Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

On-liquid-gallium surface synthesis of ultrasmooth thin films of conductive metal-organic frameworks

MPG-Autoren
/persons/resource/persons297815

Chen,  Yunxu
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons289752

Huang,  Xing       
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons290667

Li,  Xiaodong       
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

/persons/resource/persons47863

Feng,  Xinliang       
Department of Synthetic Materials and Functional Devices (SMFD), Max Planck Institute of Microstructure Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Liu, J., Chen, Y., Huang, X., Ren, Y., Hambsch, M., Bodesheim, D., et al. (2024). On-liquid-gallium surface synthesis of ultrasmooth thin films of conductive metal-organic frameworks. Nature Synthesis. doi:10.1038/s44160-024-00513-9.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-2EEF-2
Zusammenfassung
Conductive metal–organic frameworks (MOFs) are emerging electroactive materials for (opto)electronics; however, it is challenging to achieve MOF-based devices using existing synthesis methods. Here we develop an on-liquid-gallium surface synthesis (OLGSS) strategy under chemical vapour deposition conditions for the controlled growth of two-dimensional conjugated MOF (2D c-MOF) thin films, which gives a tenfold improvement in surface flatness compared with traditionally synthesized c-MOFs. The basis for constructing these flatter surfaces is a layer-by-layer chemical vapour deposition growth mode, which is triggered by the high adhesion energy between gallium and aromatic ligands. We demonstrate the generality of the OLGSS strategy by reproducing flat surfaces for nine different 2D c-MOF films with variable thicknesses (∼2–208 nm). Compared to traditionally synthesized MOF films, the resultant ultrasmooth films enable the formation of high-quality electrical contacts with contact resistance reduced by over 13-fold. Furthermore, due to the efficient interfacial interaction, the prepared van der Waals heterostructure of OLGSS c-MOF and MoS2 shows intriguing photoluminescence enhancement, photoluminescence peak shift and work function modulation. This robust OLGSS method provides the opportunity to develop MOF electronics and shows promise for the construction of multicomponent MOF-based heterostructure materials.