𝑦)−𝑠 ⋅
Γ
(
1+𝑠

2

)3
Γ
(
−𝑠

2

)3 𝜙̃(−𝑠) 𝑑𝑠.
Note that 𝜙̃(−𝑠) ≪ 𝑋−ℜ(𝑠). Shifting the contour above to the right 𝜎 = 𝐴 > 0 and trivially
estimating, we obtain

𝑦𝑗Φ
(𝑗)
0
(𝑦) ≪𝐴,𝑗 (𝑦𝑋)

−𝐴. (2.4)

Since𝐴 is arbitrary, the first part of lemma follows. On the other hand, shifting the contour to the
left 𝜎 = −3∕2 while picking up the residue at 𝜎 = −1, we obtain

𝑦𝑗Φ
(𝑗)
0
(𝑦) ≪𝑗 𝑦𝑋 + (𝑦𝑋)3∕2. (2.5)

The second part of the lemma from (2.4) and (2.5). □

2.2 Voronoi summation formula for 𝑮𝑳(𝟐)

See appendix A.4 of [18] and appendix of [17] for details.
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BILINEAR SUMSWITH 𝐺𝐿(2) COEFFICIENTS AND THE EXPONENT OF DISTRIBUTION OF 𝐷3 7 of 42

Lemma2.3. Let 𝜆(𝑛) be either the𝑛th Fourier coefficient of aMaass cusp formwith Laplacian eigen-
value 1∕4 + 𝜈2, 𝜈 ⩾ 0 or𝜆(𝑛) = 𝜎𝑤(𝑛), 𝑤 ∈ ℂ. For integers𝑎, 𝑞 ⩾ 1with (𝑎, 𝑞) = 1,ℎ(𝑥) ∈ 𝐶𝑐(0,∞),
we have

∞∑
𝑛=1

𝜆(𝑛)𝑒

(
𝑎𝑛

𝑞

)
ℎ(𝑛) =

1

𝑞 ∫
∞

0
g(𝑞, 𝑥)ℎ(𝑥) 𝑑𝑥 +

1

𝑞

∑
±

∑
𝑛⩾1

𝜆(𝑛)𝑒

(
±𝑎𝑛

𝑞

)
𝐻±

(
𝑛

𝑞2

)
,

where

∙ if 𝜆(𝑛) corresponds to Maass form, then g(𝑞, 𝑥) = 0 and

𝐻−(𝛼) =
−𝜋

sin(𝜋𝑖𝜈) ∫
∞

0
ℎ(𝑦){𝐽2𝑖𝜈 − 𝐽−2𝑖𝜈}(4𝜋

√
𝑦𝛼)𝑑𝑦 ,

𝐻+(𝛼) = 4𝜀𝑓 cosh(𝜋𝜈)∫
∞

0
ℎ(𝑦)𝐾2𝑖𝜈(4𝜋

√
𝑦𝛼)𝑑𝑦 ,

for 𝜈 > 0, and

𝐻−(𝛼) = −2𝜋 ∫
∞

0
ℎ(𝑦)𝑌0(4𝜋

√
𝑦𝛼)𝑑𝑦, and 𝐻+(𝛼) = 4𝜀𝑓 ∫

∞

0
ℎ(𝑦)𝐾0(4𝜋

√
𝑦𝛼)𝑑𝑦 ,

for 𝜈 = 0.
∙ If 𝜆(𝑛) = 𝜎0(𝑛) = 𝑑(𝑛), then g(𝑞, 𝑥) = log(

√
𝑥∕𝑞) + 𝛾 and

𝐻−(𝛼) = −2𝜋 ∫
∞

0
ℎ(𝑦)𝑌0

(
4𝜋

√
𝑦𝛼

)
𝑑𝑦 ,

𝐻+(𝛼) = 4∫
∞

0
ℎ(𝑦)𝐾0(4𝜋

√
𝑦𝛼)𝑑𝑦 .

∙ If 𝜆(𝑛) = 𝜎𝑤(𝑛), 𝑤 ≠ 0, then g(𝑞, 𝑥) = 𝜁(1 + 𝑤)(𝑥∕𝑞)𝑤 + 𝜁(1 − 𝑤)𝑞𝑤 and

𝐻−(𝛼) = ∫
∞

0
ℎ(𝑦)𝑌̃𝑤

(
4𝜋

√
𝑦𝛼

)
𝑑𝑦 ,

𝐻+(𝛼) = ∫
∞

0
ℎ(𝑦)𝐾̃𝑤(4𝜋

√
𝑦𝛼)𝑑𝑦 ,

where 𝑌̃𝑤, 𝐾̃𝑤 are closely related to 𝑌𝑤,𝐾𝑤 , and have the integral representations

𝑌̃𝑤(𝑥) =
1

2𝜋𝑖 ∫(2)(𝑥∕2)
−𝑠Γ(𝑠 − 𝑤)Γ(𝑠 + 𝑤) cos(𝜋𝑠)𝑑𝑠,

𝐾̃𝑤(𝑥) =
cosh(𝜋|𝑤|)

2𝜋𝑖 ∫(2)(𝑥∕2)
−𝑠Γ(𝑠 − 𝑤)Γ(𝑠 + 𝑤)𝑑𝑠.
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8 of 42 SHARMA

2.3 Character sum estimates

The endgame of the paper consists of getting square-root cancellations in certain character sums
which we record here for convenience. Let 𝑝 be a prime and𝑚 ∈ ℤ. Suppose 𝑠𝑗, 𝑡𝑗, 𝜆𝑗, 𝑗 = 1, 2 are
integers such that (𝑠𝑗, 𝑝) = (𝜆𝑗, 𝑝) = 1, 𝑗 = 1, 2. For 𝑢 ⩽ 𝛾, define

ℭ𝛾,𝑢 =
∑∗∑∗

𝑎1,𝑎2(𝑝
𝑢)

𝜆1𝑎1−𝜆2𝑎2=𝑚(𝑝𝑢)

𝑆(1, 𝑠1𝑝
𝛾−𝑢𝑎1 + 𝑡1, 𝑝

𝛾)𝑆(1, 𝑠2𝑝
𝛾−𝑢𝑎2 + 𝑡2, 𝑝

𝛾). (2.6)

For 𝛾 = 1, such character sum has been studied in [5] using the 𝑙-adic techniques developed by
Deligne andKatz, and in [9] in the broader framework of trace functions.When 𝛾 > 1, an estimate
for ℭ𝛾,𝑢 can be obtained in an elementary manner by reducing the sum to a set of congruence
conditions. We begin with latter case.

Lemma 2.4. Suppose 𝛾 > 1, 𝑢 ⩽ 4𝛾∕5,𝑚 ≠ 0 and (2𝑡𝑗, 𝑝) = 1. If 𝑢∕2 < 𝛾 − 𝑢 or 𝜈𝑝(𝑚) < 𝛾 − 𝑢,
then

ℭ𝛾,𝑢 ≪ 𝑝𝛾+𝑢∕2+𝜖(𝑢)∕2 ⋅ 𝑝𝜈𝑝(𝑚),

and if 𝑢∕2 ⩾ 𝛾 − 𝑢 and 𝜈𝑝(𝑚) ⩾ 𝛾 − 𝑢, then ℭ𝛾,𝑢 vanishes unless 𝑡
−3∕2

1
𝑠1𝜆1 = 𝑡

−3∕2

2
𝑠2𝜆2 (𝑝

𝛾−𝑢), in
which case

ℭ𝛾,𝑢 ≪ 𝑝𝛾+𝑢.

Here, 𝜖(𝑢) = 0 or 1 depending on 𝑢 is even or odd, respectively.

Proof. Without loss of generality, we can assume 𝜈𝑝(𝑚) < 𝑢∕2, since otherwise the claim fol-
lows after a trivial estimation of the Kloosterman sums. We perform some initial transformation.
Firstly, suppose that 𝑢 is even. Then, for 𝑗 = 1, 2, we can write

𝑎𝑗 = 𝑝𝑢∕2𝛼𝑗 + 𝛽𝑗, 1 ⩽ 𝛼𝑗, 𝛽𝑗 ⩽ 𝑝𝑢∕2, (𝛽𝑗, 𝑝) = 1. (2.7)

From (2.7), we obtain

𝑎𝑗 = 𝛽𝑗 − 𝑝𝑢∕2𝛽𝑗
2
𝛼𝑗 (𝑝

𝑢). (2.8)

Plugging (2.8), we see that the congruence

𝜆1𝑎1 − 𝜆2𝑎2 = 𝑚 (𝑝𝑢),

is equivalent to

𝛽2 = 𝜆1𝜆2𝛽1 − 𝜆2𝑚 (𝑝𝑢∕2),

𝛼2 = 𝜆1𝜆2𝛽
2
2𝛽1

2
𝛼1 − g(𝛽1) (𝑝

𝑢∕2),

(2.9)

 1460244x, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12589 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [19/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BILINEAR SUMSWITH 𝐺𝐿(2) COEFFICIENTS AND THE EXPONENT OF DISTRIBUTION OF 𝐷3 9 of 42

where

g(𝛽1) = 𝜆2𝛽
2
2 ⋅

(𝜆1𝛽1 − 𝜆2𝛽2 − 𝑚)

𝑝𝑢∕2
.

We proceed for the explicit evaluation of ℭ𝛾,𝑢 (2.6) in terms of these decompositions. We use the
following evaluation of the Kloosterman sums modulo prime powers, which can be found in [16,
(12.39)]:

𝑆(1, 𝛽, 𝑝𝛾) =

⎧⎪⎨⎪⎩
2
(
𝓁
𝑝

)𝛾
𝑝𝛾∕2ℜ 𝜀𝑝𝛾 𝑒(2𝓁∕𝑝

𝛾),
(
𝛽

𝑝

)
= 1,

0,
(
𝛽

𝑝

)
= −1,

(2.10)

where𝓁2 = 𝛽 (𝑝𝛾),
(
⋅
⋅

)
is the Legendre symbol, and 𝜀𝑐 equals 1 if 𝑐 ≡ 1 mod 4 and 𝑖 if 𝑐 ≡ 3 mod 4.

Hence, theKloosterman sums in (2.6) vanish unlesswe have
(
𝑡𝑗

𝑝

)
= 1. From the formula (2.10),

it follows

𝑆(1, 𝑠𝑗𝑝
𝛾−𝑢𝑎𝑗 + 𝑡𝑗, 𝑝

𝛾) =
∑
±

𝑝𝛾∕2
⎛⎜⎜⎝
𝑡
1∕2

𝑗

𝑝

⎞⎟⎟⎠
𝛾

𝑒
⎛⎜⎜⎝±

2(𝑠𝑗𝑝
𝛾−𝑢𝑎𝑗 + 𝑡𝑗)

1∕2

𝑝𝛾

⎞⎟⎟⎠. (2.11)

Using the fact that 𝛾 − 𝑢 ⩾ 1 and expanding (𝑠𝑗𝑝
𝛾−𝑢𝑎𝑗 + 𝑡𝑗)

1∕2, we see that our char-
acter sum (2.6) can be written as sum of four terms of the form (up to constant
factors)

ℭ = 𝑝𝛾
⎛⎜⎜⎝
𝑡
1∕2

1

𝑝

⎞⎟⎟⎠
𝛾⎛⎜⎜⎝
𝑡
1∕2

2

𝑝

⎞⎟⎟⎠
𝛾 ∑∗∑∗

𝑎1,𝑎2(𝑝
𝑢)

𝜆1𝑎1−𝜆2𝑎2=𝑚(𝑝𝑢)

𝑒

(∑
𝑖⩾0 𝑝

𝑖(𝛾−𝑢)𝜃𝑖𝑎
𝑖
1
−
∑

𝑖⩾0 𝑝
𝑖(𝛾−𝑢)𝜂𝑖𝑎

𝑖
2

𝑝𝛾

)
, (2.12)

where

𝜃𝑖 = 2

(
−1∕2

𝑖

)
𝑡
−𝑖−1∕2

1
𝑠𝑖1 and 𝜂𝑖 = 2

(
−1∕2

𝑖

)
𝑡
−𝑖−1∕2

2
𝑠𝑖2.

Here,

(
−1∕2

𝑖

)
=

(
−1

2

)(
−1

2
− 1

)
⋯

(
−1

2
− 𝑖 + 1

)
𝑖!

is the 𝑖th binomial coefficient, and in our context, −1∕2 means −2(𝑝𝛾). Note that this way the
numerator of this 𝑖th binomial coefficient is divisible by 𝑖!, and so, the expression makes sense
modulo 𝑝𝛾.
Using (2.8), modulo 𝑝𝛾, the phase function above is
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10 of 42 SHARMA

∑
𝑖⩾0

𝑝𝑖(𝛾−𝑢)𝜃𝑖𝑎
𝑖
1 −

∑
𝑖⩾0

𝑝𝑖(𝛾−𝑢)𝜂𝑖𝑎
𝑖
2 =

∑
𝑖⩾1

𝑝𝑖(𝛾−𝑢)+𝑢∕2𝑖𝜃𝑖𝛽
𝑖−1
1 𝛼1 −

∑
𝑖⩾1

𝑝𝑖(𝛾−𝑢)+𝑢∕2𝑖𝜂𝑖𝛽
𝑖−1
2 𝛼2

+
∑
𝑖⩾0

𝑝𝑖(𝛾−𝑢)𝜃𝑖𝛽
𝑖
1 −

∑
𝑖⩾0

𝑝𝑖(𝛾−𝑢)𝜂𝑖𝛽
𝑖
2

=
∑
𝑖=1,2

𝑖
(
𝑝𝑖(𝛾−𝑢)+𝑢∕2𝑖𝜃𝑖𝛽

𝑖−1
1 𝛼1 − 𝑝𝑖(𝛾−𝑢)+𝑢∕2𝑖𝜂𝑖𝛽

𝑖−1
2 𝛼2

)
+
∑
𝑖⩾0

𝑝𝑖(𝛾−𝑢)𝜃𝑖𝛽
𝑖
1 −

∑
𝑖⩾0

𝑝𝑖(𝛾−𝑢)𝜂𝑖𝛽
𝑖
2.

We have truncated the last sum up to 𝑖 ⩽ 2 since 3(𝛾 − 𝑢) + 𝑢∕2 ⩾ 𝛾 by our assumption.
Substituting 𝛼2 from (2.9), the right-hand side of the last display becomes

𝛼1
∑
𝑖=1,2

𝑝𝑖(𝛾−𝑢)+𝑢∕2𝑖
(
𝜃𝑖 − 𝜂𝑖𝜆1𝜆2(𝛽1𝛽2)

𝑖+1
)
𝛽𝑖−11 −

∑
𝑖=1,2

𝑝𝑖(𝛾−𝑢)+𝑢∕2𝑖𝜂𝑖𝛽
𝑖−1
2 g(𝛽1)

+
∑
𝑖⩾0

𝑝𝑖(𝛾−𝑢)(𝜃𝑖𝛽
𝑖
1 − 𝜂𝑖𝛽

𝑖
2).

Substituting this expansion into (2.12), we see that

ℭ = 𝑝𝛾
⎛⎜⎜⎝
𝑡
1∕2

1

𝑝

⎞⎟⎟⎠
𝛾⎛⎜⎜⎝
𝑡
1∕2

2

𝑝

⎞⎟⎟⎠
𝛾 ∑∗

1⩽𝛽1⩽𝑝
𝑢∕2

𝑒

(
𝑓(𝛽1)

𝑝𝛾

) ∑
1⩽𝛼1⩽𝑝

𝑢∕2

𝑒

(
ℎ(𝛽1)𝛼1

𝑝𝑢∕2

)
, (2.13)

where

𝑓(𝛽1) = −
∑
𝑖=1,2

𝑝𝑖(𝛾−𝑢)+𝑢∕2𝑖𝜂𝑖𝛽
𝑖−1
2 g(𝛽1) +

∑
𝑖⩾0

𝑝𝑖(𝛾−𝑢)(𝜃𝑖𝛽
𝑖
1 − 𝜂𝑖𝛽

𝑖
2)

and

ℎ(𝛽1) =
∑
𝑖=0,1

(𝑖 + 1)𝛽𝑖1

(
𝜃𝑖+1 − 𝜂𝑖+1𝜆1𝜆2(𝛽1𝛽2)

𝑖+2
)
𝑝𝑖(𝛾−𝑢). (2.14)

Executing the linear 𝛼1-sum, it follows

ℭ ≪ 𝑝𝛾+𝑢∕2
∑∗

𝛽1(𝑝
𝑢∕2)

ℎ(𝛽1)=0(𝑝
𝑢∕2)

1.

It remains to count the solutions to ℎ(𝛽1) = 0(𝑝𝑢∕2).
If 𝛾 − 𝑢 > 𝑢∕2, then from the expression (2.14), it follows that ℎ(𝛽1) = 0(𝑝𝑢∕2) implies

𝜃1 − 𝜂1𝜆1𝜆2(𝛽1𝛽2)
2 = 0 (𝑝𝑢∕2) ⇒ 𝜃1 − 𝜂1𝜆1𝜆2(𝜆1𝜆2 − 𝜆2𝑚𝛽1)

−2 = 0 (𝑝𝑢∕2).
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Since (𝜃1𝜂1, 𝑝) = 1, the last relation forces 𝜃1𝜂1𝜆1𝜆2 to be a quadratic residue mod 𝑝𝑢∕2 in which
case, we get

𝜆2𝑚𝛽1 = 𝜆1𝜆2 ± (𝜃1𝜂1𝜆1𝜆2)
1∕2 (𝑝𝑢∕2).

This determines 𝛽1 modulo 𝑝
𝑢∕2−min{𝑢∕2,𝜈𝑝(𝑚)}, and hence, we have at most 𝑂(𝑝𝜈𝑝(𝑚)) solutions

for 𝛽1(𝑝𝑢∕2) and the lemma follows.
So, we can assume 𝛾 − 𝑢 ⩽ 𝑢∕2. This forces

𝜃1 − 𝜂1𝜆1𝜆2(𝛽1𝛽2)
2 = 0 (𝑝𝛾−𝑢) ⇒ 𝜃1 − 𝜂1𝜆1𝜆2(𝜆1𝜆2 − 𝜆2𝑚𝛽1)

−2 = 0 (𝑝𝛾−𝑢). (2.15)

Suppose 𝜈𝑝(𝑚) ⩾ 𝛾 − 𝑢(⩾ 𝑢∕4), then the last congruence becomes

𝜃1𝜆1 = 𝜂1𝜆2 (𝑝
𝛾−𝑢), i.e. 𝑡−3∕2

1
𝑠1𝜆1 = 𝑡

−3∕2

2
𝑠2𝜆2 (𝑝

𝛾−𝑢).

In this case, we use the trivial bound to get

ℭ ≪ 𝑝𝛾+𝑢∕2
∑∗

𝛽1(𝑝
𝑢∕2)

ℎ(𝛽1)=0(𝑝
𝑢∕2)

1 ≪ 𝑝𝛾+𝑢.

This proves the second part of the lemma. In the case 𝜈𝑝(𝑚) < 𝛾 − 𝑢, (2.15) determines 𝛽1modulo
𝑝𝛾−𝑢−𝜈𝑝(𝑚), and say that 𝑐 is the corresponding solution. Denote 𝑟 = 𝛾 − 𝑢 − 𝜈𝑝(𝑚), ℎ𝑖(𝑐) = (𝑖 +

1)(𝜃𝑖+1 − 𝜂𝑖+1𝜆1𝜆2(𝜆1𝜆2 − 𝜆2𝑚𝑐)−𝑖−2), then for 𝜆 ∈ ℤ,

ℎ(𝑝𝑟𝜆 + 𝑐) = ℎ0(𝑐) − 𝜂0𝜆1𝜆2
2
(𝜆1𝜆2 − 𝜆2𝑚𝑐)−3𝑚𝑝𝑟𝜆 + 𝑝𝑟𝜆ℎ1(𝑐)𝑝

𝛾−𝑢 + 𝑐ℎ1(𝑐)𝑝
𝛾−𝑢 (𝑝𝑢∕2).

Dividing the right-hand side by 𝑝𝛾−𝑢, ℎ(𝑝𝑟𝜆 + 𝑐) = 0 (𝑝𝑢∕2) boils down to

𝜆(ℎ1(𝑐)𝑝
𝑟 − 𝜂0𝜆1𝜆2

2
(𝜆1𝜆2 − 𝜆2𝑚𝑐)−3(𝑚𝑝𝑟∕𝑝𝛾−𝑢)) + ℎ0(𝑐)∕𝑝

𝛾−𝑢 + 𝑐ℎ1(𝑐) = 0 (𝑝𝑢∕2−(𝛾−𝑢)).

Note that the coefficient attached to 𝜆 is co-prime to 𝑝, and consequently, 𝜆 is determinedmodulo
𝑝𝑢∕2−(𝛾−𝑢). Combining, it follows that 𝛽1 is determined modulo 𝑝

𝑢∕2−𝜈𝑝(𝑚), and therefore,

ℭ ≪ 𝑝𝛾+𝑢∕2
∑∗

𝛽(𝑝𝑢∕2)

ℎ(𝛽1)=0(𝑝
𝑢∕2)

1 ≪ 𝑝𝛾+𝑢∕2𝑝𝜈𝑝(𝑚),

which is the first part of the lemma.
This completes the proof of the lemma when 𝑢 is even. When 𝑢 is odd, in (2.7), we decompose

the 𝑎′
𝑗
𝑠 as 𝑝(𝑢+1)∕2𝛼𝑗 + 𝛽𝑗, 1 ⩽ 𝛼𝑗 ⩽ 𝑝(𝑢−1)∕2, 1 ⩽ 𝛽𝑗 ⩽ 𝑝(𝑢+1)∕2 and proceed identically as above.

This way we gain a 𝑝1∕2 factor in the 𝛼1-sum but loose a factor of 𝑝 in the 𝛽1-sum since the linear
sum 𝛼1-sum in (2.13) will now only determine ℎ(𝛽1)modulo 𝑝(𝑢−1)∕2. This will result in an extra
factor of 𝑝1∕2 the final estimate as indicated in the statement of the lemma. □
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12 of 42 SHARMA

Lemma 2.5. With the notations of (2.6), we have

ℭ1,1 =
∑∗∑∗

𝑎1,𝑎2(𝑝)

𝜆1𝑎1−𝜆2𝑎2=𝑚(𝑝)

𝑆(1, 𝑠1𝑎1 + 𝑡1, 𝑝)𝑆(1, 𝑠2𝑎2 + 𝑡2, 𝑝) ≪ 𝑝3∕2 + 𝑝2𝛿( 𝑚=0(𝑝)
𝑡1=𝑡2(𝑝)

𝜆1𝑠1=𝜆2𝑠2(𝑝)

).

Proof. Consider the linear transformations

𝛿1 =

(
0 1

𝑠1 𝑡1

)
, 𝛿2 =

(
0 1

𝑠2 𝑡2

)
and 𝛿3 =

(
𝜆2 0

−𝑚 𝜆1

)
.

Then, we can recast ℭ1,1 as

ℭ1,1 =
∑∗

𝑎1(𝑝)

𝑆(1, 𝛿1(𝑎1), 𝑝)𝑆(1, 𝛿2𝛿3(𝑎1), 𝑝).

Note that det(𝛿𝑖) ≠ 0 (𝑝). Hence,

ℭ1,1 =
∑∗

𝑎1(𝑝)

𝑆(1, 𝑎1, 𝑝)𝑆(1, 𝛿2𝛿3𝛿
−1
1 (𝑎1), 𝑝). (2.16)

We are in position to apply the estimates from [5]. Propositions 3.3 and 3.4 amount to the following.

Given 𝛿 =

(
𝑎 𝑏

𝑐 𝑑

)
such that 𝑎𝑑 − 𝑏𝑐 ≠ 0 (𝑝), then

∑∗

𝛼(𝑝)

𝑆(1, 𝛼; 𝑝)𝑆(1, 𝛾(𝛼); 𝑝) ≪ 𝑝3∕2 + 𝑝2𝛿(𝑎−𝑑=𝑏=𝑐=0(𝑝)). (2.17)

In our situation (2.16), we have

𝛿2𝛿3𝛿
−1
1 = 𝑠−11

(
𝑚𝑡1 + 𝜆1𝑠1 −𝑚

𝑠1𝑡2𝜆1 − 𝑡1(𝑠2𝜆2 − 𝑡2𝑚) 𝑠2𝜆2 − 𝑡2𝑚

)
.

The relation 𝑎 − 𝑑 = 𝑏 = 𝑐 = 0 (𝑝) from the (2.17) translates into𝑚 = 0 (𝑝), 𝜆1𝑠1 = 𝜆2𝑠2 (𝑝) and
𝑡1 = 𝑡2 (𝑝). The lemma follows. □

3 PROOF OF THEOREM 1.2

Here, 𝑞 is a square-free number and (𝑞, 𝑏) = 1. We are interested in

𝑆 =
∑
𝑛∈𝒩

∑
𝑚⩾1

𝛼𝑛𝜆(𝑚)K̃l3(𝑚𝑛𝑏, 𝑞)𝑉(𝑚∕𝑀). (3.1)

Without loss of generality, we can assume that the sum over 𝑛 above is restricted to (𝑛, 𝑞) = 1, for
if (𝑛, 𝑞) = 𝑑, the hyper-Kloosterman sum degenerates to
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BILINEAR SUMSWITH 𝐺𝐿(2) COEFFICIENTS AND THE EXPONENT OF DISTRIBUTION OF 𝐷3 13 of 42

K̃l3(𝑚𝑛𝑏, 𝑞) =
𝑑

𝑞
⋅ K̃l3(𝑚(𝑛∕𝑑)𝑏𝑑, 𝑞∕𝑑),

with which one arrives at a sum similar to (3.1) with a smaller modulus 𝑞∕𝑑 and a smaller 𝑛-sum
with length 𝑁∕𝑑. Hence, it is enough to consider

𝑆 =
∑∗

𝑛∈𝒩

∑
𝑚⩾1

𝛼𝑛𝜆(𝑚)K̃l3(𝑚𝑛𝑏, 𝑞)𝑉(𝑚∕𝑀),

where the ‘∗’ over the 𝑛-sum denotes (𝑛, 𝑞) = 1. For simplicity, we set

𝐾(𝑚) = K̃l3(𝑚𝑏, 𝑞).

We begin by separating the coefficients 𝜆(𝑚) and 𝐾(𝑚𝑛) using the delta symbol. Due to struc-
tural reasons, the sizes of the moduli appearing in the delta expansion play no essential role in
our approach and only act as a set of auxiliary variables. Hence, we do not require any non-trivial
delta symbol expansion and simply use the additive characters with large moduli. This simplifies
many of the forthcoming calculations. This is not a new observation and was previously exploited
in [1] in the context of the subconvexity problem for 𝐺𝐿(2).
Next, we note that a direct application of the delta symbol fails to beat the trivial bound at

a certain diagonal contribution. To overcome this, we consider an amplified version of 𝑆 that
introduces more harmonics into the analysis. Let 𝐿 ⩾ 1, which will be chosen later, andℒ be the
set of primes in [𝐿, 2𝐿] co-prime to 𝑞. Note that∑

𝓁∈ℒ

|𝜆(𝓁)|2 = ∑
𝓁∼𝐿,𝓁 prime

(𝓁,𝑞)=1

|𝜆(𝓁)|2 = ∑
𝓁∼𝐿

𝓁 prime

|𝜆(𝓁)|2 − ∑
𝑝|𝑞
𝑝∼𝐿

|𝜆(𝑝)|2 ∼ 𝐿 + 𝑂(𝑞𝜖𝐿14∕64), (3.2)

using the 𝐺𝐿(2) prime number theorem and the Kim–Sarnak bound for individual 𝐺𝐿(2)
coefficients. Hence, using the Hecke relation

𝜆(𝓁)𝜆(𝑚) = 𝜆(𝑚𝓁) + 𝜆(𝑚∕𝓁)𝛿𝓁|𝑚,
and the asymptotic (3.2), we see that

|𝑆| ≪ |𝑆| + 𝑂(𝑀𝑁∕𝐿), (3.3)

where

𝑆 =
1

𝐿

∑
𝓁∈ℒ

𝜆(𝓁)
∑∗

𝑛∈𝒩

∑
𝑚⩾1

𝛼𝑛𝜆(𝑚𝓁)𝐾(𝑚𝑛)𝑉(𝑚∕𝑀).

We have used the Ramanujan bound on average
∑

𝑛⩽𝑥 |𝜆(𝑛)|2 ≪ 𝑥 and the well-known Deligne’s
estimate 𝐾(𝑚) ≪ 1 for the last assertion. The rest of this section is devoted to the estimation of 𝑆.
Let𝒞 be the set primes in [𝐶, 2𝐶], with 𝐶 such that

𝑞𝐶 > 100𝑀𝐿.
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14 of 42 SHARMA

Since there is no restriction on the upper bound for𝐶, a suitable large𝐶will ensure that (𝑐, 𝑞𝓁) = 1

for all 𝑐 ∈ 𝒞,𝓁 ∈ ℒ. Due to the above inequality, we can write 𝑆 as

𝑆 =
1

𝐶𝐿

∑
𝓁∈ℒ

𝜆(𝓁)
∑
𝑐∈𝒞

∑∗

𝑛∈𝒩

𝛼𝑛
∑∑
𝑚1,𝑚2⩾1

𝑞𝑐|𝑚1−𝑚2𝓁

𝜆(𝑚1)𝐾(𝑚2𝑛)𝑉(𝑚1∕(𝑀𝓁))𝑉1(𝑚2∕𝑀)

× 𝑒(𝑞𝜖(𝑚1 − 𝑚2𝓁)∕𝑀𝐿)

,

where 𝑉1 is another smooth function compactly supported in ℝ>0 such that 𝑉1(𝑥) = 1, 𝑥 ∈

supp(𝑉). The artificial twist by 𝑒(𝑞𝜖(𝑚1 − 𝑚2𝓁)∕𝑀𝐿) allows us keep the length of the dual sums in
their generic range. This turns out to be crucial in certain counting arguments of the paper, espe-
cially when 𝑀 ≫ 𝑞. The additional restriction modulo 𝑞 in 𝑞𝑐|(𝑚1 − 𝑚2𝓁) acts as a conductor
lowering mechanism. Detecting the congruence condition using additive characters, we obtain

𝑆 =
1

𝑞𝐶𝐿

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝓁∈ℒ

𝜆(𝓁)
∑
𝑐∈𝒞

1

𝑐

∑
𝑎(𝑞𝑐)

∑∑
𝑚1,𝑚2⩾1

𝜆(𝑚1)𝐾(𝑚2𝑛)𝑒(𝑎(𝑚1 − 𝑚2𝓁)∕𝑞𝑐)

× 𝑉(𝑚1∕(𝑀𝓁))𝑉1(𝑚2∕𝑀)𝑒(𝑞𝜖(𝑚1 − 𝑚2𝓁)∕𝑀𝐿).

Since (𝑐, 𝑞) = 1, we can split the above sum as

𝑆 =
∑
𝑑|𝑞 𝑆(𝑑) +𝒮, (3.4)

where

𝑆(𝑑) =
1

𝑞𝐶𝐿

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝓁∈ℒ

𝜆(𝓁)
∑
𝑐∈𝒞

1

𝑐

∑∗

𝑎(𝑑𝑐)

∑∑
𝑚1,𝑚2⩾1

𝜆(𝑚1)𝐾(𝑚2𝑛)𝑒(𝑎(𝑚1 − 𝑚2𝓁)∕𝑑𝑐)

𝑉(𝑚1∕(𝑀𝓁))𝑉1(𝑚2∕𝑀)𝑒(𝑞𝜖(𝑚1 − 𝑚2𝓁)∕𝑀𝐿),
(3.5)

and

𝒮 =
1

𝑞𝐶𝐿

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝓁∈ℒ

𝜆(𝓁)
∑
𝑐∈𝒞

1

𝑐

∑
𝑎(𝑞)

∑∑
𝑚1,𝑚2⩾1

𝜆(𝑚1)𝐾(𝑚2𝑛)𝑒(𝑎(𝑚1 − 𝑚2𝓁)∕𝑞)

𝑉(𝑚1∕(𝑀𝓁))𝑉1(𝑚2∕𝑀)𝑒(𝑞𝜖(𝑚1 − 𝑚2𝓁)∕𝑀𝐿).

A trivial estimation of 𝒮 yields

𝒮 ≪ 𝑀2𝑁∕𝐶.

Hence, we can ignore the contribution 𝒮 because 𝐶 is allowed to be arbitrary large. The rest of
the section is devoted to the estimation of 𝑆(𝑑), 𝑑|𝑞.
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3.1 Dualisation

In the cuspidal case, the Voronoi summation transforms the𝑚1-sum in 𝑆(𝑑) into

∑
𝑚1⩾1

𝜆(𝑚1)𝑒
(𝑎𝑚1

𝑑𝑐

)
𝑉(𝑚1∕(𝑀𝓁))𝑒(𝑞𝜖𝑚1∕𝑀𝐿) =

𝑀𝐿

𝑑𝑐

∑
𝑚̃1⩾1

𝜆(𝑚̃1)𝑒

(
±𝑎̄𝑚̃1

𝑑𝑐

)
𝐼±
1
(𝑚̃1, 𝑐), (3.6)

where 𝐼±
1
(𝑚̃1, 𝑐) = (𝑀𝐿)−1𝐻±(𝑚̃1∕𝑑

2𝑐2), 𝐻± as in Lemma 2.3. Note that in each case, 𝐼±
1
(𝑚̃1, 𝑐)

will be roughly of the form

𝐼±
1
(𝑚̃1, 𝑐) ≈ (constant factors) ∫ℝ

𝑉(𝑦)𝑒(𝑞𝜖𝑦)𝐾

(√
𝑀𝐿𝑚̃1𝑦

𝑑𝑐

)
𝑑𝑦,

where 𝐾(⋯) is one of the Bessel functions appearing in Lemma 2.3. Since the order of these
Bessel functions is fixed for us, 𝐾(𝑥) will oscillate like 𝑒(𝑥) (see [21], p. 206). Hence, by repeated
integration by parts, we can conclude that 𝐼±

1
(𝑚̃1, 𝑐) is negligibly small unless

𝑚̃1 ≍ 𝑞𝜖𝑑2𝑐2∕𝑀𝐿, (3.7)

in which case the 𝑗th derivative is trivially bounded by

|𝑚̃1|𝑗 𝜕𝑗𝐼±1 (𝑚̃1, 𝑐)

𝜕𝑚̃1
𝑗

≪𝑗,𝜖 𝑞
𝑗𝜖. (3.8)

The Poisson summation transforms the𝑚2-sum in (3.5) into

∑
𝑚2∼𝑀

𝐾(𝑚2𝑛)𝑒

(
−𝑎𝑚2𝓁

𝑑𝑐

)
𝑉1(𝑚2∕𝑀)𝑒(−𝑞𝜖𝑚2𝓁∕𝑀𝐿)

=
𝑀

𝑞𝑐

∑
𝛼(𝑞𝑐)

𝐾(𝛼𝑛)𝑒

(
−𝑎𝛼𝓁
𝑑𝑐

) ∑
𝑚̃2∈ℤ

𝑒

(
−𝑚̃2𝛼

𝑞𝑐

)
𝐼2(𝑚̃2, 𝑐),

where

𝐼2(𝑚̃2, 𝑐) = ∫ℝ

𝑉1(𝑥)𝑒

(
𝑞𝜖𝓁
𝐿

−
𝑀𝑚̃2𝑥

𝑞𝑐

)
𝑑𝑥.

Again, from repeated integration by parts, it follows that 𝐼2(𝑚̃2, 𝑐) is negligible unless

|𝑚̃2| ≍ 𝑞1+𝜖𝑐∕𝑀

and the 𝑗th derivative is bounded by

|𝑚̃2|𝑗 𝜕𝑗𝐼2(𝑚̃2, 𝑐)

𝜕𝑚̃2
𝑗

≪𝑗,𝜖 𝑞
𝑗𝜖. (3.9)
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16 of 42 SHARMA

Combining the above two transformations, we see that 𝑆(𝑑) can be replaced by

𝑆(𝑑) =
𝑀2

𝑞2𝑑𝐶

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝓁∈ℒ

𝜆(𝓁)
∑
𝑐∈𝒞

1

𝑐3

∑
𝑚̃1≍𝑑

2𝑐2∕𝑀𝐿

∑
|𝑚̃2|≍𝑞𝑐∕𝑀 𝜆(𝑚̃1)ℭ(⋯)𝐽(𝑚̃1, 𝑚̃2, 𝑐), (3.10)

where

𝐽(𝑚̃1, 𝑚̃2, 𝑐) = 𝐼±
1
(𝑚̃1, 𝑐)𝐼2(𝑚̃2, 𝑐),

and

ℭ(⋯) =
∑∗

𝑎(𝑑𝑐)

∑
𝛼(𝑞𝑐)

𝐾(𝛼𝑛)𝑒

(
−
𝑎𝛼𝓁
𝑑𝑐

−
𝑚̃2𝛼

𝑞𝑐
±
𝑎𝑚̃1

𝑑𝑐

)
. (3.11)

Note that from (3.8) and (3.9), we have

|𝑚̃1|𝑗1 |𝑚̃2|𝑗2 𝜕𝑗1𝜕𝑗2𝐽(𝑚̃1, 𝑚̃2, 𝑐)

𝜕𝑚̃1
𝑗1𝜕𝑚̃2

𝑗2
≪𝑗1,𝑗2

𝑞(𝑗1+𝑗2)𝜖. (3.12)

Remark 2. In the case of Eisenstein coefficients, there is an additional ‘0th’ term in the right-hand
side of (3.6) which we now briefly show has a small contribution towards 𝐵. From Lemma 2.3, the
main term will roughly be of the form

𝑀𝐿

𝑑𝑐
𝐼(𝑐),

where 𝐼(𝑐) is an integral transform with 𝐼(𝑐) ≪ 1. Hence, if 𝑆0(𝑑) denotes the contribution of the
main term towards 𝑆(𝑑), then

𝑆(𝑑) ≪
𝑀2

𝑞2𝑑𝐶

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝓁∈ℒ

𝜆(𝓁)
∑
𝑐∈𝒞

1

𝑐3

∑
𝑚̃2≪𝑞𝑐∕𝑀

ℭ̃(⋯)𝐼(𝑐)𝐼2(𝑚̃2, 𝑐), (3.13)

where ℭ̃(⋯) is the simpler character sum

ℭ̃(⋯) =
∑∗

𝑎(𝑑𝑐)

∑
𝛼(𝑞𝑐)

𝐾(𝛼𝑛)𝑒

(
−
𝑎𝛼𝓁
𝑑𝑐

−
𝑚̃2𝛼

𝑞𝑐

)
.

It can be easily shown that ℭ̃(⋯) ≪ 𝑞𝑐. Trivially estimating (3.13), we therefore obtain

𝑆0(𝑑) ≪ 𝑀𝐿∕(𝑑𝐶).

From the freedom of choosing 𝐶, it follows that 𝑆0(𝑑) will have a negligible contribution.

Let us come back to the generic case (3.10). Dividing the 𝑚̃1-sum into dyadic blocks 𝑚̃1 ∼ 𝑀1 ≍

𝑑2𝐶2∕𝑀𝐿 with the localising factors𝑊(𝑚̃1∕𝑀1), we get
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𝑆(𝑑) ≪ sup
𝑀1≍𝑑

2𝐶2∕𝑀𝐿

𝑆(𝑑,𝑀1), (3.14)

where

𝑆(𝑑,𝑀1) =
𝑀2

𝑞2𝑑𝐶

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝓁∈ℒ

𝜆(𝓁)
∑
𝑐∈𝒞

1

𝑐3

∑
𝑚̃1∈ℤ

𝑊(𝑚̃1∕𝑀1)
∑

|𝑚̃2|≍𝑞𝐶∕𝑀 𝜆(𝑚̃1)ℭ(⋯)𝐽(𝑚̃1, 𝑚̃2, 𝑐).

(3.15)

3.2 Simplifying the character sum

Splitting the 𝛼 (𝑞𝑐) sum (3.11) using the Chinese remainder theorem and executing the modulo 𝑐
part, we obtain the congruence relation

𝑎 = −𝑚̃2𝓁(𝑞∕𝑑) (𝑐),

and we are left with

ℭ(⋯) = 𝑐 ⋅ 𝑒
⎛⎜⎜⎝
±𝑞𝑑

2
𝓁𝑚̃2𝑚̃1

𝑐

⎞⎟⎟⎠
∑∗

𝑎(𝑑)

∑
𝛼(𝑞)

𝐾(𝑐𝛼𝑛)𝑒

(
−
𝑎𝛼𝓁
𝑑

−
𝑚̃2𝛼

𝑞
±
𝑐𝑎𝑚̃1

𝑑

)
.

Substituting the definition

𝐾(𝑐𝛼𝑛) =
1

𝑞

∑∗

𝛽(𝑞)

𝑒

(
𝛽

𝑞

)∑∗

𝑙(𝑞)

𝑒

(
𝑙𝑐𝛼𝑛𝑏 + 𝑙𝛽

𝑞

)

and executing the 𝛼 (𝑞) sum, we obtain

𝑙 = 𝑐𝑛𝑏(𝑚̃2 + 𝑎(𝑞∕𝑑)𝓁) (𝑞).

Substituting we get

ℭ(⋯) = 𝑐 ⋅ 𝑒
⎛⎜⎜⎝
±𝑞𝑑

2
𝓁𝑚̃2𝑚̃1

𝑐

⎞⎟⎟⎠
∑∗

𝑎(𝑑)

𝑆(1, 𝑐𝑛𝑏(𝑚̃2 + 𝑎(𝑞∕𝑑)𝓁); 𝑞)𝑒
(
𝑐𝑎𝑚̃1

𝑑

)
. (3.16)

Observe that ℭ(⋯) is additive w.r.t. 𝑚̃1 (𝑐).

3.3 Cauchy–Schwarz and Poisson

Applying Cauchy–Schwarz inequality to (3.15) keeping the 𝑚̃1 sum outside and everything else
inside the absolute value square, we see that

𝑆(𝑑,𝑀1) ≪
𝑀2

𝑞2𝑑𝐶3
⋅ 𝑑𝐶∕(𝑀𝐿)1∕2 ⋅Ω1∕2, (3.17)
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18 of 42 SHARMA

where

Ω =
∑
𝑚̃1∈ℤ

𝑊(𝑚̃1∕𝑀1)

×

|||||||
∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝓁∈ℒ

𝜆(𝓁)
∑
𝑐∈𝒞

∑
|𝑚̃2|≍𝑑𝐶∕𝑀 𝑒

⎛⎜⎜⎝
±𝑞𝑑

2
𝓁𝑚̃2𝑚̃1

𝑐

⎞⎟⎟⎠ℭ1(𝑛, 𝑚̃1, 𝑚̃2,𝓁, 𝑐)𝐽(𝑚̃1, 𝑚̃2, 𝑐)

|||||||
2

,

where ℭ1(⋯) is ℭ(⋯) in (3.16) without the first factor 𝑐. Opening the absolute value square, we
obtain

Ω =
∑

𝓁1,𝓁2∼𝐿

𝜆(𝓁1)𝜆(𝓁2)
∑∗

𝑛1,𝑛2∈𝒩

𝛼𝑛1𝛼𝑛2

∑
𝑐1,𝑐2∈𝒞

∑
|𝑚̃2|,|𝑚̃3|≍𝑑𝐶∕𝑀

∑
𝑚̃1∈ℤ

𝑒
⎛⎜⎜⎝
𝑞𝑑

2
𝓁1𝑚̃2𝑚̃1

𝑐1
−
𝑞𝑑

2
𝓁2𝑚̃3𝑚̃1

𝑐2

⎞⎟⎟⎠ℭ1(𝑛1, 𝑚̃1, 𝑚̃2,𝓁1, 𝑐1)ℭ1(𝑛2, 𝑚̃1, 𝑚̃3,𝓁2, 𝑐2)

× 𝐽(𝑚̃1, 𝑚̃2, 𝑐1)𝐽(𝑚̃1, 𝑚̃3, 𝑐2)𝑊(𝑚̃1∕𝑀1).
(3.18)

A final application of the Poisson summation formula transforms the 𝑚̃1-sum above into

𝑀1

𝑑𝑐1𝑐2

∑
𝑘(𝑝𝑐1𝑐2)

𝑒
⎛⎜⎜⎝
𝑞𝑑

2
𝓁1𝑚̃2𝑘

𝑐1
−
𝑞𝑑

2
𝓁2𝑚̃3𝑘

𝑐2

⎞⎟⎟⎠ℭ1(𝑛1, 𝑘, 𝑚̃2,𝓁1, 𝑐1)ℭ1(𝑛2, 𝑘, 𝑚̃3,𝓁2, 𝑐2)

×
∑
𝑚̃4∈ℤ

𝑒

(
−𝑚̃4𝑘

𝑑𝑐1𝑐2

)
ℐ(𝑚̃2, 𝑚̃3, 𝑚̃4, 𝑐1, 𝑐2)

=
𝑀1

𝑑

∑
𝑚̃4∈ℤ

ℭ2(⋯) ⋅ ℐ(𝑚̃2, 𝑚̃3, 𝑚̃4, 𝑐1, 𝑐2) ⋅ 𝛿𝑐2𝓁1𝑚̃2−𝑐1𝓁2𝑚̃3=(𝑞∕𝑑)𝑚̃4(𝑐1𝑐2)
,

(3.19)

where

ℐ(𝑚̃2, 𝑚̃3, 𝑚̃4, 𝑐1, 𝑐2) = ∫ℝ𝑊(𝑥)𝐽(𝑀1𝑥, 𝑚̃2, 𝑐1)𝐽(𝑀1𝑥, 𝑚̃3, 𝑐2)𝑒(−𝑀1𝑚̃4𝑥∕𝑑𝑐1𝑐2)𝑑𝑥 (3.20)

and

ℭ2(⋯) =
∑
𝑘(𝑑)

ℭ1(𝑛1, 𝑘, 𝑚̃2,𝓁1, 𝑐1)ℭ1(𝑛2, 𝑘, 𝑚̃3,𝓁2, 𝑐2)𝑒
(
−𝑐1𝑐2𝑚̃4𝑘

𝑑

)
.

Equation (3.12) and repeated integration by parts in (3.20) allow us to truncate

|𝑚̃4| ≪ 𝑑𝐶2∕𝑀1.

Substituting the transformation (3.19) into (3.18), we obtain
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BILINEAR SUMSWITH 𝐺𝐿(2) COEFFICIENTS AND THE EXPONENT OF DISTRIBUTION OF 𝐷3 19 of 42

Ω =
𝑀1

𝑑

∑
𝓁1,𝓁2∼𝐿

𝜆(𝓁1)𝜆(𝓁2)
∑∗

𝑛1,𝑛2∈𝒩

𝛼𝑛1𝛼𝑛2

∑
𝑐1,𝑐2∈𝒞

∑
𝑚̃2,𝑚̃3≍𝑑𝐶∕𝑀

∑
𝑚̃4≪𝑑𝐶2∕𝑀1

𝑐2𝓁1𝑚̃2−𝑐1𝓁2𝑚̃3=(𝑞∕𝑑)𝑚̃4(𝑐1𝑐2)

× ℭ2(⋯) ⋅ ℐ(𝑚̃2, 𝑚̃3, 𝑚̃4, 𝑐1, 𝑐2).

(3.21)

It remains to estimate the character sum ℭ2(⋯). Substituting the definition (3.16) and executing
the 𝑘 (𝑑)-sum in ℭ2(⋯), we obtain

ℭ2(⋯) = 𝑑
∑∗∑∗

𝑎1,𝑎2(𝑑)

𝑐2𝑎1−𝑐1𝑎2=𝑚̃4(𝑑)

𝑆(1, 𝑐1𝑛1(𝑚̃2 + 𝑎1(𝑞∕𝑑)𝓁1); 𝑞)𝑆(1, 𝑐2𝑛2(𝑚̃3 + 𝑎2(𝑞∕𝑑)𝓁2); 𝑞). (3.22)

Lemma 3.1. Let ℭ2(⋯) as in (3.22). Then

ℭ2(⋯) ≪ 𝑞𝑑3∕2
∑
𝑘|𝑑 𝑘

1∕2𝛿⎛⎜⎜⎝
𝑚̃4=0(𝑘)

𝑛1𝑐1𝑚̃3=𝑛2𝑐2𝑚̃2(𝑘)

𝑛1𝑐
2
1
𝓁2=𝑛2𝑐

2
2
𝓁1(𝑘)

⎞⎟⎟⎠
. (3.23)

Proof. Since 𝑞 is square-free, we can split the Kloosterman sums modulo 𝑞∕𝑑 and 𝑑 and get

ℭ2(⋯) = 𝑑 ⋅ 𝑆(1, 𝑑
2
𝑐1𝑛1𝑏𝑚̃2; 𝑞∕𝑑)𝑆(1, 𝑑

2
𝑐2𝑛2𝑏𝑚̃3; 𝑞∕𝑑) ⋅ ℭ3, (3.24)

where

ℭ3 =
∑∗∑∗

𝑎1,𝑎2(𝑑)

𝑐2𝑎1−𝑐1𝑎2=𝑚̃4(𝑑)

𝑆(1, (𝑞∕𝑑)
2
𝑐1𝑛1𝑏(𝑚̃2 + 𝑎1(𝑞∕𝑑)𝓁1); 𝑑)𝑆(1, (𝑞∕𝑑)

2
𝑐2𝑛2𝑏(𝑚̃3 + 𝑎2(𝑞∕𝑑)𝓁2); 𝑑).

Suppose 𝑑 = 𝑑1𝑑2⋯𝑑𝑙, where each 𝑑𝑖 is prime. Then ℭ3 further factorises as

ℭ3 =

𝑙∏
𝑖=1

𝐾𝑖, (3.25)

where

𝐾𝑖 =
∑∗∑∗

𝑎1,𝑎2(𝑑𝑖)

𝑐2𝑎1−𝑐1𝑎2=𝑚̃4(𝑑𝑖)

𝑆(1, (𝑞∕𝑑𝑖)
2
𝑐1𝑛1𝑏(𝑚̃2 + 𝑎1(𝑞∕𝑑)𝓁1); 𝑑𝑖)

× 𝑆(1, (𝑞∕𝑑𝑖)
2
𝑐2𝑛2𝑏(𝑚̃3 + 𝑎2(𝑞∕𝑑)𝓁2); 𝑑𝑖).

We apply the estimates from Lemma 2.5 with the parameters

(𝑠1, 𝑡1) = ((𝑞∕𝑑𝑖)
2(𝑞∕𝑑)𝑐1𝑛1𝑏𝓁1, (𝑞∕𝑑𝑖)

2𝑐1𝑛1𝑏𝑚̃2), (𝑠2, 𝑡2)

= ((𝑞∕𝑑𝑖)
2(𝑞∕𝑑)𝑐2𝑛2𝑏𝓁2, (𝑞∕𝑑𝑖)

2𝑐2𝑛2𝑏𝑚̃3),

(𝜆1, 𝜆2) = (𝑐2, 𝑐1),
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20 of 42 SHARMA

and𝑚 = 𝑚̃4. The congruences𝑚 = 0 (𝑝), 𝑡1 = 𝑡2 (𝑝) and 𝜆1𝑠1 = 𝜆2𝑠2 (𝑝) then translate into 𝑚̃4 =

0 (𝑑𝑖), 𝑛1𝑐1𝑚̃3 = 𝑛2𝑐2𝑚̃2 (𝑑𝑖) and 𝑛1𝑐21𝓁1 = 𝑛2𝑐
2
2
𝓁2 (𝑑𝑖), respectively. Hence, Lemma 2.5 gives

𝐾𝑖 ≪ 𝑑
3∕2

𝑖

⎛⎜⎜⎜⎜⎝
1 + 𝑑

1∕2

𝑖
𝛿⎛⎜⎜⎝

𝑚̃4=0(𝑑𝑖)
𝑛1𝑐1𝑚̃3=𝑛2𝑐2𝑚̃2(𝑑𝑖)

𝑛1𝑐
2
1
𝓁2=𝑛2𝑐

2
2
𝓁1(𝑑𝑖)

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎠
.

Plugging in these estimates in (3.25), we obtain

ℭ3 ≪ 𝑑3∕2
𝑘∏
𝑖=1

⎛⎜⎜⎜⎜⎝
1 + 𝑑

1∕2

𝑖
𝛿⎛⎜⎜⎝

𝑚̃4=0(𝑑𝑖)
𝑛1𝑐1𝑚̃3=𝑛2𝑐2𝑚̃2(𝑑𝑖)

𝑛1𝑐
2
1
𝓁2=𝑛2𝑐

2
2
𝓁1(𝑑𝑖)

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎠
.

Since 𝑑𝑖 ’s are pairwise co-prime, the congruences can be clubbed together to yield

ℭ3 ≪ 𝑑3∕2
∑
𝑘|𝑑 𝑘

1∕2𝛿⎛⎜⎜⎝
𝑚̃4=0(𝑘)

𝑛1𝑐1𝑚̃3=𝑛2𝑐2𝑚̃2(𝑘)

𝑛1𝑐
2
1
𝓁2=𝑛2𝑐

2
2
𝓁1(𝑘)

⎞⎟⎟⎠
.

The lemma follows after plugging the last estimate into (3.24) and using the Weil’s bound for the
remaining two Kloosterman sums. □

We proceed to estimate the contribution of the zero and non-zero frequencies in Ω.

3.3.1 The zero frequency

Assuming (𝑐𝑖,𝓁𝑖) = 1, when 𝑚̃4 = 0, the congruence

𝑐2𝓁1𝑚̃2 − 𝑐1𝓁2𝑚̃3 = (𝑞∕𝑑)𝑚̃4(𝑐1𝑐2)

in (3.21) implies

𝑐1 = 𝑐2 = 𝑐 and 𝓁2𝑚̃2 = 𝓁1𝑚̃3(𝑐). (3.26)

Therefore, from Lemma 3.1, we get

ℭ2(⋯) ≪ 𝑞𝑑3∕2
∑
𝑘|𝑑 𝑘

1∕2𝛿(𝑛1𝑚̃3=𝑛2𝑚̃2(𝑘)
𝑛1𝓁2=𝑛2𝓁1(𝑘)

) (3.27)

in the case of zero frequency. Let Ω0 denote the contribution of the zero frequency towards Ω
(3.21). Then, from the above estimate for the character sum, we get

Ω0 ≪
𝑀1

𝑑
⋅ 𝑞𝑑3∕2 ⋅

∑
𝓁1,𝓁2∼𝐿

|𝜆(𝓁1)𝜆(𝓁2)| ∑
𝑛1,𝑛2∈𝒩

|𝛼𝑛1𝛼𝑛2 | ∑
𝑐∈𝒞

∑
𝑘|𝑑 𝑘

1∕2
∑∑

𝑚̃2,𝑚̃3≍𝑑𝐶∕𝑀
𝓁2𝑚̃2=𝓁1𝑚̃3(𝑐)

𝛿(𝑛1𝑚̃3=𝑛2𝑚̃2(𝑘)
𝑛1𝓁2=𝑛2𝓁1(𝑘)

).

Given 𝑛1, 𝑛2,𝓁1,𝓁2 and 𝑚̃2, 𝑚̃3 is determined modulo 𝑘𝑐 from the two congruence conditions.
Hence, the number the (𝑚̃2, 𝑚̃3) pairs satisfying the congruence is at most 𝑑𝐶∕𝑀(1 + 𝑑∕(𝑘𝑀)).
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Therefore,

Ω0 ≪
𝑀1

𝑑
⋅ 𝑞𝑑3∕2 ⋅

∑
𝓁1,𝓁2∼𝐿

|𝜆(𝓁1)𝜆(𝓁2)| ∑
𝑐∈𝒞

∑
𝑘|𝑑

∑
𝑛1,𝑛2∈𝒩

𝑛1𝓁1=𝑛2𝓁2(𝑘)

𝑘1∕2(𝑑𝐶∕𝑀)(1 + 𝑑∕(𝑘𝑀)). (3.28)

Before proceeding further, we use the inequality |𝜆(𝓁1)𝜆(𝓁2)| ≪ |𝜆(𝓁1)|2 + |𝜆(𝓁2)|2, and due to
symmetry, we consider the contribution of first term only. Now given (𝑛1,𝓁1), there are at most
(1 + 𝑁𝐿∕𝑘)many (𝑛2,𝓁2) pairs satisfying the congruence in (3.28). Hence,

Ω0 ≪
𝑀1

𝑑
⋅ 𝑞𝑑3∕2 ⋅

∑
𝓁1∼𝐿

|𝜆(𝓁1)|2 ∑
𝑐∈𝒞

∑
𝑘|𝑑

∑
𝑛1∈𝒩

𝑘1∕2(𝑑𝐶∕𝑀)(1 + 𝑑∕(𝑘𝑀))(1 + 𝑁𝐿∕𝑘)

≪
𝑀1

𝑑
⋅ 𝑞𝑑3∕2 ⋅ 𝐿𝐶𝑁(𝑑𝐶∕𝑀)

∑
𝑘|𝑑 𝑘

1∕2(1 + 𝑑∕(𝑘𝑀))(1 + 𝑁𝐿∕𝑘)

≪
𝑀1

𝑑
⋅ 𝑞𝑑3∕2 ⋅ 𝐿𝐶𝑁(𝑑𝐶∕𝑀)

(
𝑑1∕2 + (𝑑∕𝑀) + 𝑁𝐿 + (𝑑∕𝑀)𝑁𝐿

)
.

(3.29)

Note that the last three terms inside the parenthesis of the last line are dominated by 𝑁𝐿(1 +

𝑑∕𝑀). Substituting the upper bound𝑀1 ≪ 𝑑2𝐶2∕𝑀𝐿, we then obtain

Ω0 ≪ 𝑞𝑑4𝑁𝐶4∕𝑀2 + 𝑞𝑑7∕2𝑁2𝐿𝐶4(1 + 𝑑∕𝑀)∕𝑀2. (3.30)

3.3.2 Non-zero frequencies

LetΩ≠0 denote the contribution of the non-zero frequencies 𝑚̃4 ≠ 0 towardsΩ (3.21). We use the
estimate

ℭ2(⋯) ≪ 𝑞𝑑3∕2
∑
𝑘|𝑑 𝑘

1∕2𝛿(𝑚̃4=0(𝑘))

from Lemma 3.1 in this case. With this bound in (3.21), we get

Ω≠0 ≪
𝑀1

𝑑
⋅ 𝑞𝑑3∕2 ⋅

∑
𝓁1,𝓁2∼𝐿

|𝜆(𝓁1)𝜆(𝓁2)| ∑
𝑛1,𝑛2∈𝒩

∑
𝑐1,𝑐2∈𝒞

∑
𝑘|𝑑

∑
𝑚̃2,𝑚̃3≍𝑑𝐶∕𝑀

∑
𝑚̃4≪𝑑𝐶2∕𝑀1

𝑐2𝓁1𝑚̃2−𝑐1𝓁2𝑚̃3=(𝑞∕𝑑)𝑚̃4(𝑐1𝑐2)

𝑘1∕2𝛿𝑘|𝑚̃4
.

We write 𝑚̃4 = 𝑘𝜆, 𝜆 ≪ 𝑑𝐶2∕(𝑀1𝑘), 𝜆 ≠ 0 and rewrite the above as

Ω≠0 ≪
𝑀1

𝑑
⋅ 𝑞𝑑3∕2 ⋅

∑
𝓁1,𝓁2∼𝐿

|𝜆(𝓁1)𝜆(𝓁2)| ∑
𝑛1,𝑛2∈𝒩

∑
𝑐1,𝑐2∈𝒞

∑
𝑘|𝑑 𝑘

1∕2
∑

𝜆≪𝑑𝐶2∕(𝑀1𝑘)

×
∑

𝑚̃2≍𝑑𝐶∕𝑀

∑
𝑚̃3≍𝑑𝐶∕𝑀

𝑐2𝓁1𝑚̃2−𝑐1𝓁2𝑚̃3=(𝑞∕𝑑)𝑘𝜆(𝑐1𝑐2)

1. (3.31)

The number of pairs (𝑚̃2, 𝑚̃3) satisfying the congruence modulo 𝑐1𝑐2 in (3.31) is at most
(𝑐2𝓁1, 𝑘𝜆)(𝑐1𝓁2, 𝑘𝜆)(1 + 𝑑∕𝑀)2. Recall that (𝑐𝑖, 𝑞) = (𝓁𝑗, 𝑞) = 1 and consequently (𝑐𝑖𝑙𝑗, 𝑘) = 1.
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Hence,

Ω≠0 ≪
𝑀1

𝑑
⋅ 𝑞𝑑3∕2(1 + 𝑑∕𝑀)2 ⋅

∑
𝓁1,𝓁2∼𝐿

|𝜆(𝓁1)𝜆(𝓁2)| ∑
𝑛1,𝑛2∈𝒩

∑
𝑘|𝑑 𝑘

1∕2

∑
𝜆≪𝑑𝐶2∕(𝑀1𝑘)

(𝓁1, 𝜆)(𝓁2, 𝜆)
∑

𝑐1,𝑐2∈𝒞

(𝑐2, 𝜆)(𝑐1, 𝜆).

Wenext execute the (𝑐1, 𝑐2)-sumwith the bound𝐶2, the 𝜆-sumwith bound the (𝓁1,𝓁2)(𝑑𝐶2∕𝑀1𝑘)

and then the (𝑛1, 𝑛2)-sum with the bound 𝑁2. We arrive at

Ω≠0 ≪
𝑀1

𝑑
⋅ 𝑞𝑑3∕2(1 + 𝑑∕𝑀)2𝑁2𝐶2(𝑑𝐶2∕𝑀1) ⋅

∑
𝓁1,𝓁2∼𝐿

|𝜆(𝓁1)𝜆(𝓁2)|(𝓁1,𝓁2)
≪

𝑀1

𝑑
⋅ 𝑞𝑑3∕2(1 + 𝑑∕𝑀)2𝑁2𝐶2(𝑑𝐶2∕𝑀1)

(
𝐿
∑
𝓁∼𝐿

|𝜆(𝓁)|2 + ∑
𝓁1,𝓁2∼𝐿

|𝜆(𝓁1)𝜆(𝓁2)|)

≪ 𝑞𝑑3∕2𝐶4𝑁2𝐿2(1 + 𝑑∕𝑀)2.

(3.32)

From (3.30) and (3.32), we get

Ω = Ω0 + Ω≠0 ≪ 𝑞𝑑4𝑁𝐶4∕𝑀2 + 𝑞𝑑3∕2𝐶4𝑁2𝐿2(1 + 𝑑∕𝑀)2 + 𝑞𝑑7∕2𝑁2𝐿𝐶4(1 + 𝑑∕𝑀)∕𝑀2

= 𝑞𝑑4𝑁𝐶4∕𝑀2 + 𝑞𝑑7∕2𝐶4𝑁2𝐿2(1 +𝑀∕𝑑)2∕𝑀2 + 𝑞𝑑9∕2𝑁2𝐿𝐶4(1 +𝑀∕𝑑)∕𝑀3.
(3.33)

3.4 Optimal choice for 𝑳

Substituting the last estimate into (3.17), we arrive at

𝑆(𝑑,𝑀1) ≪
𝑑2𝑀1∕2𝑁1∕2

𝑞3∕2𝐿1∕2
+
𝑑7∕4𝑀1∕2𝑁𝐿1∕2

𝑞3∕2
(1 + 𝑀∕𝑑) +

𝑑9∕4𝑁

𝑞3∕2
(1 +𝑀∕𝑑)1∕2.

Therefore, from (3.14) and (3.4), it follows

𝑆 ≪
𝑞1∕2𝑀1∕2𝑁1∕2

𝐿1∕2
+ 𝑞1∕4𝑀1∕2𝑁𝐿1∕2(1 +𝑀∕𝑞) + 𝑞3∕4𝑁(1 +𝑀∕𝑞)1∕2.

Equating the first two terms, we obtain

𝐿 = 𝑞1∕4𝑁−1∕2(1 +𝑀∕𝑞)−1.

Note that this choice makes sense because the right-hand side is≫ 1 due to the assumption 𝑁 ⩽

𝑞1∕2(1 +𝑀∕𝑞)−2 in Theorem 1.2. With the above choice, we obtain

𝑆 ≪ 𝑀1∕2𝑁3∕4𝑞3∕8(1 + 𝑀∕𝑞)1∕2 + 𝑁𝑞3∕4(1 +𝑀∕𝑞)1∕2.

Substituting the above in (3.3), we finally obtain

𝑆 ≪ 𝑀1∕2𝑁3∕4𝑞3∕8(1 + 𝑀∕𝑞)1∕2 + 𝑀𝑁3∕2𝑞−1∕4(1 +𝑀∕𝑞) + 𝑁𝑞3∕4(1 +𝑀∕𝑞)1∕2.

 1460244x, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12589 by M

PI 345 M
athem

atics, W
iley O

nline L
ibrary on [19/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



BILINEAR SUMSWITH 𝐺𝐿(2) COEFFICIENTS AND THE EXPONENT OF DISTRIBUTION OF 𝐷3 23 of 42

4 PROOF OF THEOREM 1.3

Here, 𝑞 = 𝑝𝛾, 𝛾 ⩾ 2 and 𝑝 > 2. We proceed slightly differently in this case. Instead of using the
entiremodulus 𝑞 for the conductor loweringmechanism,we only use a part𝑝𝑟, where 𝑟 < 𝑞 is cho-
sen optimally later. This serves twopurposes: it simplifies certain counting arguments arising from
the character sum estimates, and more importantly, it introduces more terms in the ‘diagonal’
while having a lesser impact in the off-diagonals as compared to the case of amplification.
Note that we can assume (𝑛, 𝑝) = 1 since otherwise the trace function vanishes. As earlier, let

𝒞 be the set primes in [𝐶, 2𝐶], with 𝐶 such that

𝑝𝑟𝐶 > 100𝑀. (4.1)

We choose a large 𝐶 such that (𝑐, 𝑞) = 1 for all 𝑐 ∈ 𝒞. Due to the above relation, we can recast 𝑆
as

𝑆 =
1

𝐶

∑
𝑐∈𝒞

∑∗

𝑛∈𝒩

𝛼𝑛
∑∑
𝑚1∼𝑀
𝑚2∼𝑀

𝑝𝑟𝑐|(𝑚1−𝑚2)

𝜆(𝑚1)𝐾(𝑚2𝑛)𝑉(𝑚1∕𝑀)𝑉1(𝑚2∕𝑀)𝑒(𝑞𝜖(𝑚1 − 𝑚2)∕𝑀).

Detecting the congruence condition using additive characters, we obtain

𝑆 =
1

𝑝𝑟𝐶

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝑐∈𝒞

1

𝑐

∑
𝑎(𝑝𝑟𝑐)

∑∑
𝑚1∼𝑀
𝑚2∼𝑀

𝜆(𝑚1)𝐾(𝑚2𝑛)𝑒(𝑎(𝑚1 − 𝑚2)∕𝑝
𝑟𝑐)

𝑉(𝑚1∕𝑀)𝑉1(𝑚2∕𝑀)𝑒(𝑞𝜖(𝑚1 − 𝑚2)∕𝑀).

Breaking the 𝑎 (𝑝𝑟𝑐) sum into Ramanujan sums, we obtain the decomposition

𝑆 =
∑
0⩽𝑘⩽𝑟

𝑆(𝑘) +𝒮,

where

𝑆(𝑘) =
1

𝑝𝑟𝐶

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝑐∈𝒞

1

𝑐

∑∗

𝑎(𝑝𝑟−𝑘𝑐)

∑∑
𝑚1∼𝑀
𝑚2∼𝑀

𝜆(𝑚1)𝐾(𝑚2𝑛)𝑒(𝑎(𝑚1 − 𝑚2)∕𝑝
𝑟−𝑘𝑐)

𝑉(𝑚1∕𝑀)𝑉1(𝑚2∕𝑀)𝑒(𝑞𝜖(𝑚1 − 𝑚2)∕𝑀),

(4.2)

and

𝒮 =
1

𝑝𝑟𝐶

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝑐∈𝒞

1

𝑐

∑
𝑎(𝑝𝑟−𝑘)

∑∑
𝑚1∼𝑀
𝑚2∼𝑀

𝜆(𝑚1)𝐾(𝑚2𝑛)𝑒(𝑎(𝑚1 − 𝑚2)∕𝑝
𝑟−𝑘)

𝑉(𝑚1∕𝑀)𝑉1(𝑚2∕𝑀)𝑒(𝑞𝜖(𝑚1 − 𝑚2)∕𝑀).

Note that a trivial estimation yields

𝒮 ≪ 𝑀2𝑁∕𝐶,
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24 of 42 SHARMA

and therefore can ignored since 𝐶 is allowed to be arbitrary large. The rest of paper is devoted to
the estimation of 𝑆(𝑘), 0 ⩽ 𝑘 ⩽ 𝑟.

4.1 Dualisation

Arguing similarly as in Remark 2, we can assume that we are in the cuspidal case. The Voronoi
summation transforms the𝑚1-sum in (4.2) into

∑
𝑚1⩾1

𝜆(𝑚1)𝑒

(
𝑎𝑚1

𝑝𝑟−𝑘𝑐

)
𝑉(𝑚1∕𝑀)𝑒(𝑞𝜖𝑚1∕𝑀) =

𝑀

𝑝𝑟−𝑘𝑐

∑
𝑚̃1⩾1

𝜆(𝑚̃1)𝑒

(
±𝑎̄𝑚̃1

𝑝𝑟−𝑘𝑐

)
𝐼±
1
(𝑚̃1, 𝑐),

where 𝐼±
1
(𝑚̃1, 𝑐) = 𝑀−1𝐻±(𝑚̃1∕𝑝

2(𝑟−𝑘)𝑐2), 𝐻± as in Lemma 2.3. Due to the same reasons as in
(3.7), one can truncate 𝑚̃1-sum (up to a negligible error) to 𝑚̃1 ≍ 𝑝2(𝑟−𝑘)+2𝜖𝐶2∕𝑀.
With the application of the Poisson summation formula, the𝑚2-sum in (4.2) becomes

∑
𝑚2⩾1

𝐾(𝑚2𝑛)𝑒

(
−𝑎𝑚2

𝑝𝑟−𝑘𝑐

)
𝑉1(𝑚2∕𝑀) =

𝑀

𝑝𝛾𝑐

∑
𝛼(𝑝𝛾𝑐)

𝐾(𝛼𝑛)𝑒

(
−𝑎𝛼

𝑝𝑟−𝑘𝑐

) ∑
𝑚̃2≪𝑝𝛾𝑐∕𝑀

𝑒

(
−𝑚̃2𝛼

𝑝𝛾𝑐

)
𝐼2(𝑚̃2, 𝑐),

where

𝐼2(𝑚̃2, 𝑐) = ∫ℝ

𝑉1(𝑥)𝑒(𝑞
𝜖𝑥 −𝑀𝑚̃2𝑥∕𝑝

𝛾𝑐)𝑑𝑥.

One can again restrict the 𝑚̃2-sum to 𝑚̃2 ≍ 𝑝𝛾+𝜖𝐶∕𝑀.
Combining the above two transformations, we see that 𝑆(𝑘) can be replaced by

𝑆(𝑘) =
𝑀2

𝑝𝛾+2𝑟−𝑘𝐶

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝑐∈𝒞

1

𝑐3

∑
𝑚̃1≍𝑝

2(𝑟−𝑘)𝐶2∕𝑀

∑
𝑚̃2≍𝑝

𝛾𝐶∕𝑀

𝜆(𝑚̃1)ℭ(⋯)𝐽(𝑚̃1, 𝑚̃2, 𝑐), (4.3)

where

𝐽(𝑚̃1, 𝑚̃2, 𝑐) = 𝐼±
1
(𝑚̃1, 𝑐)𝐼2(𝑚̃2, 𝑐),

and

ℭ(⋯) =
∑∗

𝑎(𝑝𝑟−𝑘𝑐)

∑
𝛼(𝑝𝛾𝑐)

𝐾(𝛼𝑛)𝑒

(
−

𝑎𝛼

𝑝𝑟−𝑘𝑐
−
𝑚̃2𝛼

𝑝𝛾𝑐
±

𝑎𝑚̃1

𝑝𝑟−𝑘𝑐

)
. (4.4)

As in (3.12), 𝐽(𝑚̃1, 𝑚̃2, 𝑐) satisfies

|𝑚̃1|𝑗1 |𝑚̃2|𝑗2 𝜕𝑗1𝜕𝑗2𝐽(𝑚̃1, 𝑚̃2, 𝑐)

𝜕𝑚̃1
𝑗1𝜕𝑚̃2

𝑗2
≪𝑗1,𝑗2,𝜖

𝑝(𝑗1+𝑗2)𝜖𝛾. (4.5)

Dividing the 𝑚̃1-sum in (4.3) into dyadic blocks 𝑚̃1 ∼ 𝑀1 ≍ 𝑝2(𝑟−𝑘)𝐶2∕𝑀 and inserting localising
factor𝑊(𝑚̃1∕𝑀1), we get

𝑆(𝑘) ≪ sup
𝑀1≍𝑝

2(𝑟−𝑘)𝐶2∕𝑀

𝑆(𝑘,𝑀1), (4.6)
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where

𝑆(𝑘,𝑀1) =
𝑀2

𝑝𝛾+2𝑟−𝑘𝐶

∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝑐∈𝒞

1

𝑐3

∑
𝑚̃1⩾1

𝑊(𝑚̃1∕𝑀1)
∑

𝑚̃2≍𝑝
𝛾𝐶∕𝑀

𝜆(𝑚̃1)ℭ(⋯)𝐽(𝑚̃1, 𝑚̃2, 𝑐). (4.7)

4.2 Simplifying the character sum

Splitting the 𝛼 (𝑝𝑐) sum in (4.4) using the Chinese remainder theorem and executing the modulo
𝑐 part, we obtain the congruence relation

𝑎 = −𝑝
𝛾−𝑟+𝑘

𝑚̃2 (𝑐
′),

and we are left with

ℭ(⋯) = 𝑐𝑒

(
±𝑝

2(𝑟−𝑘)
𝑝𝛾𝑚̃2𝑚̃1

𝑐

) ∑∗

𝑎(𝑝𝑟−𝑘)

∑
𝛼(𝑝𝛾)

𝐾(𝑐𝛼𝑛)𝑒

(
−

𝑎𝛼

𝑝𝑟−𝑘
−
𝑚̃2𝛼

𝑝𝛾
±
𝑐𝑎𝑚̃1

𝑝𝑟−𝑘

)
.

Substituting the definition

𝐾(𝑐𝛼𝑛) =
1

𝑝𝛾

∑∗

𝛽(𝑝𝛾)

𝑒

(
𝛽

𝑝𝛾

)∑∗

𝑙(𝑝𝛾)

𝑒

(
𝑙𝑐𝛼𝑛𝑏 + 𝑙𝛽

𝑝𝛾

)

and executing the 𝛼 (𝑝𝛾) sum we obtain

𝑙 = 𝑐𝑛𝑏(𝑚̃2 + 𝑝𝛾−𝑟+𝑘𝑎) (𝑝𝛾).

Substituting we get

ℭ(⋯) = 𝑐 ⋅ 𝑒

(
±𝑝

2(𝑟−𝑘)
𝑝𝛾𝑚̃2𝑚̃1

𝑐

) ∑∗

𝑎(𝑝𝑟−𝑘)

𝑆(1, 𝑐𝑛𝑏(𝑚̃2 + 𝑝𝛾−𝑟+𝑘𝑎); 𝑝𝛾)𝑒

(
𝑐𝑎𝑚̃1

𝑝𝑟−𝑘

)
. (4.8)

4.3 Cauchy–Schwarz and Poisson

Applying Cauchy–Schwarz inequality to (4.7) keeping the 𝑚̃1 sum outside and everything else
inside the absolute value square, we arrive at

𝑆(𝑘,𝑀1) ≪
𝑀2

𝑝𝛾+2𝑟−𝑘𝐶3
⋅ 𝑝𝑟−𝑘𝐶∕𝑀1∕2 ⋅Ω1∕2, (4.9)

where

Ω =
∑
𝑚̃1∈ℤ

𝑊(𝑚̃1∕𝑀1)

||||||
∑∗

𝑛∈𝒩

𝛼𝑛
∑
𝑐∈𝒞

∑
𝑚̃2≍𝑝

𝛾𝐶∕𝑀

𝑒

(
±𝑝

2(𝑟−𝑘)
𝑝𝛾𝑚̃2𝑚̃1

𝑐

)
ℭ1(𝑛, 𝑐, 𝑚̃1, 𝑚̃2)𝐽(𝑚̃1, 𝑚̃2, 𝑐)

||||||
2

,
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where ℭ1(⋯) is ℭ(⋯) in (4.8) without the first factor 𝑐. Opening the absolute value square, we
get

Ω =
∑∗

𝑛1,𝑛2∈𝒩

𝛼𝑛1𝛼𝑛2

∑
𝑐1,𝑐2∈𝒞

∑
𝑚̃2,𝑚̃3≍𝑝

𝛾𝐶∕𝑀

∑
𝑚̃1∈ℤ

𝑒

(
𝑝
2(𝑟−𝑘)

𝑝𝛾𝑚̃2𝑚̃1

𝑐1
−
𝑝
2(𝑟−𝑘)

𝑝𝛾𝑚̃3𝑚̃1

𝑐2

)
ℭ1(𝑛1, 𝑐1, 𝑚̃1, 𝑚̃2)ℭ1(𝑛2, 𝑐2, 𝑚̃1, 𝑚̃3)

× 𝐽(𝑚̃1, 𝑚̃2, 𝑐1)𝐽(𝑚̃1, 𝑚̃3, 𝑐2)𝑊(𝑚̃1∕𝑀1).
(4.10)

A final application of the Poisson summation formula transforms the 𝑚̃1 sum into

𝑀1

𝑝𝑟−𝑘𝑐1𝑐2

∑
𝛽(𝑝𝑟−𝑘𝑐1𝑐2)

𝑒

(
𝑝
2(𝑟−𝑘)

𝑝𝛾𝑚̃2𝛽

𝑐1
−
𝑝
2(𝑟−𝑘)

𝑝𝛾𝑚̃3𝛽

𝑐2

)
ℭ1(𝑛1, 𝑐1, 𝛽, 𝑚̃2)ℭ1(𝑛2, 𝑐2, 𝛽, 𝑚̃3)

×
∑
𝑚̃4∈ℤ

𝑒

(
−𝑚̃4𝛽

𝑝𝑟−𝑘𝑐1𝑐2

)
ℐ(𝑚̃2, 𝑚̃3, 𝑚̃4, 𝑐1, 𝑐2)

=
𝑀1

𝑝𝑟−𝑘

∑
𝑚̃4∈ℤ

ℭ2(⋯) ⋅ ℐ(𝑚̃2, 𝑚̃3, 𝑚̃4, 𝑐1, 𝑐2) ⋅ 𝛿𝑐2𝑚̃2−𝑐1𝑚̃3=𝑝
2(𝛾−𝑟+𝑘)

𝑚̃4(𝑐
′
1
𝑐′
2
)
,

(4.11)
where

ℐ(𝑚̃2, 𝑚̃3, 𝑚̃4, 𝑐1, 𝑐2) = ∫ℝ

𝑊(𝑥)𝐽(𝑀1𝑥, 𝑚̃2, 𝑐1)𝐽(𝑀1𝑥, 𝑚̃3, 𝑐2)𝑒(−𝑀1𝑚̃4𝑥∕(𝑝
𝑟−𝑘𝑐1𝑐2))𝑑𝑥 (4.12)

and

ℭ2(⋯) =
∑

𝛽(𝑝𝑟−𝑘)

ℭ1(𝑛1, 𝑐1, 𝛽, 𝑚̃2)ℭ1(𝑛2, 𝑐2, 𝛽, 𝑚̃3)𝑒

(
−𝑐1𝑐2𝑚̃4𝛽

𝑝𝑟−𝑘

)
.

Due to (4.5) and repeated integration by parts, (4.12) is negligibly small unless

𝑚̃4 ≪ 𝑝𝑟−𝑘𝐶2∕𝑀1 ≪ 𝑀∕𝑝𝑟−𝑘.

Substituting (4.11) in place of the 𝑚̃1-sum in (4.10), we obtain

Ω =
𝑀1

𝑝𝑟−𝑘

∑∗

𝑛1,𝑛2∈𝒩

𝛼𝑛1𝛼𝑛2

∑
𝑐1,𝑐2∈𝒞

∑
𝑚̃2,𝑚̃3≍𝑝

𝛾𝐶∕𝑀

∑
𝑚̃4≪𝑀∕𝑝𝑟−𝑘

𝑐2𝑚̃2−𝑐1𝑚̃3=𝑝
(𝛾−𝑟+𝑘)

𝑚̃4(𝑐1𝑐2)

ℭ2(⋯) ⋅ ℐ(𝑚̃2, 𝑚̃3, 𝑚̃4, 𝑐1, 𝑐2). (4.13)

It remains to estimate ℭ2. Substituting the definition (4.8) and executing the 𝛽(𝑝𝛾) sum, we
obtain

ℭ2(⋯) = 𝑝𝑟−𝑘
∑∗∑∗

𝑎1,𝑎2(𝑝
𝑟−𝑘)

𝑐2𝑎1−𝑐1𝑎2=𝑚4(𝑝
𝑟−𝑘)

𝑆(1, 𝑐1𝑛1𝑏(𝑚̃2 + 𝑝𝛾−𝑟+𝑘𝑎1); 𝑝
𝛾)𝑆(1, 𝑐2𝑛2𝑏(𝑚̃3 + 𝑝𝛾−𝑟+𝑘𝑎2); 𝑝

𝛾).

(4.14)
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We proceed for estimating the contribution of the zero and the non-zero frequencies towards
(4.13).

4.4 The zero frequency 𝒎̃𝟒 = 𝟎

Note that from the congruence condition in (4.13), 𝑚̃4 = 0 implies 𝑐1 = 𝑐2 = 𝑐 and 𝑚̃3 = 𝑚̃2 (𝑐).
We write 𝑚̃3 = 𝑚̃2 + 𝑐𝜆, 𝜆 ≪ 𝑝𝛾∕𝑀.

Case 1: 𝑛1 ≠ 𝑛2 or 𝜆 ≠ 0

In this case, the trivial estimation of (4.13) turns out to be worse than the non-diagonal contribu-
tions in the sub-Weyl range𝑀 ≪ 𝑞2∕3. Fortunately, we can overcome this by exploiting the extra
cancellations in the long 𝑚̃2(≍ 𝑝𝛾𝐶∕𝑀)-sum. Let 𝐴0 denote the contribution of the case under
consideration towards (4.13). Then

𝐴0 =
𝑀1

𝑝𝑟−𝑘

∑∗

𝑛1,𝑛2∈𝒩

𝛼𝑛1𝛼𝑛2

∑
𝑐∈𝒞

∑
𝜆≪𝑝𝛾∕𝑀

∑
𝑚̃2≍𝑝

𝛾𝐶∕𝑀

ℭ2(⋯) ⋅ ℐ(𝑚̃2, 𝑚̃2 + 𝑐𝜆, 0, 𝑐, 𝑐), (4.15)

where from (4.14),

ℭ2(⋯) = 𝑝𝑟−𝑘
∑∗

𝑎(𝑝𝑟−𝑘)

𝑆(1, 𝑐𝑛1(𝑚̃2 + 𝑝𝛾−𝑟+𝑘𝑎); 𝑝𝛾)𝑆(1, 𝑐𝑛2(𝑐𝜆 + 𝑚̃2 + 𝑝𝛾−𝑟+𝑘𝑎); 𝑝𝛾).

We apply Poisson summation on the 𝑚̃2-sum and observe that only zero frequency survives since
the conductor is 𝑝𝛾, whereas the length of the 𝑚̃2-sum is 𝑝𝛾𝐶∕𝑀 ⋙ 𝑝𝛾 when 𝐶 is suitable large.
Hence, the 𝑚̃2-sum in (4.15) becomes

∑
𝑚̃2≍𝑝

𝛾𝐶∕𝑀

ℭ2(⋯) ⋅ ℐ(𝑚̃2, 𝑚̃2 + 𝑐𝜆, 0, 𝑐, 𝑐)

= 𝑝𝑟−𝑘 ⋅
𝐶

𝑀

∑∗

𝑎(𝑝𝑟−𝑘)

∑∗

𝛼(𝑝𝛾)

𝑆(1, 𝑐𝑛1𝑏(𝛼 + 𝑝𝛾−𝑟+𝑘𝑎); 𝑝𝛾)𝑆(1, 𝑐𝑛2𝑏(𝑐𝜆 + 𝛼 + 𝑝𝛾−𝑟+𝑘𝑎); 𝑝𝛾) ⋅ (⋯),

(4.16)
where

(⋯) = ∫𝑥∼1ℐ((𝑝𝛾𝐶∕𝑀)𝑥, (𝑝𝛾𝐶∕𝑀)𝑥 + 𝑐𝜆, 0, 𝑐, 𝑐)𝑑𝑥.

After the change of variables 𝑐𝑛1𝑏(𝛼 + 𝑝𝛾−𝑟+𝑘𝑎) ↦ 𝛼, the right-hand side of (4.16) then becomes

𝑝2(𝑟−𝑘)𝐶

𝑀

∑∗

𝛼(𝑝𝛾)

𝑆(1, 𝛼; 𝑝𝛾)𝑆(1, 𝑛1𝑛2𝛼(𝛼𝑛1𝜆 + 1); 𝑝𝛾) ⋅ (⋯) (4.17)
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and therefore,

∑
𝑚̃2≍𝑝

𝛾𝐶∕𝑀

ℭ2(⋯) ⋅ ℐ(𝑚̃2, 𝑚̃2 + 𝑐𝜆, 0, 𝑐, 𝑐) ≪
𝑝2(𝑟−𝑘)𝐶

𝑀

||||||
∑∗

𝛼(𝑝𝛾)

𝑆(1, 𝛼; 𝑝𝛾)𝑆(1, 𝑛1𝑛2𝛼(𝛼𝑛1𝜆 + 1); 𝑝𝛾)

||||||.
(4.18)

An estimate evaluation of the character sum above can be obtained by following the proof of
Lemma 2.4. However, this sum has been already studied in [5] and we quote them directly for
simplicity.

Lemma 4.1 (R. Dabrowski and B. Fisher). For 𝑎 ∈ ℤ×
𝑝, 𝑏 ∈ ℤ𝑝 and 𝛾 ⩾ 1,∑∗

𝑥(𝑝𝛾)

𝑆(1, 𝑥; 𝑝𝛾)𝑆(1, 𝑎𝑥(𝑏𝑥 + 1); 𝑝𝛾) ≪ 𝑝3𝛾∕2𝑝(min{𝛾,𝜈𝑝(𝑎−1),𝜈𝑝(𝑏)})∕2. (4.19)

This is the summary of their Theorem 3.2, Proposition 3.3 and Proposition 3.4, in case of the
particular character sum in (4.19). Plugging this estimate in (4.18), we obtain

∑
𝑚̃2≍𝑝

𝛾𝐶∕𝑀

ℭ2(⋯) ⋅ ℐ(𝑚̃2, 𝑚̃2 + 𝑐𝜆, 0, 𝑐, 𝑐) ≪
𝑝3𝛾∕2+2(𝑟−𝑘)𝐶

𝑀
⋅ 𝑝(min{𝛾,𝜈𝑝(𝑛1−𝑛2),𝜈𝑝(𝜆)})∕2.

Consequently, (4.15) can be bounded by

𝐴0 ≪
𝑀1

𝑝𝑟−𝑘
⋅
𝑝3𝛾∕2+2(𝑟−𝑘)𝐶

𝑀

∑
𝑐∈𝒞

∑
𝑛1,𝑛2∈𝒩

∑
𝜆≪𝑝𝛾∕𝑀

(𝑛1−𝑛2,𝜆)≠(0,0)

𝑝(min{𝛾,𝜈𝑝(𝑛1−𝑛2),𝜈𝑝(𝜆)})∕2

≪
𝑀1

𝑝𝑟−𝑘
⋅
𝑝3𝛾∕2+2(𝑟−𝑘)𝐶

𝑀
⋅ 𝐶 ⋅ (𝑁2𝑝𝛾∕𝑀)

≪
𝑝5𝛾∕2+3(𝑟−𝑘)𝐶4𝑁2

𝑀3
.

(4.20)

Case 2: 𝑛1 = 𝑛2 and 𝑚̃2 = 𝑚̃3

In this case, we use the trivial estimate

ℭ2(⋯) = 𝑝𝑟−𝑘
∑∗

𝑎(𝑝𝑟−𝑘)

𝑆(1, 𝑐𝑛1(𝑚̃2 + 𝑝𝛾−𝑟+𝑘𝑎); 𝑝𝛾)𝑆(1, 𝑐𝑛2(𝑐𝜆 + 𝑚̃2 + 𝑝𝛾−𝑟+𝑘𝑎); 𝑝𝛾) ≪ 𝑝𝛾+2(𝑟−𝑘).

So, if 𝐵0 denotes the contribution of this case towards (4.13), then

𝐵0 ≪
𝑀1

𝑝𝑟−𝑘

∑
𝑛1∈𝒩

∑
𝑐∈𝒞

∑
𝑚̃2≪𝑝𝛾𝐶∕𝑀

𝑝𝛾+2(𝑟−𝑘) ≪
𝑀1

𝑝𝑟−𝑘
⋅𝑁𝐶 ⋅

𝑝𝛾𝐶

𝑀
⋅ 𝑝𝛾+2(𝑟−𝑘) ≪

𝑝2𝛾+3(𝑟−𝑘)𝐶4𝑁

𝑀2
.

(4.21)
Combining (4.20) and (4.21), we obtain

Ω0 ≪
𝑝2𝛾+3(𝑟−𝑘)𝐶4𝑁

𝑀2
+
𝑝5𝛾∕2+3(𝑟−𝑘)𝐶4𝑁2

𝑀3
. (4.22)
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4.5 Non-zero frequencies𝒎𝟒 ≠ 𝟎

We divide the 𝑚̃4-sum in (4.13) into cases according to the two parts given by Lemma 2.4 and
denote their contribution towards (4.13) by 𝐴1 for the first part, and 𝐴2 for the second part. Note
that 𝑢 = 𝑟 − 𝑘 satisfies the hypothesis

𝑢 ⩽ 4𝛾∕5 (4.23)

in our final choice of 𝑟.

Case 1: (𝑟 − 𝑘)∕2 < 𝛾 − (𝑟 − 𝑘) or 𝜈𝑝(𝑚̃4) < 𝛾 − (𝑟 − 𝑘)

In this case, the first part of Lemma 2.4 gives

ℭ2(⋯) ≪ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2 ⋅ 𝑝𝜈𝑝(𝑚̃4).

Substituting this in (4.13), it follows

𝐴1 ≪
𝑀1

𝑝𝑟−𝑘
⋅ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2

∑∗

𝑛1,𝑛2∈𝒩

∑
𝑐1,𝑐2∈𝒞

∑
𝑚̃2,𝑚̃3≍𝑝

𝛾𝐶∕𝑀

∑
𝑚̃4≪𝑀∕𝑝𝑟−𝑘

𝑐2𝑚̃2−𝑐1𝑚̃3=𝑝
(𝛾−𝑟+𝑘)

𝑚̃4(𝑐1𝑐2)

𝑝𝜈𝑝(𝑚̃4). (4.24)

Next, consider the 𝑚̃2, 𝑚̃3 sum in (4.24). Given 𝑚̃4(≠ 0), there are (𝑐1, 𝑚̃4)(𝑐2, 𝑚̃4)(1 + 𝑝𝛾∕𝑀)2

many (𝑚̃2, 𝑚̃3) pairs satisfying the congruence mod 𝑐1𝑐2. Hence,

𝐴1 ≪
𝑀1

𝑝𝑟−𝑘
⋅ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2

∑∗

𝑛1,𝑛2∈𝒩

∑
𝑚̃4≪𝑀∕𝑝𝑢

𝑝𝜈𝑝(𝑚̃4)
∑

𝑐1,𝑐2∈𝒞

(𝑐1, 𝑚̃4)(𝑐2, 𝑚̃4)(1 + 𝑝𝛾∕𝑀)2

≪
𝑀1

𝑝𝑟−𝑘
⋅ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2 ⋅𝑁2𝐶2

(
1 +

𝑝𝛾

𝑀

)2

⋅
𝑀

𝑝𝑟−𝑘
.

(4.25)

Case 2: (𝑟 − 𝑘)∕2 ⩾ 𝛾 − (𝑟 − 𝑘) and 𝜈𝑝(𝑚̃4) ⩾ 𝛾 − (𝑟 − 𝑘)

In this case, the second part of Lemma 2.4 applies. The condition 𝑡
−3∕2

1
𝑠1𝜆1 = 𝑡

−3∕2

2
𝑠2𝜆2 (𝑝

𝛾−𝑢)

translates to

𝑐1𝑛2 = 𝑐2𝑛1(𝑚̃2𝑚̃3)
3 (𝑝𝛾−(𝑟−𝑘)), (4.26)

and we have the estimate

ℭ2(⋯) ≪ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2 ⋅ 𝑝(𝑟−𝑘)∕2.

We write 𝑚̃4 = 𝑝𝛾−(𝑟−𝑘)𝜆, 𝜆 ≪ 𝑀∕𝑝𝛾. The congruence condition modulo 𝑐1𝑐2 in (4.13) then
implies

𝑐2 = 𝑚̃2𝜆 (𝑐1) and 𝑐1 = 𝑚̃3𝜆 (𝑐2), (4.27)
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30 of 42 SHARMA

or in other words,

𝑐2 = 𝑐1𝛿1 + 𝑚̃2𝜆, and 𝑐1 = 𝑐2𝛿2 + 𝑚̃3𝜆, (4.28)

for some 𝛿1, 𝛿2 ≪ 1 + 𝑂
(
(|𝑚̃2|+|𝑚̃3|)𝜆

𝐶

)
. Observe that

(|𝑚̃2| + |𝑚̃3|)𝜆
𝐶

≪
𝑝𝛾𝐶

𝑀𝐶
⋅
𝑀

𝑝𝛾
≪ 1.

Hence, 𝛿1, 𝛿2 in (4.28) are bounded, and so,

𝐴2 ≪
𝑀1

𝑝𝑟−𝑘
⋅ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2 ⋅ 𝑝(𝑟−𝑘)∕2

∑
𝛿1,𝛿2≪1

∑
𝜆≪𝑀∕𝑝𝛾

∑
𝑚̃2,𝑚̃3≍𝑝

𝛾𝐶∕𝑀

∑
𝑐1,𝑐2∈𝒞

∑#

𝑛1,𝑛2∈𝒩

1, (4.29)

where ‘#’ denotes the restrictions (4.26) and (4.28).When 𝛿1𝛿2 ≠ 1, note that (4.28) uniquely deter-
mines the pair (𝑐1, 𝑐2). Fixing (𝑐1, 𝑐2), the sum over 𝑛2 with the restriction (4.26) is then bounded
by (1 + 𝑁∕𝑝𝛾−(𝑟−𝑘)), and we see that (4.29) is

𝐴2 ≪
𝑀1

𝑝𝑟−𝑘
⋅ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2 ⋅ 𝑝(𝑟−𝑘)∕2

∑
𝛿1,𝛿2≪1

∑
𝜆≪𝑀∕𝑝𝛾

∑
𝑚̃2,𝑚̃3≍𝑝

𝛾𝐶∕𝑀

∑
𝑛1∈𝒩

(
1 +

𝑁

𝑝𝛾−(𝑟−𝑘)

)

≪
𝑀1

𝑝𝑟−𝑘
⋅ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2 ⋅𝑁

(
1 +

𝑁

𝑝𝛾−(𝑟−𝑘)

)(
𝑝𝛾𝐶

𝑀

)2
𝑀

𝑝𝛾
𝑝(𝑟−𝑘)∕2.

(4.30)

A comparison shows that the last estimate is the second line of (4.25) times the factor

1

𝑁

(
1 +

𝑀

𝑝𝛾

)−2(
1 +

𝑁

𝑝𝛾−(𝑟−𝑘)

)
𝑝3(𝑟−𝑘)∕2−𝛾 ≪ 𝑝5(𝑟−𝑘)∕2−2𝛾 +

(
1 +

𝑀

𝑝𝛾

)−2
𝑝3(𝑟−𝑘)∕2

𝑁𝑝𝛾
≪ 1,

since our choice of 𝑟 will satisfy (see (4.36))

𝑝𝑟 ≪ min

{
(𝑁𝑝𝛾)2∕3

(
1 +

𝑀

𝑝𝛾

)4∕3

, 𝑝4𝛾∕5

}
. (4.31)

Hence, 𝐴2 ≪ 𝐴1 when 𝛿1𝛿2 ≠ 1. When 𝛿1𝛿2 = 1, (4.28) will imply 𝑚̃2 = ±𝑚̃3. Since 𝑚̃2 > 0, it
follows 𝑚̃2 = 𝑚̃3, 𝛿1 = 𝛿2 = −1. Consequently, (4.28) and (4.26) becomes

𝑐2 = −𝑐1 + 𝑚̃2𝜆 and 𝑐1(𝑛1 + 𝑛2) = 𝑛1𝑚̃2𝜆 (𝑝𝛾−(𝑟−𝑘)).

Since (𝑛1𝑚̃2, 𝑝) = 1, the number of 𝑐1 satisfying the last congruence is≪ 𝑝𝜈𝑝(𝜆)𝐶∕𝑝𝛾−(𝑟−𝑘). Hence,
(4.29) in this case becomes

𝐴2 ≪
𝑀1

𝑝𝑟−𝑘
⋅ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2 ⋅ 𝑝(𝑟−𝑘)∕2

∑
𝜆≪𝑀∕𝑝𝛾

∑
𝑚̃2≍𝑝

𝛾𝐶∕𝑀

∑
𝑛1,𝑛2∈𝒩

𝑝𝜈𝑝(𝜆)𝐶∕𝑝𝛾−(𝑟−𝑘)

≪
𝑀1

𝑝𝑟−𝑘
⋅ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2𝑁2

(
𝑝𝛾𝐶

𝑀

)
⋅
𝑀

𝑝𝛾
⋅ 𝐶𝑝3(𝑟−𝑘)∕2−𝛾.
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The last estimate is the second line of (4.25) times the factor

𝑝𝛾

𝑀

(
1 +

𝑝𝛾

𝑀

)−2

𝑝3(𝑟−𝑘)∕2−𝛾 ≪ 𝑝3(𝑟−𝑘)∕2−𝛾 ≪ 1,

where we have again invoked (4.31).
We conclude that the non-zero frequencies are dominated by 𝐴1 in (4.25), that is,

Ω≠0 ≪
𝑀1

𝑝𝑟−𝑘
⋅ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2 ⋅𝑁2𝐶2

(
1 +

𝑝𝛾

𝑀

)2

⋅
𝑀

𝑝𝑟−𝑘

≪ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2𝑁2𝐶4

(
1 +

𝑝𝛾

𝑀

)2

.

(4.32)

From (4.22) and (4.32), we finally have

Ω ≪
𝑝2𝛾+3(𝑟−𝑘)𝐶4𝑁

𝑀2
+
𝑝5𝛾∕2+3(𝑟−𝑘)𝐶4𝑁2

𝑀3
+ 𝑝𝛾+3(𝑟−𝑘)∕2+1∕2𝑁2𝐶4

(
1 +

𝑝𝛾

𝑀

)2

.

Substituting the last bound into (4.9), we arrive at

𝑆(𝑘,𝑀1)

≪
𝑀2

𝑝𝛾+2𝑟−𝑘𝐶3
⋅
𝑝𝑟−𝑘𝐶

𝑀1∕2
⋅
(
𝑝2𝛾+3(𝑟−𝑘)𝐶4𝑁

𝑀2
+
𝑝5𝛾∕2+3(𝑟−𝑘)𝐶4𝑁2

𝑀3

+𝑝𝛾+3(𝑟−𝑘)∕2+1∕2𝑁2𝐶4

(
1 +

𝑝𝛾

𝑀

)2
)1∕2

≪ 𝑝𝑟∕2−3𝑘∕2𝑀1∕2𝑁1∕2 + 𝑝𝛾∕4+𝑟∕2−3𝑘∕4𝑁 + 𝑝−𝛾∕2−𝑟∕4−3𝑘∕4+1∕4𝑀3∕2𝑁(1 + 𝑝𝛾∕𝑀).

(4.33)

4.6 Optimal choice for 𝒓

It follows from (4.33) and (4.6) that

𝑆 ≪ 𝑝𝑟∕2𝑀1∕2𝑁1∕2 + 𝑝𝛾∕2−𝑟∕4+1∕4𝑀1∕2𝑁(1 +𝑀∕𝑝𝛾) + 𝑝𝛾∕4+𝑟∕2𝑁. (4.34)

Equating the first two terms, we obtain

𝑝𝑟 = 𝑝2𝛾∕3+1∕3𝑁2∕3(1 +𝑀∕𝑝𝛾)4∕3, (4.35)

that is,

𝑟 ≈ ⌊2∕3(𝛾 + 1 + log𝑝 𝑁(1 +𝑀∕𝑝𝛾)2)⌋.
But recall from (4.23) that 𝑟 is assumed to be at most 4𝛾∕5. We choose

𝑟 = ⌊min{2∕3(𝛾 + log𝑝 𝑁(1 +𝑀∕𝑝𝛾)2), 4𝛾∕5}⌋. (4.36)
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32 of 42 SHARMA

So, the third term in (4.34) can be bounded by 𝑝13𝛾∕20𝑁. Note that when𝑁 ⩽ 𝑝𝛾∕5(1 +𝑀∕𝑝𝛾)−2,

2∕3(𝛾 + log𝑝 𝑁(1 +𝑀∕𝑝𝛾)2) ⩽ 4𝛾∕5,

so that (4.35) holds (up to a factor of 𝑝5∕3) and we get

𝑆 ≪ 𝑝7∕12𝑝𝛾∕3𝑀1∕2𝑁5∕6(1 +𝑀∕𝑝𝛾)2∕3 + 𝑝13𝛾∕20𝑁,

in this case. When 𝑁 > 𝑝𝛾∕5(1 +𝑀∕𝑝𝛾)−2, we have 𝑟 = ⌊4𝛾∕5⌋ so that the second term in (4.34)
dominates the first and we get

𝑆 ≪ 𝑝1∕4𝑝𝛾∕2−⌊4𝛾∕5⌋∕4+𝜖𝑀1∕2𝑁(1 +𝑀∕𝑝𝛾) + 𝑝13𝛾∕20𝑁.

Combining, we have the final estimate

𝑆 ≪ 𝑝7∕12𝑞1∕3𝑀1∕2𝑁5∕6(1 +𝑀∕𝑞)2∕3 + 𝛿(𝑁>𝑞1∕5(1+𝑀∕𝑞)−2)𝑝
1∕4𝑞3∕10𝑀1∕2𝑁(1 +𝑀∕𝑞) + 𝑞13∕20𝑁,

(4.37)
where 𝑞 = 𝑝𝛾.

5 AN ALTERNATIVE ESTIMATE

We will use the above estimates for 𝑁 going up to certain threshold. For 𝑁 larger, we get better
estimates simply by applying Cauchy–Schwarz inequality followed by Poisson summation in the
𝑚-sum. Recall that

𝑆 =
∑
𝑛∈𝒩

∑
𝑚⩾1

𝛼𝑛𝜆(𝑚)𝐾(𝑚𝑛)𝑉(𝑚∕𝑀), (5.1)

where

𝐾(𝑚) = K̃l3(𝑚𝑏, 𝑞) =
1

𝑞

∑∗

𝑥(𝑞)

𝑒

(
𝑚𝑏𝑥

𝑞

)
𝑆(1, 𝑥; 𝑞).

Lemma 5.1. For 𝑞 = 𝑝𝛾, 𝛾 ⩾ 1, we have

𝑆 ≪ 𝑀𝑁1∕2 + 𝑀1∕2𝑁𝑞1∕4(1 +𝑀∕𝑞)1∕2.

To see this, we apply Cauchy–Schwarz inequality to (5.1) keeping the𝑚-sum outside to get

𝑆 ≪
𝑀1∕2

𝑞

⎛⎜⎜⎝
∑
𝑚∈ℤ

𝑉(𝑚∕𝑀)

||||||
∑
𝑛∈𝒩

𝛼𝑛
∑∗

𝑥(𝑞)

𝑒

(
𝑥𝑚𝑛𝑏

𝑞

)
𝑆(1, 𝑥; 𝑞)

||||||
2⎞⎟⎟⎠

1∕2

. (5.2)
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Opening the absolute value square and dualising the 𝑚-sum using the Poisson summation
formula, we arrive at

∑
𝑚∈ℤ

𝑉(𝑚∕𝑀)

||||||
∑
𝑛∈𝒩

𝛼𝑛
∑∗

𝑥(𝑞)

𝑒

(
𝑥𝑚𝑛𝑏

𝑞

)
𝑆(1, 𝑥; 𝑞)

||||||
2

=
𝑀

𝑞

∑
𝑛1,𝑛2∈𝒩

𝛼𝑛1𝛼𝑛2

∑∗

𝑥1,𝑥2(𝑞)

𝑆(1, 𝑥1; 𝑞)𝑆(1, 𝑥2; 𝑞)
∑
𝑟(𝑞)

𝑒

(
𝑟𝑏(𝑛1𝑥1 − 𝑛2𝑥2)

𝑞

) ∑
𝑚̃∈ℤ

𝑒

(
−𝑚̃𝑟

𝑞

)
𝐼(𝑚̃)

= 𝑀
∑

𝑛1,𝑛2∈𝒩

𝛼𝑛1𝛼𝑛2

∑
𝑚̃∈ℤ

(𝑛1, 𝑛2, 𝑚̃) ⋅ 𝐼(𝑚̃),

(5.3)
where

𝐼(𝑚̃) = ∫ℝ

𝑉(𝑥)𝑒(−𝑀𝑚̃𝑥∕𝑞)𝑑𝑥

and

(𝑛1, 𝑛2, 𝑚̃) =
∑∗

𝑥(𝑞)

𝑆(1, 𝑥; 𝑞)𝑆(1, (𝑛1𝑛2𝑥 + 𝑛2𝑏𝑚̃); 𝑞). (5.4)

It is clear that 𝐼(𝑚̃) is negligibly small unless 𝑚̃ ≪ 𝑞∕𝑀.
It remains to estimate the character sum (⋯). In the case of prime power moduli, an explicit

evaluation of the character sum  as a function of (𝑚̃, 𝑛1, 𝑛2) can be obtained by following the
proof of Lemma 2.4 or otherwise. If 𝛼𝑛 = 1, as required for our application, this evaluation can be
used to non-trivially bound one of the 𝑛1, 𝑛2, or 𝑚̃-sum in (5.3) using an exponent pair estimate.
However, since we are not interested in this improvement for the purposes of this paper, we use
the ready-made estimates available in [5].

Lemma 5.2. For any 𝑞 ⩾ 1 and (𝑛1, 𝑛2, 𝑚̃) as in (5.4), we have

(𝑛1, 𝑛2, 𝑚̃) ≪ 𝑞3∕2
∑
𝑘|𝑞 𝑘

1∕2𝛿(𝑛1=𝑛2(𝑘)
𝑚̃=0(𝑘)

).

Proof. Let us factorise 𝑞 into product of prime powers 𝑞 =
∏

1⩽𝑖⩽ 𝑞𝑖 , where 𝑞𝑖 = 𝑝
𝛾𝑖
𝑖
and 𝑝𝑖 ’s are

prime. Then, by repeated use of the well-knownmultiplicative property of the Kloosterman sums
([16], eq. (1.59)), we get

𝑆(1, 𝑥; 𝑞)𝑆(1, (𝑛1𝑛2𝑥 + 𝑛2𝑏𝑚̃); 𝑞) =
∏
1⩽𝑖⩽𝑙

𝑆(1, (𝑞∕𝑞𝑖)
2
𝑥, 𝑞𝑖)𝑆(1, (𝑞∕𝑞𝑖)

2
(𝑛1𝑛2𝑥 + 𝑛2𝑚̃), 𝑞𝑖).

Splitting the residue classes 𝑥(𝑞) in (5.4) using the Chinese Remainder Theorem, it then follows

(𝑛1, 𝑛2, 𝑚̃) =
∏
1⩽𝑖⩽𝑙

𝐾𝑖, (5.5)
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where

𝐾𝑖 =
∑∗

𝑥(𝑞𝑖)

𝑆(1, (𝑞∕𝑞𝑖)
2
𝑥, 𝑞𝑖)𝑆(1, (𝑞∕𝑞𝑖)

2
(𝑛1𝑛2𝑥 + 𝑛2𝑚̃), 𝑞𝑖)

=
∑∗

𝑥(𝑞𝑖)

𝑆(1, 𝑥, 𝑞𝑖)𝑆(1, 𝑛1𝑛2𝑥((𝑞∕𝑞𝑖)
2𝑛1𝑚̃𝑥 + 1), 𝑞𝑖).

We can now apply estimates for 𝐾𝑖 from Lemma 4.19 giving us

𝐾𝑖 ≪ 𝑞
3∕2

𝑖
𝑝
(min{𝛾𝑖 ,𝜈𝑝𝑖

(𝑛1−𝑛2),𝜈𝑝𝑖
(𝑏)})∕2

𝑖
≪ 𝑞

3∕2

𝑖

∑
𝑘|𝑞𝑖 𝑘

1∕2𝛿(𝑛1=𝑛2(𝑘)
𝑚̃=0(𝑘)

).
The lemma follows after substituting these estimates for 𝐾𝑖 into (5.5) and gluing the
congruences. □

Plugging in the estimate from Lemma 5.2 into (5.3), we obtain

∑
𝑚∈ℤ

𝑉(𝑚∕𝑀)

||||||
∑
𝑛∈𝒩

𝛼𝑛
∑∗

𝑥(𝑞)

𝑒

(
𝑥𝑚𝑛𝑏

𝑞

)
𝑆(1, 𝑥; 𝑞)

||||||
2

≪ 𝑀𝑞3∕2
∑
𝑘|𝑞 𝑘

1∕2
∑

𝑛1,𝑛2∈𝒩

∑
𝑚̃≪𝑞∕𝑀

𝛿(𝑛1=𝑛2(𝑘)
𝑚̃=0(𝑘)

)
≪ 𝑀𝑞3∕2

∑
𝑘|𝑞 𝑘

1∕2𝑁(1 + 𝑁∕𝑘)(1 + 𝑞∕𝑀𝑘)

≪ 𝑀𝑁𝑞3∕2
∑
𝑘|𝑞 (𝑞

1∕2 + 𝑁(1 + 𝑞∕𝑀))

≪ 𝑀𝑁𝑞2 + 𝑁2𝑞5∕2(1 +𝑀∕𝑞).

Final substitution into (5.2) yields

𝑆 ≪ 𝑀𝑁1∕2 + 𝑀1∕2𝑁𝑞1∕4(1 +𝑀∕𝑞)1∕2. (5.6)

This completes the proof Lemma 5.1.

6 THE APPLICATION: PROOF OF THEOREM 1.1

Let 𝑞 ⩾ 1, 𝑎 ∈ ℤ such that (𝑎, 𝑞) = 1. We are interested in the asymptotic of

𝑆 =
∑
𝑛⩽𝑋

𝑛=𝑎(𝑞)

𝑑3(𝑛).

Detecting 𝑛 = 𝑎 (𝑞) using additive characters, we obtain

𝑆 =
1

𝑞

∑
𝛼(𝑞)

∑
𝑛⩽𝑋

𝑑3(𝑛)𝑒

(
𝛼(𝑛 − 𝑎)

𝑞

)
.
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Splitting into Ramanujan sums, we get

𝑆 =
∑
𝑑|𝑞 𝑆(𝑑), (6.1)

where

𝑆(𝑑) =
1

𝑞

∑∗

𝛼(𝑑)

∑
𝑛⩽𝑋

𝑑3(𝑛)𝑒

(
𝛼(𝑛 − 𝑎)

𝑑

)
.

Fix 𝐴 > 0. Choose a smooth function 𝑤(𝑥) such that 𝑤(𝑥) = 1 for 𝑥 ∈ [𝑋1−𝜖∕2, 𝑋 + 𝑋1−𝜖] and
supp(𝑤) ⊆ [𝑋1−𝜖, 𝑋 + 𝑋1−𝜖∕2] and satisfying

𝑥𝑗𝑤(𝑗)(𝑥) ≪𝜖,𝑗 𝑋
𝑗𝜖,

for 𝑗 ⩾ 0. Smoothing the 𝑛-sum in 𝑆𝑘 using the weight function 𝑤, we obtain

𝑆(𝑑) =
1

𝑞

∑∗

𝛼(𝑑)

∑
𝑛⩾1

𝑑3(𝑛)𝑤(𝑛)𝑒

(
𝛼(𝑛 − 𝑎)

𝑑

)
+ 𝑂(𝑋1−𝜖∕𝑞). (6.2)

The Voronoi summation formula (2.1) for 𝑑3 transforms the 𝑛-sum above into∑
𝑛⩾1

𝑑3(𝑛)𝑤(𝑛)𝑒
(
𝛼𝑛

𝑑

)
=

1

𝑑 ∫
∞

0
𝑃(log 𝑦, 𝑑)𝑤(𝑦)𝑑𝑦

+
𝑑

2𝜋3∕2

∑
±

∑
𝑟|𝑑

∑
𝑚⩾1

1

𝑟𝑚

∑
𝑟1|𝑟

∑
𝑟2| 𝑟

𝑟1

𝜎0,0(𝑟∕(𝑟1𝑟2),𝑚)𝑆(±𝑚, 𝛼; 𝑑∕𝑟)Φ±(𝑚𝑟2∕𝑑3).

(6.3)

Substituting into (6.2), we obtain

𝑆(𝑑) = 𝑀(𝑑) + 𝐸(𝑑) + 𝑂(𝑋1−𝜖∕𝑞), (6.4)

where

𝑀(𝑑) =
1

𝑞𝑑

(
∫

∞

0
𝑃(log 𝑦, 𝑑)𝑤(𝑦)𝑑𝑦

)∑∗

𝛼(𝑑)

𝑒(−𝛼𝑎∕𝑑) =
𝜇(𝑑)

𝑞𝑑 ∫
∞

0
𝑃(log 𝑦, 𝑑)𝑤(𝑦)𝑑𝑦, (6.5)

and

𝐸(𝑑) =
𝑑2

2𝜋3∕2𝑞

∑
±

∑
𝑟|𝑑

∑
𝑚⩾1

1

𝑟𝑚

∑
𝑟1|𝑟

∑
𝑟2| 𝑟

𝑟1

𝜎0,0(𝑟∕(𝑟1𝑟2),𝑚)𝐾𝑟,𝑑(𝑚)Φ±(𝑚𝑟2∕𝑑3), (6.6)

where

𝐾𝑟,𝑑(𝑚) =
1

𝑑

∑∗

𝛼(𝑑)

𝑒(−𝑎𝛼∕𝑑)𝑆(±𝑚, 𝛼; 𝑑∕𝑟).
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Write 𝑑 = 𝑑0𝑑1, where 𝑑0 is the square-free and 𝑑1 is the square-full part. Then note that 𝐾𝑟,𝑑(𝑚)

vanishes unless 𝑟|𝑑0 in which case we have
𝐾𝑟,𝑑(𝑚) =

𝜇(𝑟)

𝑑

∑∗

𝛼(𝑑∕𝑟)

𝑒(−𝑟𝑎𝛼∕(𝑑∕𝑟))𝑆(±𝑚, 𝛼; 𝑑∕𝑟).

Recall from (2.1) that

𝜎0,0(𝑟∕(𝑟1𝑟2),𝑚) =
∑

𝑡|(𝑟∕(𝑟1𝑟2),𝑚)

𝜇(𝑡)𝑑3(𝑚∕𝑡). (6.7)

We fix the divisor 𝑡|(𝑟∕(𝑟1𝑟2)) in (6.7) and push the𝑚-sum in (6.6) inside to see that

𝐸(𝑑) ≪
𝑑2

𝑞

∑
𝑟|𝑑0

1

𝑟2

∑
𝑡|𝑟

1

𝑡
|𝐶(𝑑, 𝑟, 𝑡)|, (6.8)

where

𝐶(𝑑, 𝑟, 𝑡) =
∑
𝑚⩾1

𝑑3(𝑚)

𝑚
K̃l3(𝑚𝑏, 𝑑∕𝑟)Φ±(𝑚𝑡𝑟2∕𝑑3),

with 𝑏 = ±𝑟𝑡𝑎. Now from Lemma 2.2, it follows that the 𝑚-sum above is negligibly small unless
𝑚 ≪ 𝑑3∕(𝑡𝑟2𝑋). Also, if we define

𝜓(𝑚) = (min{𝑚𝑡𝑟2𝑋∕𝑑3, 1})−1Φ±(𝑚𝑡𝑟2∕𝑑3),

then from the same lemma, we have

𝑦𝑗𝜓(𝑗)(𝑦) ≪𝑗 1.

Hence, we can write

𝐶(𝑑, 𝑟, 𝑡) =
∑

𝑚≪𝑑3∕(𝑡𝑟2𝑋)

min{𝑚𝑡𝑟2𝑋∕𝑑3, 1}

𝑚
⋅ 𝑑3(𝑚)K̃l3(𝑚𝑏, 𝑑∕𝑟)𝜓(𝑚).

Dividing the𝑚-sum above into dyadic blocks𝑚 ∼ 𝑌,𝑌 ≪ 𝑑3∕(𝑡𝑟2𝑋), we see that

𝐶(𝑑, 𝑟, 𝑡) ≪
min{𝑌𝑡𝑟2𝑋∕𝑑3, 1}

𝑌
sup

𝑌≪𝑑3∕(𝑡𝑟2𝑋)

|𝐶(𝑑, 𝑟, 𝑡, 𝑌)| ≪ 𝑡𝑟2𝑋

𝑑3
sup

𝑌≪𝑑3∕(𝑡𝑟2𝑋)

|𝐶(𝑑, 𝑟, 𝑡, 𝑌)|,
where

𝐶(𝑑, 𝑟, 𝑡, 𝑌) =
∑
𝑚∼𝑌

𝑑3(𝑚)K̃l3(𝑚𝑏, 𝑑∕𝑟).

Substituting the last inequality into (6.8), we conclude

𝐸(𝑑) ≪
𝑋

𝑞𝑑
sup

𝑟|𝑑0,𝑡|𝑟
𝑌≪𝑑3∕(𝑡𝑟2𝑋)

|𝐶(𝑑, 𝑟, 𝑡, 𝑌)|. (6.9)
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We proceed for the estimation of 𝐶(𝑑, 𝑟, 𝑡, 𝑌). We do this by converting it into a bilinear sum
as in Theorem 1.2 with 𝑁 ≪ 𝑌1∕3 using the symmetry in the factorisation of 𝑑3(𝑚). Expanding
𝑑3(𝑚) into product of three variables and introduction dyadic partition in each of the variables,
we get

𝐶(𝑑, 𝑟, 𝑡, 𝑌) ≪ sup
𝑁1,𝑁2,𝑁3>0
𝑁1𝑁2𝑁3∼𝑌

||||||
∑

𝑛1,𝑛2,𝑛3

Kl3(𝑛1𝑛2𝑛3𝑏, 𝑑∕𝑟)𝑉(𝑛1∕𝑁1)𝑉(𝑛2∕𝑁2)𝑉(𝑛3∕𝑁3)

||||||. (6.10)

By symmetry, we can assume 𝑁1 ⩽ 𝑁2 ⩽ 𝑁3. Note that this forces 𝑁1 ≪ 𝑌1∕3. Gluing 𝑛2𝑛3 = 𝑚,
we obtain∑

𝑛1,𝑛2,𝑛3

Kl3(𝑛1𝑛2𝑛3𝑏, 𝑑∕𝑟)𝑉(𝑛1∕𝑁1)𝑉(𝑛2∕𝑁2)𝑉(𝑛3∕𝑁3) =
∑

𝑛1∼𝑁1

∑
𝑚∼𝑌∕𝑁1

𝑎(𝑚)Kl3(𝑚𝑛1𝑏, 𝑑∕𝑟),

(6.11)
where

𝑎(𝑚) =
∑
𝑏|𝑚𝑉(𝑏∕𝑁2)𝑉(𝑚∕𝑏𝑁3).

Using the Mellin inversion

𝑉(𝑥) = ∫(𝜎) 𝑉̃(𝑠)𝑥
−𝑠 𝑑𝑠, (6.12)

we can further write

𝑎(𝑚) = ∫ ∫ 𝑉̃(𝑠1)𝑉̃(𝑠2)𝑁
𝑠1
2
𝑁

𝑠2
3
𝑚−𝑠2𝜎𝑠2−𝑠1(𝑚) 𝑑𝑠1 𝑑𝑠2.

Note that since 𝑉 is a nice weight function, we can restrict the contour in (6.12) to |𝑠| ≪ 𝑋𝜖 up to
a negligible error. Feeding all these information into the right hand of (6.11), we obtain

∑
𝑛1∼𝑁1

∑
𝑚∼𝑌∕𝑁1

𝑎(𝑚)Kl3(𝑚𝑛1𝑏, 𝑑∕𝑟) ≪ sup|𝑠𝑖|≪𝑋𝜖

||||||
∑

𝑛1∼𝑁1

∑
𝑚∼𝑌∕𝑁1

𝜎𝑠1(𝑚)𝑚𝑠2Kl3(𝑚𝑛1𝑏, 𝑑∕𝑟)

||||||.
Substituting the last relation into (6.10), we finally obtain

𝐶(𝑑, 𝑟, 𝑡, 𝑌) ≪ sup
𝑁≪𝑌1∕3|𝑠𝑖|≪𝑋𝜖

||𝑆(𝑌∕𝑁,𝑁)||, (6.13)

where

𝑆(𝑀,𝑁) =
∑
𝑛∼𝑁

∑
𝑚∼𝑀

𝜎𝑠1(𝑚)𝑚𝑠2Kl3(𝑚𝑛𝑏, 𝑑∕𝑟).

We are now position to apply our estimates for bilinear sums obtained in previous sections.
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6.1 Square-free moduli

Here, 𝑑∕𝑟 is square-free. We want to apply the estimates from Theorem 1.2 and Lemma 5.1 to
𝑆(𝑀,𝑁) with the parameters 𝑞 = 𝑑∕𝑟,𝑀 = 𝑌∕𝑁. For this, we need to first verify the hypothe-
sis 𝑁 ⩽ 𝑞1∕2(1 +𝑀∕𝑞)−2 of Theorem 1.2. Note that 𝑁 ≫ 𝑞1∕2 translates to 𝑁 ≫ (𝑑∕𝑟)1∕2 which
implies

𝑌1∕3 ≫ (𝑑∕𝑟)1∕2 ⇒ (𝑑3∕(𝑡𝑟2𝑋))1∕3 ≫ (𝑑∕𝑟)1∕2 ⇒ 𝑑 ≫ 𝑋2∕3,

which is not the case since 𝑑 ⩽ 𝑞 ⩽ 𝑋2∕3 in our final choice of 𝑞(⩽ 𝑋1∕2+1∕30−𝜖). Similarly,𝑁𝑀2 ≫

𝑞5∕2 will imply 𝑑 ≫ 𝑋7∕4 which is also not the case. Hence, the condition 𝑁 ⩽ 𝑞1∕2(1 +𝑀∕𝑞)−2

is satisfied so that from Theorem 1.2 and Lemma 5.1, we obtain

𝑆(𝑌∕𝑁,𝑁) ≪{
𝑌1∕2𝑁1∕4𝔮3∕8 + 𝑌∕(𝑁1∕4𝔮1∕8) + 𝑌𝑁1∕4∕𝔮1∕4 + 𝑌2∕(𝑁1∕2𝔮5∕4) + 𝑁𝑞3∕4 + 𝑌1∕2𝔮1∕4∕𝑁1∕2,

𝑌∕𝑁1∕2 + 𝑌1∕2𝑁1∕2𝔮1∕4 + 𝑌𝔮−1∕4,

(6.14)
where 𝔮 = 𝑑∕𝑟. Our job now is to optimally choose bounds between the two lines in (6.14) depend-
ing on the size of 𝑁. Note that since 𝑁 ≪ 𝑌1∕3, the second term in the second bound of (6.14)
is ≪ 𝑌2∕3𝔮1∕4. Similarly, the last term in the first bound is clearly ≪ 𝑌2∕3𝔮1∕4. Also, note that
𝑌∕𝑁1∕2 ≫ 𝑌∕𝔮−1∕4 since 𝑁 ≪ 𝔮1∕2 as pointed out earlier. So, we can write

𝑆(𝑌∕𝑁,𝑁) ≪

5∑
𝑖=1

𝐴𝑖 + 𝑌2∕3𝔮1∕4,

where

𝐴1 = min{𝑌1∕2𝑁1∕4𝔮3∕8, 𝑌∕𝑁1∕2}, 𝐴2 = min{𝑌∕(𝑁1∕4𝔮1∕8), 𝑌∕𝑁1∕2},

𝐴3 = min{𝑌𝑁1∕4∕𝔮1∕4, 𝑌∕𝑁1∕2}, 𝐴4 = min{𝑌2∕(𝑁1∕2𝔮5∕4), 𝑌∕𝑁1∕2},

and

𝐴5 = min{𝑁𝔮3∕4, 𝑌∕𝑁1∕2}.

𝐴1 attains its largest value when the two terms inside the parenthesis are equal, that is, when
𝑁 = 𝑌2∕3∕𝔮1∕2, which gives

𝐴1 ⩽ 𝑌2∕3𝔮1∕4. (6.15)

Similarly arguing, we obtain

𝐴2 ⩽ 𝑌∕𝔮1∕4, 𝐴3 ⩽ 𝑌∕𝔮1∕6, 𝐴4 ⩽ 𝑌2∕𝔮5∕4, 𝐴5 ⩽ 𝑌2∕3𝔮1∕4.

Hence,

𝑆(𝑌∕𝑁,𝑁) ≪ 𝑌2∕3𝔮1∕4 + 𝑌∕𝔮1∕6 + 𝑌2∕𝔮5∕4. (6.16)
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Substituting this in (6.13) and then in (6.9), we obtain

𝐸(𝑑) ≪
𝑋

𝑞𝑑
sup

𝑟|𝑑0,𝑡|𝑟
𝑌≪𝑑3∕(𝑡𝑟2𝑋)

(𝑌2∕3(𝑑∕𝑟)1∕4 + 𝑌(𝑑∕𝑟)−1∕6 + 𝑌2(𝑑∕𝑟)−5∕4)

≪
𝑋

𝑞𝑑
(𝑋−2∕3𝑑9∕4 + 𝑋−1𝑑17∕6 + 𝑋−2𝑑19∕4)

≪ 𝑋1∕3𝑞1∕4 + 𝑞5∕6 + 𝑋−1𝑞11∕4,

(6.17)

where he used the upper bound 𝑑 ≪ 𝑞 in the last line. The last line of (6.17) is 𝑂(𝑋1−𝜖∕𝑞) for
𝑞 ⩽ 𝑋1∕2+1∕30−𝜖 and therefore 𝐸(𝑑) ≪ 𝑋1−𝜖∕𝑞 for 𝑞 ⩽ 𝑋1∕2+1∕30−𝜖. Hence, from (6.4) and (6.1), it
follows

𝑆 =
∑
𝑑|𝑞 𝑀(𝑑) + 𝑂(𝑋1−𝜖∕𝑞), (6.18)

for square free 𝑞 ⩽ 𝑋1∕2+1∕30−𝜖.

6.2 Prime power moduli

Here, 𝑞 = 𝑝𝛾, 𝛾 ⩾ 2 and so 𝑑∕𝑟 = 𝑝𝑘.Without loss of generality, we can assume 𝑘 ⩾ 2 since for 𝑘 =

1, we can use the estimate (6.16) for 𝑆(𝑌∕𝑁,𝑁) to arrive at the same bound (6.17). Furthermore,
when 𝑘 ⩾ 2 note that 𝑟 = 1 since 𝑟 has to divide the square-free part of 𝑑 which is 1 in this case.
For 𝑑 = 𝑝𝑘, 𝑘 ⩾ 2, using the estimate from (4.37) and Lemma 5.1, we obtain

𝑆(𝑌∕𝑁,𝑁) ≪

⎧⎪⎨⎪⎩
𝑝7∕12𝑌1∕2𝑁1∕3𝑑1∕3 + 𝑝7∕12𝑌7∕6∕(𝑁1∕3𝑑1∕3)

+𝑝1∕4𝑌1∕2𝑁1∕2𝑑3∕10 + 𝑝1∕4𝑌3∕2∕(𝑁1∕2𝑑7∕10) + 𝑁𝔮13∕20,

𝑌∕𝑁1∕2 + 𝑌1∕2𝑁1∕2𝑑1∕4 + 𝑌𝔮−1∕4,

(6.19)

where 𝑑 = 𝑝𝑘, 𝑘 ⩾ 2. As earlier, we use 𝑁 ≪ 𝑌1∕3 to bound the second term of second bound in
(6.19) by 𝑌2∕3𝑑1∕4 and ignore the third term due to the inequality 𝑁 ≪ 𝑑1∕2. Hence, this time we
get

𝑆(𝑌∕𝑁,𝑁) ≪ 𝑌2∕3𝑑1∕4 + 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 + 𝐴5, (6.20)

where

𝐴1 = min{𝑝7∕12𝑌1∕2𝑁1∕3𝑑1∕3, 𝑌∕𝑁1∕2}, 𝐴2 = min{𝑝7∕12𝑌7∕6∕(𝑁1∕3𝑑1∕3), 𝑌∕𝑁1∕2},

𝐴3 = min{𝑝1∕4𝑌1∕2𝑁1∕2𝑑3∕10, 𝑌∕𝑁1∕2}, 𝐴4 = min{𝑝1∕4𝑌3∕2∕(𝑁1∕2𝑑7∕10), 𝑌∕𝑁1∕2},

and

𝐴5 = min{𝑁𝔮13∕20, 𝑌∕𝑁1∕2}.

Arguing as in (6.15), we obtain the following estimates for 𝐴𝑖:

𝐴1 ⩽ 𝑌7∕10𝑑1∕5𝑝7∕20, 𝐴2 ⩽ 𝑌3∕2𝑑−1𝑝7∕4, 𝐴3 ⩽ 𝑌3∕4𝑑3∕20𝑝1∕8, 𝐴4 ⩽ 𝑌3∕2𝑑−7∕10𝑝1∕4
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and

𝐴5 ⩽ 𝑌2∕3𝑑13∕60.

Using these estimates for 𝐴𝑖 in (6.20), we obtain

𝑆(𝑌∕𝑁,𝑁) ≪ 𝑌2∕3𝑑1∕4 + 𝑌7∕10𝑑1∕5𝑝7∕20 + 𝑌3∕2𝑑−1𝑝7∕4 + 𝑌3∕4𝑑3∕20𝑝1∕8 + 𝑌3∕2𝑑−7∕10𝑝1∕4

+ 𝑌2∕3𝑑13∕60.

Substituting the last estimate into (6.13) and then in (6.9), we obtain

𝐸(𝑑) ≪
𝑋

𝑞𝑑
sup

𝑌≪𝑑3∕𝑋

(
𝑌2∕3𝑑1∕4 + 𝑌7∕10𝑑1∕5𝑝7∕20 + 𝑌3∕2𝑑−1𝑝7∕4 + 𝑌3∕4𝑑3∕20𝑝1∕8

+𝑌3∕2𝑑−7∕10𝑝1∕4 + 𝑌2∕3𝑑13∕60
)

≪
𝑋

𝑞𝑑

(
𝑋−2∕3𝑑9∕4 + 𝑋−7∕10𝑑23∕10𝑝7∕20 + 𝑋−3∕2𝑑7∕2𝑝7∕4 + 𝑋−3∕4𝑑12∕5𝑝1∕8

+𝑋−3∕2𝑑19∕5𝑝1∕4 + 𝑋−2∕3𝑑133∕60
)

= 𝑋1∕3𝑞1∕4 + 𝑋3∕10𝑞3∕10𝑝3∕20 + 𝑋−1∕2𝑞3∕2𝑝7∕4 + 𝑋1∕4𝑞2∕5𝑝1∕8

+ 𝑋−1∕2𝑞9∕5𝑝1∕4 + 𝑋1∕3𝑞13∕60.

(6.21)

The last line in (6.21) is 𝑂(𝑋1−𝜖∕𝑞) when 𝑞 ≪ 𝑋1∕2+1∕30−𝜖 and 𝛾 ⩾ 28. The exponent 1∕2 + 1∕30

and the power 𝛾 ⩾ 28 is determined by the ‘𝑋1∕3𝑞1∕4’ and the ‘𝑋3∕10𝑞3∕10𝑝3∕20’ terms, respectively.

Remark 3. The main contributing term ‘𝑋1∕3𝑞1∕4’ originates from the ‘𝑌1∕2𝑁1∕2𝑑1∕4’ term in
the second line of (6.19). Thus, it is evident that any improvement in this term, which corre-
sponds to the off-diagonal contribution in (5.3), would result in an improvement in the exponent
of distribution.

Hence, from (6.4) and (6.1), it follows

𝑆 =
∑
𝑑|𝑞 𝑀(𝑑) + 𝑂(𝑋1−𝜖∕𝑞), (6.22)

for 𝑞 = 𝑝𝛾 ⩽ 𝑋1∕2+1∕30−𝜖 and 𝛾 ⩾ 28.
Finally, from (6.18) and (6.22), it follows

𝑆 =
∑
𝑛⩽𝑋

𝑛=𝑎(𝑞)

𝑑3(𝑛) =
∑
𝑑|𝑞 𝑀(𝑑) + 𝑂(𝑋1−𝜖∕𝑞), (6.23)

for 𝑞 ⩽ 𝑋1∕2+1∕30−𝜖, where 𝑞 is either square free or 𝑞 = 𝑝𝛾, 𝛾 ⩾ 28. Note that the𝑀(𝑑)’s, which
are given by (6.5), are independent of the residue class 𝑎 (𝑞). Hence, summing the expression
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(6.23) over all the co-prime residue classes 𝑎 (𝑞), we obtain

∑
𝑛⩽𝑋

(𝑛,𝑞)=1

𝑑3(𝑛) = 𝜙(𝑞)

(∑
𝑑|𝑞 𝑀(𝑑)

)
+ 𝑂(𝜙(𝑞)𝑋1−𝜖∕𝑞),

from which it follows ∑
𝑑|𝑞 𝑀(𝑑) =

1

𝜙(𝑞)

∑
𝑛⩽𝑋

(𝑛,𝑞)=1

𝑑3(𝑛) + 𝑂(𝑋1−𝜖∕𝑞).

Theorem 1.1 follows after substituting the last expression for
∑

𝑑|𝑞 𝑀(𝑑) into (6.23).
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