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Perceptual (but not acoustic) 
features predict singing voice 
preferences
Camila Bruder 1*, David Poeppel 2,3,4 & Pauline Larrouy‑Maestri 1,4

Why do we prefer some singers to others? We investigated how much singing voice preferences can be 
traced back to objective features of the stimuli. To do so, we asked participants to rate short excerpts 
of singing performances in terms of how much they liked them as well as in terms of 10 perceptual 
attributes (e.g.: pitch accuracy, tempo, breathiness). We modeled liking ratings based on these 
perceptual ratings, as well as based on acoustic features and low‑level features derived from Music 
Information Retrieval (MIR). Mean liking ratings for each stimulus were highly correlated between 
Experiments 1 (online, US‑based participants) and 2 (in the lab, German participants), suggesting a 
role for attributes of the stimuli in grounding average preferences. We show that acoustic and MIR 
features barely explain any variance in liking ratings; in contrast, perceptual features of the voices 
achieved around 43% of prediction. Inter‑rater agreement in liking and perceptual ratings was low, 
indicating substantial (and unsurprising) individual differences in participants’ preferences and 
perception of the stimuli. Our results indicate that singing voice preferences are not grounded in 
acoustic attributes of the voices per se, but in how these features are perceptually interpreted by 
listeners.

Singing is ubiquitous across  cultures1,2 and highly  popular3, but fundamental questions about our preferences 
remain unanswered. For instance: why do we like some singing voices more than others? How much are these 
preferences based on attributes of the singing voice, and how much are they related to listeners’ internal factors?

The extent to which aesthetic appreciation depends on objective properties of a stimulus versus a person’s 
internal subjective states and evaluations has long been debated. Pioneering empirical work has been done in 
the visual domain, starting with Fechner’s investigations of average group preferences for rectangles following 
the golden  ratio4,5. More recently, some studies have argued for average preferences for certain stimulus features 
such as curved versus sharp  contours6, symmetrical  patterns7, and high contrast  images8, among others—though 
variability across people tends to be  large9. In fact, for certain types of stimuli (e.g., abstract paintings), individual 
differences are found to be particularly striking, with small interindividual agreement (or highly idiosyncratic 
taste) across  participants10–12, supporting the role of individuals’ internal factors and their personal experiences 
as critical determinants of their preferences.

In the case of music, a broad range of stimulus features such as complexity, tempo, rhythm, tonal and timbral 
features, among others, have been shown to predict aesthetic responses to musical sounds  (see13 for a review). 
Like in the visual domain, musical preferences are assumed best to be understood with an interactionist approach 
(e.g.:14,15), that is, as the result of a complex interplay of numerous multilevel factors, which can be linked to 
attributes of the music stimuli themselves (i.e., acoustic features), as well as their perception by listeners (i.e., 
perceptual features) and other cognitive, emotional, evaluative processing on the listener side.

In the case of the human voice, empirical work has focused on preferences for the spoken voice: studies of 
vocal attractiveness indicate that the height of fundamental frequency (fo) and formant dispersion of a given 
voice may function as indirect cues of body size, health, and age, with higher fo and more spread formants 
generally preferred for women’s voices and lower fo preferred for men’s  voices16. A different line of research has 
used voice morphing to show that composite, averaged voices (which are smoother and have higher signal-to-
noise ratio than individual voices) were considered more attractive than most of the individual voices presented 
to  participants17; but  see18.

Particularly for the singing voice, there is evidence that specific acoustic features influence the perception 
of pitch accuracy, or of singing performances as “correct”19 and that the use of such features is affected by the 
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music expertise of the  listeners20,21—but such research does not answer questions about singing preferences. In 
fact, aesthetic appreciation probably goes beyond correctness, that is to say, people do not attend concerts to 
hear ‘correct’ performances, but to enjoy them. In line with findings about voice attractiveness, one might expect 
that appreciation of singing would depend heavily on the acoustic properties of voices/singing performances. 
On the other hand, literature on aesthetic responses to artistic performances (music as well as visual) supports 
idiosyncrasies on the listener’s side.

Here we aimed to quantify how much the aesthetic appreciation of singing voices depends on objective 
properties of the sung stimuli and to investigate which acoustic qualities—and their perceptual counterparts—
are relevant in this process. To this end, we collected liking ratings (online and lab experiments) and perceptual 
ratings (lab experiment) of short excerpts of a cappella singing, and we examined, through statistical modeling, 
the relationship between liking ratings, acoustic properties, and perceptual ratings of these singing performances.

Results
Large variability in liking of singing performances
In a short online experiment (~ 12 min long), 326 participants rated on a 9-point scale how much they liked 
excerpts of two contrasting a cappella melodies (see Fig. 1A and "Methods" section for details), performed 
repeatedly by 16 highly trained female singers, for a total of 96 stimuli. Each stimulus was rated by 103, 106 or 117 
participants. Despite the large variability in liking ratings, preferences for some stimuli emerged (Fig. 1C), with, 
e.g., low ratings for the performances of Singer 6 and higher ratings for the performances of Singer 16 (Fig. 1B).

To better understand the large variability of liking ratings observed in Fig. 1, we examined participants’ intra- 
and inter-rater reliability. The consistency of ratings in a subset of 16 repeated trials revealed a mean test–retest 
correlation of 0.41 (SD = 0.29) and a distribution ranging from − 0.61 to 0.95. We computed Krippendorff ’s 
alpha (αK) for the (within-participant normalized) liking ratings and found low agreement across participants 
(αK = 0.10, αK = 0.07 based on raw ratings). Agreement was higher among 145 “consistent” participants (with 
rtest-retest scores higher than 0.5; αK = 0.19; αK = 0.14 based on raw ratings). Note that this is in line with previous 
literature reporting variably low agreement between raters in perceptual tasks using music (e.g.:22,23 and voice 
 stimuli24. Please see Supplementary Figure S1 for the distribution of raw and within-participant normalized 
liking ratings.

Very limited role of acoustic features in singing voice preferences
To examine the role of acoustics in singing voice preferences, we constructed linear mixed models that included 
acoustic features (i.e., acoustic model) as well as features selected from Music Information Retrieval (MIR) and 

Figure 1.  Online experiment. (A) Methods: 326 participants rated on a scale of 1 to 9 how much they 
liked short excerpts of two different melodies, performed at different times and without lyrics, by 16 trained 
female singers. (B) Boxplots of (within-participant normalized) liking ratings by singer. Colors correspond to 
individual singers. Diamonds depict average liking ratings. Lower and upper hinges correspond to the first and 
third quartiles, and whiskers extend from the hinge to 1.5 * inter-quartile range (Tukey-style boxplot). (C) Mean 
(within-participant normalized) liking ratings ranked from least to most liked stimuli. Each stimulus was rated 
by 103, 106 or 117 participants. As in Fig. 1b, colors correspond to individual singers. Diamonds depict average 
liking ratings per stimulus item, and error bars correspond to one standard deviation above and below the 
average value.
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from the Soundgen R package, which was developed to deal with human nonverbal  vocalizations25. See "Methods" 
section and Supplementary Information for details about MIR and Soundgen models, Supplementary Table S1 
for descriptive statistics of acoustic features by melody and Supplementary Figure S1 for an illustration of the 
distribution of acoustic features by melody. The acoustic model predicting (within-participant normalized) liking 
ratings from pitch interval deviation, tempo, energy ratio, harmonics-to-noise ratio, vibrato rate, vibrato extent, 
jitter, shimmer, and cepstral peak prominence (CPP), and including random intercepts for participants as well 
as for stimulus items nested in singers, performed better than the null model (χ2 (9) = 23.597, p < 0.01). However, 
the acoustic model predicted remarkably little variance in liking ratings (Supplementary Table S2), with almost 
all of the modeled variance captured by the random effects (marginal R2 = 0.016, conditional R2 = 0.24). Note that 
fitting the acoustic model to a subset of 145 “consistent” participants (rtest-retest scores > 0.5) led to similar results, 
that is, very low prediction based on fixed effects (marginal R2 = 0.025, conditional R2 = 0.3). This suggests that 
the low prediction was not simply a consequence of participants’ inconsistent rating behavior, which could stem 
from inattention or lack of engagement to the task—common concerns in any experimental task, but especially 
so in the case of online  experiments26. When predicting liking ratings from selected features from MIR and 
from the Soundgen toolbox, we observed that the best performing MIR model and the Soundgen model also 
could not account for much of the variance in liking ratings (Supplementary Table S3: marginal R2 = 0.024, 
conditional R2 = 0.227 for the best performing MIR model; marginal R2 = 0.025, conditional R2 = 0.223 for the 
Soundgen model). Here again, fitting the same models on a subset of 145 consistent participants also led to low 
prediction based on fixed effects (marginal R2 = 0.047, conditional R2 = 0.281 for the MIR model and marginal 
R2 = 0.052, conditional R2 = 0.273 for the Soundgen model). In summary, the acoustic features under study have 
been shown to be directly relevant to listeners when evaluating the technical aspects of singing performances 
(i.e., correctness) and spoken voice attractiveness. However, the modeling approach revealed their very limited 
role in predicting variance of singing preferences.

Perceptual features predict variance in singing preferences
To explore how much aesthetic appreciation of singing is grounded in perceptual features of the voices—how 
listeners perceive acoustic characteristics—we collected ratings of the stimuli on several perceptual features in a 
lab experiment. Forty-two participants rated the same 96 stimuli on 10 different scales (Fig. 2 and see "Methods" 
section for details; see Supplementary Figure S3 for the distribution of normalized ratings). They also provided 
liking ratings, allowing us to replicate the results of the online experiment in a controlled setting. Similar to the 
online experiment, the distribution of liking ratings was spread and a gradual pattern of average preferences 
emerged (Supplementary Figure S4b and c). Mean liking ratings per stimulus item correlated highly with the 
ones from the online experiment (r(94) = 0.85, p < 0.001; Supplementary Figure S4a). Also in line with the online 
experiment, fitting the acoustic, MIR and Soundgen models to the data of the lab experiment led to similarly 
low prediction (Supplementary Tables S4 and S5), that is, in both cases less than 3% of the variance in liking 

Figure 2.  Distribution of perceptual ratings collected in Experiment 2 (N = 42 participants), along with 
anchor words for each bipolar scale. The red line represents the mean rating, and numbers within brackets are 
Krippendorff ’s alpha inter-rater agreement based on within-participant normalized ratings (see Supplementary 
Table S6 for values of Krippendorff ’s alpha based on raw ratings).
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ratings could be explained based on fixed effects, and a larger proportion of variance was captured by random 
intercepts for participants and stimulus items.

The perceptual model (Fig. 3 and Supplementary Table S7) accounted for 43.4% of the variance in liking 
ratings based on fixed effects (marginal R2 = 0.433, conditional R2 = 0.588). This model includes as fixed effects 
the 10 collected perceptual features, melody, interactions between melody and articulation, pitch accuracy, 
resonance and vibrato; and random intercepts for singer, stimulus items (nested in singer) and participants, as 
well as random slopes for the effect of melody over participants. The coefficients of the perceptual model show 
that liking ratings were higher for stimuli perceived as more accurate in terms of pitch, with a full resonance, 
with some vibrato, with precise and soft vocal onsets and with somewhat fast tempi. There were interactions 
between melody and some of these features: the effect of pitch accuracy (preference for stimuli perceived as in 
tune) was more pronounced for the melody Over the rainbow (possibly because of the sustained octave jump 
in the beginning of the melody, making pitch inaccuracies particularly easy to detect). The effect of resonance 
(preference for “full” resonance) was more pronounced for the melody Don’t worry be happy. The effect of vibrato 
(preference for use of vibrato) was less pronounced and actually not significant for Over the rainbow, indicating a 
preference for use of (some) vibrato only for the Don’t worry be happy melody. Regarding the articulation effect 
(staccato–legato), its interaction with melody indicates preferences in opposite directions depending on the 
melody: liking ratings were higher as articulation ratings increased (that is, as stimuli were perceived as more 
legato) for Over the Rainbow, and in the opposite direction (that is, as stimuli were perceived as more staccato) 
for Don’t worry be happy. This is an interesting example of participants’ higher-level stylistic conceptions of how 
each melody should be performed influencing their liking ratings.

Definition of perceptual features
The discrepancy between the role of perceptual features and the quasi-non-existent role of acoustic features in 
liking of singing was surprising. To further understand how listeners rate perceptual features, we examined: 
(1) the inter-rater agreement for each scale; (2) the relationship between the perceptual and acoustic features, 
independently of the liking ratings; and (3) the role of participants’ characteristics in the use of acoustic and 
perceptual features.

Inter‑rater agreement
Inter-rater agreement in participants’ perceptual ratings was low, as shown by Krippendorff ’s α (αK—see 
Fig. 2, numbers between brackets, and see Supplementary Table S6 for comparison of αK values based on raw 
and normalized ratings). This is in line with literature reporting variably low agreement in perceptual rating 
tasks using music stimuli both with lay  listeners22,24 and  experts23. See Supplementary Table S6 for intra-class 
correlation coefficients (ICCs; single random raters, absolute values) as an alternative measure of agreement, 
to allow for direct comparison with other relevant studies of perceptual ratings of spoken (e.g.,24), and singing 
(e.g.,23) voices that also report ICCs. Note that ICC values were similar to αK reported in the main text. We also 
explored an alternative correlational measure of agreement, “mean-minus-one” (MM1), a leave-one-out type of 
agreement  measure11 that measures how much individuals agree with the group (see Supplementary Figure S5). 
This analysis showed that some participants agree a lot more with the average perceptual evaluation than others.

Figure 3.  Fixed effects estimates of perceptual model fit on data from Experiment 2 (N = 42 participants). All 
predictors are mean-centered and scaled by one standard deviation. Coefficients and their 95% confidence 
intervals are plotted. Note the group of reference for melody is Don’t worry be happy. ***p < 0.001; **p < 0.01, 
*p < 0.05.
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Association between perceptual ratings and acoustic features
Some of the perceptual features are presumably more directly linked to objective properties of the stimuli than 
others, with timbre (bright–dark) and resonance (thin–full) arguably as the most ‘metaphorical’ judgements 
participants were asked to make. At the other extreme are pitch accuracy, tempo, and loudness, which are directly 
related to acoustic measures of pitch interval deviation (relating to fo), speed of performance, and sound intensity, 
respectively. Indeed, even though inter-rater agreement of perceptual ratings was low, we found correlations 
between the mean perceptual ratings (averaged within each scale across all participants) and their corresponding 
acoustic parameters ranging from |.21| to |.68| (Supplementary Table S8). Note that the perceived amount of 
vibrato correlated with measurements of vibrato extent (that is, measurement of how wide the vibrato was), and 
not with measurements of vibrato rate (that is, how fast the vibrato was). We also explored individual differences 
in this association, by computing the same correlations but based on subsets of perceptual ratings by each 
individual participant (see Supplementary Table S9 for summary statistics of the individual correlation scores, and 
Supplementary Figure S6). The range of these individual correlations was very wide (e.g., for tempo, they ranged 
from − 0.20 to 0.63). Importantly, in all cases where we describe an association between mean perceptual ratings 
and acoustic measurements, there were certain individuals for which correlations with acoustic measurements 
were higher (or lower) than the overall correlations with mean perceptual ratings. For pitch interval deviation, for 
instance, the overall correlation with mean perceptual ratings was − 0.20, but for one participant it reached − 0.39. 
We refer to these individual correlation scores between a participant’s perceptual ratings and the corresponding 
acoustic measurement as “acoustic sensitivities”, and used these values in exploratory analyses in relation to other 
participants’ characteristics. Interestingly, we found that participants’ "acoustic sensitivity" correlates with their 
individual MM1 values in the corresponding scale (i.e., with how much the individual agrees with the group in 
that particular scale): for loudness: r(39) = 0.50; tempo: r(39) = 0.56; vibrato: r(39) = 0.75; breathiness: r = − 0.82 
(all ps < 0.001); but for pitch accuracy this did not reach significance: r(39) = − 0.18, p = . 272). Even though the 
relationship between acoustic measurements and perception is reportedly not that straightforward (see, for 
instance,23,27,28), it makes sense that participants agreed more with the group perceptual evaluation when their 
perceptual ratings were more correlated with the corresponding acoustic measurements (or when they were 
more "correct"). Accordingly, we also found a positive association between participants’ music sophistication, 
as measured by the Gold-MSI29, and participants’ “acoustic sensitivity” for vibrato and breathiness. That is, more 
musically sophisticated individuals also seem to be more “sensitive” or “objective” when rating the amount of 
vibrato and the degree of breathiness of singing performances. Considering that lay listeners are sensitive to pitch 
interval  deviation20, we expected all participants to rely on pitch interval deviation and thus a limited relationship 
between pitch accuracy and music sophistication, which appears to be the case, with a correlation not reaching 
significance—though it is in the expected direction (− 0.19).

Individual differences in singing appreciation
To explore individual differences in the role of acoustic and perceptual attributes of the stimuli in singing 
voice appreciation, we fit individual models for each participant from the lab experiment using multiple linear 
regression (lm function in R). As before, one model (the acoustic model) includes the acoustic features and one 
(the perceptual model) includes the perceptual features as predictors. As can be seen in Fig. 4, the resulting 
adjusted  R2 values obtained for each participant (referred to here as individual level of prediction) were larger 
for the perceptual model than the acoustic model (acoustic model: range from − 0.07 to 0.44, M = 0.09, SD = 0.10; 
perceptual model: range from 0.16 to 0.85, M = 0.6, SD = 0.17; paired t-test t(41) =  − 19.9, p < 0.001).

We also conducted exploratory analyses examining the relationship between the individual level of prediction 
achieved with the perceptual model (as indicated by the individual adjusted  R2 values resulting from the previous 
analysis) and participants’ characteristics. To do so, we fit a multiple regression model predicting the individual 
level of prediction achieved with the perceptual model—that is, the (Fisher z-transformed) adjusted R2 values 
calculated for each participant—from the following participant information, collected via questionnaires: general 
music sophistication, as measured by the Gold-MSI29; the Big-5 personality traits, as measured by the ten-item 
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Figure 4.  Distribution of adjusted  R2 values of the acoustic and perceptual models fit individually for each 
participant of the Experiment 2 (N = 42 participants). Lines connect values obtained for each participant; 
diamonds depict the mean value of each distribution. Lower and upper hinges correspond to the first and third 
quartiles, and whiskers extend from the hinge to 1.5 * inter-quartile range (Tukey-style boxplot).
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personality inventory (TIPI;30, in a German  version31); music preferences in terms of the five dimensions of 
the MUSIC model, as measured by the STOMP-R32; participants’ average individual MM1 value (across the 10 
perceptual scales); participants’ average “acoustic sensitivity” (across the five selected scales); and participants’ 
age. The final, reduced model (Supplementary Table S10; see "Methods" section and accompanying .Rmd files for 
details) indicated that the level of prediction obtained with the perceptual model was higher for more musically 
sophisticated participants, as well as for older participants; and it was lower for participants with a preference 
for Mellow music (that is, these participants based their liking ratings less on perceptual attributes of the voices). 
See Supplementary Table S11 for summary statistics and Supplementary Figure S7 for a correlation matrix of 
participants’ characteristics.

Discussion
We investigated singing voice preferences by attempting to separate the relative contribution of objective stimulus 
features (estimated through acoustic analyses) from (subjective) internal processes on the listener’s side. We 
asked participants how much they liked singing performances, and modelled liking ratings based on acoustic 
and perceptual features of the stimuli. We found large individual differences in participants’ preferences, as 
shown by the highly spread distribution of liking ratings for each stimulus and by the low inter-rater agreement. 
Nevertheless, even though both experiments differed in terms of setting (online or in the lab) and sampled 
population (USA-based or Germany-based), we found that mean liking ratings between experiments were highly 
correlated, suggesting that, at least to some extent, the average preferences that emerged were in fact grounded 
in attributes of the stimuli.

The modeling analysis showed that the predictors included in the acoustic model, although carefully selected 
based on previous related research, could not explain the variance in liking ratings. Note that (spoken) voice 
attractiveness has been strongly linked to acoustic features of the voices—for instance, Babel et al.16 could predict 
54% of the variance in voice attractiveness ratings based on acoustic parameters (fo, formants, jitter, shitter, CPP, 
energy and tilt measures) of female voices. In our study, even adding a large number of low-level features from 
Music Information Retrieval and from the Soundgen package (dedicated to human nonverbal vocalizations) 
as predictors did not increase the proportion of variance explained. Of course, we did not exhaustively explore 
all relevant features of the stimuli that might play a role in participants’ aesthetic appreciation, but MIR and 
Soundgen are assumed to provide a wide range of features, which have been successfully used in different settings 
(e.g.:33–39).

On the other hand, the perceptual model, based on ratings of different perceptual attributes of the voice 
stimuli, accounted for around 43% of the variance in liking ratings. In other words, the acoustic features 
themselves did not play a significant role in liking ratings, while the perception that listeners had of acoustic 
characteristics did. Admittedly, some of the perceptual scales we presented to participants were metaphorical and 
presumably demanded more top–down processing than others; hence, they could (arguably) be more affected 
by individual differences in participants’ internal processing (e.g.: expertise) than others. Extreme examples 
of this would be the scales for resonance (thin–full) and timbre (dark–bright), which demanded a higher 
level of abstraction than scales directly related to a particular physical dimension, like pitch accuracy (out of 
tune–in tune), tempo (slow–fast) and loudness (quiet–loud), which relate perceptually to fo accuracy, speed of 
performance and sound intensity, respectively.

The associations between acoustic measurements and corresponding average perceptual ratings were between 
low (r = .− 21 for pitch accuracy) and moderate (r = − 0.61 for breathiness). This is in line with previous research 
showing variable alignment between acoustic/MIR descriptors and human perceptual  ratings22,23,40,41. Inspection 
of individual correlation scores (referred to here as “acoustic sensitivities”) shows a wide range of variation 
across participants, with some of them showing higher (or lower) individual scores than what is reported for 
the group as a whole. Exploratory analysis showed that individuals with higher “acoustic sensitivity” also agreed 
more with the average group evaluation (as measured by individual MM1scores); and that individuals with 
higher “acoustic sensitivity” for perception of breathiness and vibrato in singing performances scored higher on 
music sophistication, as measured by the Gold-MSI. These findings highlight the role of individual differences 
in perception. On the other hand, the limited alignment between perceptual ratings and acoustic estimates may 
also be related to the limited variance of the acoustic properties themselves in the stimulus set. For instance, the 
singing performances (by highly trained singers) had remarkably good pitch accuracy: the average pitch interval 
deviation across all performances was 22 cents (SD = 11, min = 5.4, max = 55), which is under the threshold of 
mistuning perception for a large part of the  population20. In the case of loudness, to avoid possible confounds 
of loud performances overly influencing liking of our singing  stimuli42,43, we loudness normalized all singing 
performances to the same level of − 14 Loudness Units relative to Full Scale (LUFS). So, similarly as for pitch 
interval deviation, the narrow range of loudness variation in the stimuli likely limited participants’ performance 
in detecting these not so drastic differences across stimuli.

We found low inter-rater agreement both in liking ratings of both experiments and in perceptual ratings 
of Experiment 2. The low inter-rater agreement could, to some extent, be related to the previously mentioned 
relative homogeneity of the stimulus set: it would be easier for participants to agree in their pitch accuracy 
ratings if there were big differences in pitch accuracy between performances. The low inter-rater agreement 
could also potentially be linked to participants’ confusion about what the terms meant, though participants 
were thoroughly instructed about the definition of each perceptual feature, and studies suggest that untrained 
listeners are able to evaluate  spoken44 as well as singing  voices24 if suitable scales are made available to them. For 
instance, using the Geneva Voice Perception Scale  (GVPS44), listeners without any specific training were able to 
rate (spoken) voices in terms of loudness, pitch, sharpness, intonation, roughness, articulation, among others, 
though with sizeable differences in reliability estimates across scales (single measure ICCs ranging from 0.31 for 
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roughness to 0.85 for loudness).  Merrill24 investigated untrained listeners’ abilities to rate singing voices from 
selected excerpts of popular songs, and reported an average ICC measure of 0.39 for nine relevant features, again 
with sizeable differences across scales ranging from negative values for pitch (− 0.44) and articulation precision 
to higher values for noise (0.54) and tension (0.57). Interestingly, the scales introduced by these studies with 
untrained listeners led to higher inter-rater agreement than what was reported by Lange and  Frieler23 among 
experts (sound engineers) rating perceptual features of contrasting music stimuli, with a mean (in the case, 
also comparable to ICCs) αK of 0.28 for 16 perceptual variables and a mean αK of 0.19 for six emotion-related 
perceptual variables. Generally, individual differences in the use of (subregions of) scales may also drive some of 
the lack of consistency across raters (i.e., potentially different profiles of raters,  see22). We found that normalizing 
ratings within participant reduced the variance captured by random intercepts in the linear mixed models 
considerably, though with no impact on the achieved prediction based on fixed effects.

Music preferences are affected by listeners’ cultural backgrounds and social influences such as the projection 
of one’s  identity45,46, and are influenced by  age47,  expertise48 and past  experience49. Further, music preferences 
depend on and convey personality  traits32,50, and recent studies have linked psychological traits and preferences 
for certain low- and high-level musical  features51–53. In light of this broad literature, we also explored the influence 
of participants’ characteristics on their use of perceptual features to evaluate singing performances, and found 
that prediction of liking based on perceptual features was higher among more musically sophisticated and older 
participants, and lower among participants with a preference for Mellow music (which, according to the MUSIC 
 model32, is slow, quiet and not distorted; associated with the music genres soft rock, R&B and adult contemporary; 
and perceived as romantic, relaxing and not aggressive). One could speculate that the higher prediction of 
liking based on perceptual features among more musically sophisticated participants might be linked to higher 
perceptual skills and/or higher reliance on such skills.

One limitation of these brief explorations comes from the relative (musical) homogeneity of our stimulus 
set, which limits the opportunity for large perceptual differences in the music material (i.e., only two contrasting 
melodies). Note that this relative homogeneity from a broader musical point of view was a conscious choice 
on our part, aimed at emphasizing the variability in the voices in the set. We used high quality, enjoyable 
naturalistic singing performances, with 16 singers providing three takes for each of two contrasting melodies, 
encouraging participants to focus primarily on perception of the voices themselves rather than the melodies. 
Additionally, we made the decision not to (attempt to) record amateur or untrained singers due to the challenges 
associated with satisfactorily performing these melodies a cappella. Including less polished performances 
could increase the variability in the stimulus set and the generalizability of findings  (see54 for an example of 
a large-scale online approach to collect vocal productions cross-culturally and in the general population). In 
any case, our finding of consistent average preferences for certain singers across two experiments involving 
participants from two different countries indicates that there was sufficient variability in the stimulus set to 
elicit considerable preferences. One further limitation of our stimulus set is that both melodies were likely well 
known to participants. As an example, the interaction between melody and articulation ratings (indicating an 
overall preference for staccato performances for the melody Don’t worry be happy, and for legato performances 
for the melody Over the rainbow) suggests that participants had certain expectations on how these melodies 
should be performed. Familiarity  effects49 may have influenced participants’ enjoyment of performances in 
different and unexpected ways. In future studies, it would be desirable to investigate aesthetic preferences with 
a more varied stimulus set and using novel melodies to control for such familiarity effects, and to increase the 
generalizability of findings.

While the aesthetic appreciation of singing performances can certainly be approached from the perspective 
of their musical features, it is also subject to specificities of the voice as a special type of stimulus: beyond 
supporting speech in interpersonal communication, a person’s voice can also indicate personality  traits55–57 
and emotional  states58. The conceptual structure of the aesthetic appreciation of voices differs from conceptual 
representations underlying other domains of  aesthetics59: the category of beauty is also prevalent, but not among 
the most frequent adjectives used; and the three dimensions determinant of voice preferences described in that 
study—pitch (deep/high), loudness (quiet/loud) and vocal quality (soft/rough)—were not found in studies on 
the conceptual structure of aesthetics of objects, music or visual arts. Considering the wider role of the voice as 
a sociobiological signal, it would be interesting to further explore the similarities and specificities of the aesthetic 
appreciation of spoken and singing voice in an integrated way. For instance, Valentova et al.60 reported high 
correlations between attractiveness ratings of matched spoken and sung voices by naïve participants singing 
excerpts of Happy birthday and national anthems, and even argued that singing and speaking may serve as 
redundant “backup signals”, both cuing body traits and reproductive fitness. Further studies could expand these 
finding by investigating the aesthetic appeal of a broad range of contrasting but matched vocalizations (i.e., 
produced by the same voices).

The famous saying “beauty is in the eye of the beholder”—or perhaps “beauty is in the auditory system 
of the listener”—illustrates a long-standing debate about the relative contribution to aesthetic appraisals of 
stimulus features versus processing on the listener’s side. Our finding that mean liking ratings correlated highly 
between participant samples from Germany and the USA hints at cross-cultural average preferences, presumably 
based (to some extent) on attributes of the stimuli. However, one should keep in mind that both these samples 
come from Western, educated, industrialized, rich, and democratic  (WEIRD61) nations. It would be desirable to 
investigate singing voice preferences in other populations, ideally including non-WEIRD populations (as well as 
using stimuli material in other styles and/or from multiple cultures to increase the generalizability of findings). So 
far, our results suggest that, in the case of the singing voice, preferences depend substantially on both attributes 
of the performances and on listeners’ characteristics, but this relationship is a complex one: liking ratings do not 
rely on acoustic features of the voices per se but on how the voices are perceived by participants.
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Materials and methods
Material used in both experiments
Recordings of pop singing
Singers. Sixteen highly trained female singers whose age ranged from 19 to 56 years old, with an average of 
26.18 (SD = 9.63), were invited at the Berklee College of Music in Boston, USA. The average length of vocal 
training among participants was 9.47 years (range: 1 to 29 years, SD = 7.12), while the average length of musical 
instruments training was 11.77 years (range: 0 to 30 years, SD = 7.8).

Selected songs. Each singer was asked to perform the songs Don’t Worry Be Happy, by Bobby McFerrin, and 
Over the Rainbow, by Harold Arlen, without lyrics and in a /u/ sound. Each singer recorded between four and 
seven takes of each melody. For each melody, we selected three takes from each of the 16 singers for acoustic 
analysis and subsequent use in the experiment. The stimulus material thus comprised 48 excerpts of each melody, 
for a total of 96 stimuli, all lasting between 6 and 9 s.

Recording procedure. After receiving instructions and signing the consent form, singers were invited to warm 
up their voices for 3 to 5 min. They were then asked to sing the theme of Don’t Worry Be Happy (which is whistled 
in the original song—Fig. 1A) five times. They were then asked to sing the first phrase of the refrain of Over the 
Rainbow five times (Fig. 1A). The starting pitch height (E5 or E4) was played before each recording. Recordings 
took place in a sound attenuated booth, using a Neumann (U87) microphone placed at approximately one meter 
in front of the singer’s mouth; with 16 bits per sample and 48 kHz sampling rate.

Audio processing and stimulus selection. For each singer, we selected three takes of each melody for further 
processing and use in the experiment. Stimuli were cut using Audacity software (version 2.3.3). All stimuli were 
normalized to the same loudness level of -14LUFS according to the EBU-R128 standards with the software To 
Audio Converter (Version 1.0.14(902)).

Acoustic analyses. The procedures to segment performances into individual notes and calculate vibrato rate, 
vibrato extent and energy distribution are extensively described  in19,62,63 and are described succinctly here. 
Using AudioSculpt 2.9.4v3 software (IRCAM, Paris, France), we first manually placed markers on boundaries 
of individual notes and used this information to segment each singing performance into individual notes with 
a sox script. Acoustic analysis was then conducted based on individual notes. Using OpenMusic 6.3 software 
(IRCAM, Paris, France), we focused on one note per performance (the last note of the Don’t Worry Be Happy 
excerpt, a F3 sharp, and the first note of Over the Rainbow excerpt, an E3) to calculate vibrato rate, vibrato 
extent and energy distribution. Vibrato rate corresponds to the number of quasiperiodic modulations of the fo 
per second (in Hz). Vibrato extent corresponds to the amplitude of the fo variations within the same tone (in 
cents). The energy distribution measure is the ratio of the energy of the 2.4–5.4 kHz band divided by the energy 
across the 0–10 kHz band—the rationale behind this computation is that a high score in the energy distribution 
variable indicates a strong reinforcement of the band containing the singer’s formant. We used  Praat64 (Version 
6.0.46), to extract: mean fo; jitter (local), the perturbation in the fo from cycle to cycle; and shimmer (local), the 
perturbation in the amplitude of the fo from cycle to cycle. Additionally, features relevant to the description 
of spoken voice were extracted using  VoiceSauce65, following Babel et al.16 and Bruckert et al.17: spectral tilt, a 
measure of voice quality, where higher values of tilt indicate breathier voices and lower values of tilt indicate 
 creakiness66. We computed the amplitude of the first harmonic minus the amplitude of the second harmonic 
(H1–H2), and the longer distance measure of the first harmonic minus the peak amplitude of the first, second, 
and third formants (H1–A1, H1–A2 and H1–A3, respectively, both corrected and uncorrected, exploratorily). 
We also extracted the Harmonic-to-Noise ratio (the ratio between periodic and non-periodic components of a 
speech sound; the higher the HNR, the less hoarse a voice  sounds67 in the 0–3.5 kHz range (HNR35); and the 
Cepstral Peak Prominence (CPP), a measure of breathiness and overall  dysphonia68. To measure how accurate 
performances were in terms of pitch, based on mean fo of each individual note, we converted fo values from 
Herz to cents (100 cents corresponds to one semitone; the reference lowest note used was 261.626 Hz); and then 
computed successive pitch interval deviations by subtracting the fo of adjacent notes and comparing values to 
“correct” pitch intervals (i.e., according to musical notation). For example, if the interval between two successive 
notes of a melody should form a major second (which corresponds to an interval of 200 cents), and a singer 
made a quarter-tone mistake, i.e. if she sang an interval of 150 or 250 cents, we considered that the error was 
50 cents in relation to the expected interval. We finally averaged the pitch interval deviation per performance. 
This procedure has been used and validated in several previous  studies19,21,62,69. Note that we noticed imprecision 
in estimates of mean fo for some very short notes, so we excluded the fourth note of Over the rainbow and the 
seventh note of Don’t worry be happy from pitch interval deviation computations. Please see Supplementary 
Figure S8 for a demonstration of this. For jitter and shimmer, we noticed numerous aberrant values for very short 
notes, indicating measurement imprecision on such short notes, so we trimmed values higher than two standard 
deviations above the mean value (for each of these two features). This meant excluding 5% of all measurements 
for shimmer and 2.86% for jitter. We also computed average tempo of each performance as the excerpt’s length 
divided by the number of beats. A summary of the acoustic properties of the voice stimuli used in the study 
is presented in Supplementary Table S1 (also see Supplementary Figure S2 for boxplots of these measures). A 
correlation matrix of acoustic features included in the acoustic model and liking ratings from both experiments 
is reported in Supplementary Figure S9.
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Batch extraction of further acoustic/MIR features. To further characterize our stimulus set and based on 
whole performances, we also analyzed our stimuli using features from  Soundgen25, an open-source toolbox for 
voice synthesis, manipulation, and analysis, published as a library (package) for the R programming language; 
 MIRToolbox70, a Matlab toolbox for music information retrieval (MIR); and  Essentia71, an open-source 
C +  + library for music information retrieval. From Soundgen, we used the analyze function to batch extract 
several acoustic features. From the output of 156 features (presented as mean, median, and standard deviation 
summaries per file), we excluded median statistics and voiced_ alternatives because they were highly correlated 
with their equivalent mean statistics and general correspondent measures, respectively. This led to a core 
subset of 54 features: amEnvDep_mean, amEnvDep_sd, amEnvFreq_mean, amEnvFreq_sd, amMsFreq_mean, 
amMsFreq_sd, amMsPurity_mean, amMsPurity_sd, ampl_mean, ampl_sd, CPP_mean, CPP_sd, dom_mean, 
dom_sd, entropy_mean, entropy_sd, entropySh_mean, entropySh_sd, flux_mean, flux_sd, fmDep_mean, 
fmDep_sd, fmFreq_mean, fmFreq_sd, harmEnergy_mean, harmEnergy_sd, harmHeight_mean, harmHeight_
sd, HNR_mean, HNR_sd, loudness_mean, loudness_sd, novelty_mean, novelty_sd, peakFreq_mean, peakFreq_
sd, pitch_mean, pitch_sd, quartile25_mean, quartile25_sd, quartile50_mean, quartile50_sd, quartile75_mean, 
quartile75_sd, roughness_mean, roughness_sd, specCentroid_mean, specCentroid_sd, specSlope_mean, 
specSlope_sd, subDep_mean, subDep_sd, subRatio_mean, subRatio_sd. For the two other libraries of MIR 
features (MIRToolbox and Essentia), we focused on low-level features, since higher-level features would not 
vary significantly across our two types of short a cappella melody excerpts. From the MIRToolbox, we extracted 
the following features: low_energy, spec_entropy, brightness, flatness, zerocross, pitch, roughness, mirtempo, 
rolloff85, rms, rolloff95, spread, skewness, regularity, flux_med, keyclarity, flux, kurtosis, mode, subband (1–10), 
mfcc (1–10), centroid, pulse_clarity, harmonic_change, fluctuation_max, spectral_novelty. Note that subband 
and mfcc refer to 10 spectral subbands. For each feature, an average value and standard deviation were extracted, 
adding up to a total of 80 variables (since for some std variables extraction failed, as well as for mfcc1_mean 
and mfcc_std). From Essentia, we used the out-of-box executable streaming extractor freesound (https:// 
essen tia. upf. edu/ frees ound_ extra ctor. html) to extract the following low-level features: average_loudness, 
barkbands_kurtosis, barkbands_skewness, barkbands_spread, dissonance, hfc, pitch, pitch_instantaneous_
confidence, pitch_salience, silence_rate_20dB, silence_rate_30dB, silence_rate_60dB, spectral_complexity, 
spectral_crest, spectral_decrease, spectral_energy, spectral_energyband_high, spectral_energyband_low, 
spectral_energyband_middle_high, spectral_energyband_middle_low, spectral_entropy, spectral_flatness_db, 
spectral_flux, spectral_rms, spectral_rolloff, spectral_skewness, spectral_spread, spectral_centroid, spectral_
kurtosis, spectral_strongpeak, zerocrossingrate, barkbands (01–27), frequency_bands (01–27), gfcc (01–13), 
mfcc (01–13), scvalleys (01–06), spectral_contrast (01–06). Note that barkbands and frequency_bands refer 
to 27 spectral subbands, gfcc and mfcc refer to 13 spectral subbands, and scvalleys and spectral_contrast to six 
subbands. For each feature, an average value and standard deviation were extracted, and in some cases also the 
variance of the derivative of a feature (dvar), adding up to a total of 327 features. Note that features were highly 
correlated with each other: see Supplementary Information (Supplementary Methods: Selecting features from 
Music Information Retrieval) and accompanying .Rmd files for details and strategies used to subset features and 
subsequently model liking ratings based on Soundgen and MIR features.

Methods specific to experiment 1
Participants
Recruited from Amazon Mechanical Turk (https:// www. mturk. com), a total of 330 participants (180 male, 147 
female, 3 undisclosed, M = 38.3 years old, SD = 11.6) completed the whole experiment online. All participants 
provided informed consent in accordance with the Max Planck Society Ethics Council approved protocol 
(application 2018–38) and were paid at a US $9/hour rate according to how much of the experiment they 
completed.

Procedure
Experiment 1 was designed and implemented using PsyNet (https:// www. psynet. dev), a Python package for 
performing complex online behavioral experiments at large  scale72. PsyNet is based on the Dallinger framework 
(https:// dalli nger. readt hedocs. io) for hosting and deploying experiments. Participants interact with the 
experiment via a web browser, which communicates with a back-end Python server cluster responsible for 
organizing the experiment and communicating with participants. The server cluster was provisioned using 
Heroku.

Audio pre-screening task. Before starting the rating task, participants completed an audio pre-screening  task73 
to ensure they were wearing headphones and could perceive subtle sound differences. This three-alternative 
forced-choice task consisted in identifying the quietest of three tones. These tones are constructed to elicit a 
phase cancellation effect, such that when played on loudspeakers, the order of quietness changes, causing the 
participant to respond incorrectly. Participants passed the test only after answering correctly to at least four of 
the six trials.

Liking rating task. Participants were asked to rate how much they liked singing performances. In each trial, a 
melody excerpt was played, followed by a screen with the question: How much did you like this performance? 
Participants responded with a mouse on a graphic display of a scale ranging from 1 (not at all) to 9 (a lot). The 
next trial began immediately after this response. Each participant rated two blocks of performances, one for each 
melody, in counterbalanced order. Each block was composed of 16 performances of one melody, each performed 
by a different singer, followed by 8 repetitions, that were used exclusively in a test–retest consistency analysis.

https://essentia.upf.edu/freesound_extractor.html
https://essentia.upf.edu/freesound_extractor.html
https://www.mturk.com
https://www.psynet.dev
https://dallinger.readthedocs.io
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Participants’ information. After the two blocks of trials, participants answered 15 questions from a shortened 
scale of General Music Sophistication of the Goldsmiths Music Sophistication Index, (items: AE_01, AE_02, 
EM_04, MT_02, MT_03, MT_06, MT_07, PA_04, PA_08, SA_01, SA_02, SA_03, SA_04, SA_05, SA_06)29. 
Finally, participants were asked whether they liked the experiment (open field answers). Answers were mostly 
positive, with 95.8% of the participants answering “Yes”, 0.9% answering “No”, 0.9% answering some type of 
mixed response one could summarize as “partially”, and 2.4% providing no answer.

Statistical analyses
All analyses were performed using R Statistical Software (version 4.1.2)74 and R Studio (version 2023.06.0 + 421)75. 
Four participants were not included in further analysis (three participants rated all stimuli “1” and one participant 
rated all stimuli “8” or “9”), leaving a total of 326 participants.

Intra‑rater agreement
To analyze the consistency of participants’ ratings, we used the 16 stimuli that were presented twice for each 
participant (8 from each melody), and calculated a Pearson’s correlation score between first and second 
presentation for each participant.

Normalization of ratings
To account for different rating strategies (i.e., different sections of the scale being used by individual participants), 
we normalized ratings within each participant between 0 and 1. As expected, the original 9-point scale raw 
ratings and the normalized ratings were highly correlated (r = 0.87, p < 0.001). Also note that fitting models 
based on normalized instead of raw ratings only affected the amount of variance explained by random effects 
(specifically, captured by subjects’ random intercepts), but did not have any meaningful impact on the amount 
of prediction by the fixed effects: fitting the same acoustic and MIR models to predict raw liking ratings instead 
of (within-participant) normalized liking ratings produced similar marginal  R2 values (please see Supplementary 
Table S12 for this comparison).

Inter‑rater agreement
In order to examine inter-rater agreement, we used Krippendorff ’s alpha (αK)76,77, a generalization of several 
known reliability indices, where an αK = 1 indicates perfect agreement and αK = 0 indicates no agreement at all. 
We used the kripp.alpha function from the irr R  package78.

Predicting liking from acoustic descriptors
Different linear mixed effects analyses were proposed using the lmer function from the lme4  package79. For all 
models reported, residual plots and QQ-curves were visually inspected to make sure there were no deviations 
from normality or homoscedasticity, and p-values were obtained by likelihood ratio tests of the full model with 
the effect in question against the model without the effect in question. Variance inflation factor (VIF) was under 
5 for all predictors kept in the models. Predictors were mean-centered and scaled by one standard deviation 
before model fitting. Note that the analyses of the online experiment included the 32 trials per subject (16 from 
each melody) but not the repeated trials, which only served the purpose of consistency analysis. The null model 
predicted (within-participant normalized) liking ratings and included only random effects (random intercepts 
for subjects and stimuli items nested in singers). The acoustic model also included as fixed effects predictors 
shown to be relevant in studies of perception of pitch  accuracy19,21,80 and voice  attractiveness17: pitch interval 
deviation, vibrato extent, vibrato rate, energy ratio, tempo and harmonics-to-noise ratio, jitter, shimmer and the 
voice quality measure CPP. Note that the tilt measures H1–H2, H1–A1, H1–A2 and H1–A3 were not included 
in the model due to multicollinearity issues. A second set of linear mixed models, referred to as MIR models, 
was fit to predict (within-participant normalized) liking ratings from subsets of low-level MIR features, with 
subjects and stimuli items (nested in singers) as random effects. Since MIR features were highly correlated with 
each other, we first explored three different approaches to subset them and then fit three linear mixed models 
based on the resulting subsets of features. We also fit one separate model based on features from the Soundgen 
toolkit. Please see the Supplementary Information (Supplementary Methods: Selecting features from Music 
Information Retrieval/ Selecting features from the Soundgen package) and accompanying .Rmd files for details 
about feature reduction and model selection.

Method specific to experiment 2
Participants
Forty-two participants (26 female, 16 male), aged from 22 to 75 years old (M = 36.8, SD = 16.1), completed the 
whole experiment. The experimental procedure was ethically approved by the Ethics Council of the Max Planck 
Society, and was undertaken with written informed consent of each participant.

Procedure
The experiment was implemented in  Labvanced81. Participants were tested on a computer located in the 
laboratories of the Max Planck Institute for Empirical Aesthetics in Frankfurt, Germany. The liking rating 
scale and the perceptual evaluation scales were presented on the same screen, in German, together with the 
experimental stimuli to rate. As in the online experiment, participants rated how much they liked each singing 
performance on a scale from 1 (not at all) to 9 (a lot).
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Perceptual ratings. Particular to Experiment 2 were perceptual ratings: we developed a series of scales relative 
to perceptual attributes shown to be relevant in the appreciation of singing. Perceptual attributes were rated 
on bipolar scales ranging from 1 to 7 and displaying contrasting anchor words on each pole. The scales, their 
bipolar anchors and the definition presented to participants were the following (translated to English here): Pitch 
accuracy (in tune–out of tune): how precise is each note along the melody—is the performance in-tune or out-
of-tune? Loudness (soft–loud): the magnitude of the auditory sensation: is the voice quiet or loud? Tempo (slow–
fast): the speed or pace of the performance—is the performance slow or fast? Articulation (staccato–legato): how 
notes are connected to each other—are notes detached (staccato) or connected (legato)? Breathiness (not at all–a 
lot): the amount of air flow in the voice—how breathy does the voice sound? Resonance (thin–full): the fullness 
or reverberation of a voice: how full is the voice? Timbre (dark–bright): the perceived sound quality of the voice: 
does the voice sound dark or bright? Attack/Voice onset 1 (soft–hard): the way in which a note begins—is the 
start of notes soft or hard? Voice onset 2 (precise–imprecise): the way in which a note begins—is the start of notes 
precise? Vibrato (not at all–a lot): A slight and periodic oscillation of the pitch of a sustained note—how much 
vibrato does the performer use? Please see Supplementary Table S13 for the German version of these scales 
and instructions used in the experiment. There was also one question about the vocalic sound produced by the 
singer, because even though they were asked to sing in an /u/ sound, in many cases the produced vowel wasn’t 
that clear or constant, and we hypothesized this could influence participants’ liking. Therefore, participants also 
had to indicate what was the dominant vowel sound perceived in each stimulus in a forced choice response. 
Participants indicated perceiving a /u/ sound in 53.4% of trials; a /a/ sound in 16.2% of trials; a /o/ sound in 
10.8% of trials; a /i/ sound in 1.54% of trials; and an unclear vowel sound in 18% of trials. Note that this predictor 
was later found insignificant during the modeling analysis and dropped from the perceptual model.

The experiment was divided into six blocks (three per melody). Half of the participants started with the three 
blocks for Over the Rainbow, half with the opposite order. Each block comprised 16 trials, corresponding to one 
take by each of the 16 singers, presented in a randomized order. The order of these three blocks within each 
melody was counterbalanced across participants. Following the general instructions, we presented the definitions 
of the scales and five examples they could listen to. For each experimental stimulus, participants could click on 
the “play” button as many times as they wanted to and listen to the stimulus again as they rated 10 bipolar scales, 
the scale for liking and the forced-choice question for dominant vowel. The next page was proposed and viable 
when all scales and the vowel question were completed and participants pressed the “next” button. Half-way 
through the experiment (i.e., between the 3 blocks of the first and the second melody), participants completed 
three questionnaires (see below). Participants completed the experiment at their own pace and took between 
1.5 and three hours to complete the experiment. They could take a break at any desired moment, and additional 
breaks were included between blocks of trials.

Participants’ information. In addition to providing biographical data, participants completed three 
questionnaires:

1) The 18-items subscale of Music Sophistication from the Goldsmiths Music Sophistication  Index29 in German, 
as computed in the Gold-MSI configurator (https:// shiny. gold- msi. org/ gmsic onfig urator; items included: 
AE_01, AE_02, AE_05, AE_07, EM_04, MT_01, MT_02, MT_03, MT_06, MT_07, PA_04, PA_08, SA_01, 
SA_02, SA_03, SA_04, SA_05, SA_06)

2) The Ten-Item Personality Inventory (TIPI), a short self-report measure of the Big-Five personality 
 domains30, in the German  version31. Each of the five personality dimensions—Extraversion, Agreeableness, 
Conscientiousness, Emotional stability (or Neuroticism) and Openness to new experiences—was measured 
by two items, selected from the high and low poles of each domain. Each question presented two central 
descriptors, and participants had to rate on a scale from 1 (disagree strongly) to 7 (agree strongly) how much 
those two traits applied to them.

3) The Reviewed Short Test of Music Preference (STOMP-R), a short self-report inventory for musical 
 preferences32;  see82 for a German validation). Rentfrow et al.32 suggested a latent 5-factor structure underlying 
music preferences, which they named the MUSIC model (Mellow, Unpretentious, Sophisticated, Intense 
and Contemporary). Participants were asked to indicate their preferences for 23 different music genres on 
a 7 point scale (dislike strongly, dislike moderately, dislike a little, neither like nor dislike, like a little, like 
moderately, like strongly). To compute each participant’s preference for each dimension (see instructions 
retrieved from the author’s website: https:// www. psd. psych ol. cam. ac. uk/ proje cts- measu res), we averaged 
scores within the following genres: Dance/Electronica, New Age, World (Mellow); Pop, Country, Religious 
(Unpretentious). Blues, Jazz, Bluegrass, Folk, Classical, Gospel, Opera (Sophisticated); Rock, Punk, 
Alternative, Heavy Metal (Intense); Funk, Rap/hip-hop, Reggae, Soul/R&B (Contemporary). As  in47, we 
excluded the genres Soundtrack and Oldies from analysis because they load on different dimensions. We 
instructed participants to leave blank the genres they did not know.

Statistical analyses
Normalization of ratings. As in Experiment 1, we normalized all collected ratings within-participant (between 
0 and 1) to account for individual differences in the use of subregions of the rating scales. Raw and normalized 
ratings were highly correlated (r = 0.95 for liking; r > 0.92 for all perceptual scales; please see Supplementary 
Figure S3 for the distribution of normalized perceptual ratings). Note that also for data from Experiment 2, 
fitting our models based on raw versus normalized ratings leads to similar prediction based on fixed effects, and 
only meaningfully impacts the variance captured by random effects (please see Supplementary Table S12 for this 
comparison).

https://shiny.gold-msi.org/gmsiconfigurator
https://www.psd.psychol.cam.ac.uk/projects-measures


12

Vol:.(1234567890)

Scientific Reports |         (2024) 14:8977  | https://doi.org/10.1038/s41598-024-58924-9

www.nature.com/scientificreports/

Inter-rater agreement. Once again, we examined inter-rater agreement with αK, but we also computed 
intraclass correlation scores (ICC2 or single random raters, absolute values), using the ICC function in the 
psych R  package83, to facilitate comparison with other studies reporting this agreement measure. We also 
computed “mean-minus-one” agreement. To compute MM1, a Pearson correlation is computed between a given 
participant’s set of ratings and the average ratings of all other participants. This is done for all participants in 
the sample. The resulting individual correlations are first converted to z scores (to reduce bias in  estimates84), 
averaged and converted back into an r score for easier interpretation of the final MM1 measure. We calculated 
MM1 agreement for liking and for each of the perceptual scales separately (Supplementary Figure  S5), and 
were not primarily interested in the overall MM1 index per perceptual scale per se, but on the distribution of 
individual MM1 values (i.e., for each participant): both the individual MM1 scores in each scale and one average 
value per participant (computed across all 10 perceptual scales) were used in exploratory analyses, in relation to 
other participant-related data.

Relationship between acoustic measurements and perceptual ratings. We computed Pearson correlations 
between our acoustic measurements (in some cases taken from the toolboxes MIRToolbox, Essentia and/or 
Soundgen) and the corresponding average perceptual rating (see Supplementary Table S8). Note that for some 
of the perceptual scales, there is not one clear acoustic correlate. We computed the correlation between our 
estimates of pitch interval deviation and participants’ ratings of perceived pitch accuracy; estimates of tempo 
(as measured by beats per minute) and as perceived by participants; estimates of vibrato extent and perceived 
amount of vibrato; estimates of vibrato rate and perceived amount of vibrato; estimates of loudness_mean (from 
the Soundgen package) and perceived loudness (note this measure seems more appropriate than Soundgens’ 
ampl_mean or MIRToolbox’s rms_mean, since it takes into account the sensitivity of human ears to different 
frequencies); estimates of cepstral peak prominence (CPP; we compared the estimates from VoiceSauce, which 
were included in our acoustic model, and from Soudgen) and perceived breathiness; and the measure flux_mean 
(we compared measures from the MIRToolbox, Soundgen and Essentia) and perceived articulation.

Individual differences in the relationship between acoustics and perception. We also explored individual 
differences in the relationships between acoustic measurements and individual participants’ perceptual ratings. 
To do so, we computed the correlations mentioned above, but based on subsets of perceptual ratings by each 
individual participant—we refer to these as “acoustic sensitivity”. This is illustrated in Supplementary Figure S6 
(and see summary statistics of the individual correlation scores in Supplementary Table  S9). Further, we 
conducted exploratory analyses based on participants’ “acoustic sensitivity”. For this, we focused on the most 
straightforward correlations from Supplementary Table S8: we selected the correlations between measurements 
of pitch interval deviation and perceived pitch accuracy; tempo in beats per minute and as perceived by 
participants; loudness_mean (from Soundgen) and perceived loudness; Vibrato extent and perceived vibrato; 
and CPP_mean (from VoiceSauce, which is a predictor in our acoustic model) and perceived breathiness. We 
first performed a Fisher z-transformation on the individual r-scores (to reduce bias in  estimates84). We then used 
these values in two exploratory analyses: a) we calculated the correlation between these values (separately for 
each scale) and participants’ individual MM1 values (also as z-scores), in an effort to understand if individuals 
with higher “acoustic sensitivity” tend to agree more with the average group evaluation; b) we calculated an 
average “acoustic sensitivity” value per participant (by averaging values across the five selected scales) and 
included it as a predictor in a model investigating the level of prediction achieved with the perceptual model (see 
Role of participants’ characteristics).

Predicting liking from acoustic and perceptual features. We performed the same linear mixed effects analyses 
reported for Experiment 1, that is, we fit the same acoustic and MIR/Soundgen models. In addition, we built 
a perceptual model predicting liking ratings from the collected perceptual ratings. The final perceptual model 
includes as fixed effects the 10 collected perceptual features and melody; interactions between melody and 
articulation, pitch accuracy, resonance and vibrato; and random intercepts for singer, stimuli items (nested in 
singer) and participants, as well as random slopes for the effect of melody on participants.

Role of participants’ characteristics. To investigate individual differences in how much participants based 
their liking ratings on acoustic and perceptual features of the stimuli, we proposed two (individual) multiple 
regression models (with the lm function in R) to each participant, using either the predictors from the acoustic 
or the perceptual model. We refer to the resulting adjusted  R2 values of these individual multiple regression 
models as “individual level of prediction” (for each participant). We then used the individual level of prediction 
based on perceptual features to investigate the role of participants’ characteristics on how much they based their 
liking ratings on perceptual features of the stimuli. To do so, we entered the individual level of prediction for the 
perceptual model (that is, the adjusted  R2 values resulting from individual fitting of perceptual models) as the 
dependent variable in a multiple regression model where the predictors were participant-related data collected 
in the questionnaires of general music sophistication, musical preferences, and psychological traits, as well as 
participants’ age, participants’ average individual MM1 value (across the 10 perceptual scales) and participants’ 
average “acoustic sensitivity” (across five selected scales—see Individual differences in the relationship between 
acoustics and perception). To improve model fit, we performed a Fisher z-transformation of the individual 
adjusted  R2 values prior to fitting the model. We used stepwise selection to reduce the model (with the step 
function in R).
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Data availability
Supplementary information, the raw data from both experiments and analyses code (as .Rmd files), as well 
as examples of the singing performances, can be found at https:// osf. io/ ts24m/. The whole set of singing 
performances can be made available to interested researchers upon request.
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