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REVERSE ENGINEERED DIOPHANTINE EQUATIONS

STEVAN GAJOVIĆ

Abstract. We answer a question of Samir Siksek, asked at the open problems session of the con-
ference “Rational Points 2022”, which, in a broader sense, can be viewed as a reverse engineering
of Diophantine equations. For any finite set S of perfect integer powers, using Mihăilescu’s theo-
rem, we construct a polynomial fS ∈ Z[x] such that the set fS(Z) contains a perfect integer power
if and only if it belongs to S. We first discuss the easier case where we restrict to all powers with
the same exponent. In this case, the constructed polynomials are inspired by Runge’s method
and Fermat’s Last Theorem. Therefore we can construct a polynomial-exponential Diophantine
equation whose solutions are described in advance.

Key words: Diophantine equations, Fermat’s Last Theorem, Mihăilescu’s theorem, Runge’s
method, elliptic curves

1. Introduction

Diophantine problems look innocent but often are tricky. They can be formulated using very
basic mathematics, but it turns out that solving many of them took centuries of serious work
by numerous mathematicians. Some of them are still not solved; they are famous conjectures in
mathematics and, more precisely, in number theory.

The most famous Diophantine equations include some relations with perfect integer powers, and
we briefly survey them in §2.1. We will use some of these equations in the main results of this
paper in §3.2 and §4.

When we also include rational solutions, to simplify the notation, we will talk about Diophantine
problems. We also mention in §2.2 one instance of famous Diophantine problems, classifying the
set of rational points C(Q) on curves C defined over Q. We briefly use some of the results and
techniques mentioned there in §3.2.

In §2, we note that Diophantine problems are an active and very challenging area of mathemat-
ics. On the other hand, there are equations that are trivial to solve, such as linear Diophantine
equations, or some equations that have obvious ways to be solved, e.g., by considering them modulo
n for some n ∈ Z>1, or, more generally, using local obstructions.

Therefore, it is an interesting problem to look into the middle case - can we create similar
Diophantine equations with a prescribed set of solutions so that we can solve them more easily,
but not that obviously? The main task of this article is to take a different perspective - and
construct Diophantine equations of a specific shape with a described set of solutions. That was
precisely the question Samir Siksek asked during the conference “Rational Points 2022”. Namely,
if we consider a Diophantine equation of the type

f(x) = yn,

for a given f ∈ Z[x], with unknowns x, y, n ∈ Z and n ≥ 2, can it happen that a triple (x, y, n) is
a solution if and only if yn belongs to a finite set of integer powers given in advance?

1.1. Main results. We now reformulate Siksek’s question and make it more precise. Let

P = {am : a ∈ Z,m ≥ 2} ⊆ Z

denote the set of all perfect integer powers.

Question 1.1 (Siksek). Let S ⊆ P be a finite set of perfect powers. Is there a polynomial fS ∈ Z[x]
such that fS(Z) ∩ P = S?

Here we give an affirmative answer to Question 1.1 by constructing such a polynomial in §4, see
Theorem 4.1.
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One could ask an easier question. Let m ≥ 2 be a fixed integer. Denote by Pm = {am : a ∈ Z}
the set of all perfect mth powers of integers.

Question 1.2 (Siksek). Let S ⊆ Pm be a finite set of mth powers. Is there a polynomial fS ∈ Z[x]
such that fS(Z) ∩ Pm = S?

We recall that in Question 1.2, we fix m ∈ Z≥2. Curves of the shape C : ym = f(x) are called
superelliptic curves. We can also rephrase Question 1.2 as a task to construct superelliptic curves
whose integral points have prescribed y-coordinates in advance.

We explain two different methods to construct a polynomial as asked for in Question 1.2 (one
method only works for m ≥ 3) in §3.1 and §3.2, see Theorem 3.1 and Corollary 3.3, respectively.

We briefly comment on the same question when integers are replaced by rational numbers in §5.
We note that one of two approaches to solving Question 1.2 still works over rationals, as explained
in §5.1. However, our approach for Question 1.1 does not extend to rational numbers; but in the
meantime, Question 5.2 was solved by Santicola [20] by clever and precise refining of the arguments
presented here, see §5.2.

2. Famous Diophantine problems

2.1. Famous Diophantine equations. Now we present several famous Diophantine equations
or related conjectures. We also mention the time needed to solve these equations. We recall that
these equations mentioned below ask for or are related to integer solutions.

(1) Fermat’s Last Theorem: xn + yn = zn, with an integer n ≥ 3. It took more than 350 years
until it was proven in series of papers by Wiles et al. that this equation has only trivial
solutions, i.e., such that xyz = 0.

(2) Generalized Fermat’s Equation: xk + yl = zm, where k, l,m ≥ 2 are integers, see [2] for
more details. A special case of this equation is related to the Beal conjecture which states
that if

k, l,m ≥ 3,

then for any solution (x, y, z) ∈ Z3, there is a prime number p such that p | x, p | y, p | z,
i.e., solutions cannot be triples of coprime integers. Note that the condition that k, l,m ≥ 3
is necessary, as otherwise one can find coprime solutions, such as 1k + 23 = (±3)2, for any
k ≥ 2, or, for example, 25 + 72 = 34. More identities can be found in [2].

For fixed k, l,m ≥ 2 such that

1/k + 1/l+ 1/m < 1,

Darmon and Granville [6] proved that there are only finitely many triples of coprime
integers (x, y, z) such that xk + yl = zm.

If we vary k, l,m ≥ 2 such that 1/k + 1/l + 1/m < 1, there is a conjecture, the Fer-
mat–Catalan conjecture, stating that there are only finitely many sextuples

(x, y, z, k, l,m)

such that xk + yl = zm and x, y, z are coprime.
(3) Former Catalan’s conjecture, now Mihăilescu’s theorem: The equation xa − yb = 1 with

integers a, b ≥ 2 and x, y > 0 has only one solution 32 − 23 = 1. In other words, the only
two positive integers which are consecutive perfect powers of integers are 8 and 9. This
statement was conjectured by Catalan and proved by Mihăilescu [14] slightly more than
150 years later.

(4) (Generalized) Ramanujan-Nagell equation: The Ramanujan-Nagell equation is the equa-
tion x2 + 7 = 2n, where x and n are integers. Ramanujan conjectured that there are five
values of n for which the equation has a solution, n ∈ {3, 4, 5, 7, 15}, and Nagell proved
this 35 years later. It was first published in Norwegian, and later in English [18]. The
generalized Ramanujan-Nagell equation is an equation of the shape x2 +D = yn, where
x, n,D ∈ Z and n ≥ 3. It is widely studied, for example, see [5], or [11] for a recent survey
on this equation. Note that some authors, such as, in [16], consider the slightly different
equation F (x) = pe11 · · · pess , for some F ∈ Z[x] and p1, ..., ps prescribed primes and ei ≥ 0
(unknown) exponents.
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2.2. Rational points on curves. One of the most important examples of Diophantine problems
is the following trichotomy of rational points on curves defined over Q (and in fact, over any number
field K/Q). Let C/Q be a nice curve; here, the adjective nice is a well-known notation used for a
smooth, projective, and geometrically irreducible curve. Denote the genus of C by g(C).

(a) (known for a long time) If g(C) = 0, then either C(Q) = ∅ (e.g., consider C : x2 + y2 = 3)
or C(Q) is infinite (e.g., consider C : x2 + y2 = 1, this curve can be used to parametrize the
Pythagorean triples) and furthermore isomorphic to P1(Q).

(b) (Mordell, 1922 [15]) If g(C) = 1 and C(Q) 6= ∅, then C is called an elliptic curve and there
is a group law on C(Q), which makes C(Q) a finitely generated group, i.e., C(Q) ∼= Zr

⊕
T ,

where T is a finite (torsion) subgroup, and r is called the rank of C over Q.
There are only finitely many possibilities for the torsion subgroup T (exactly 15), as these

were classified by Mazur [12], [13]. To prove this statement, Mazur determined rational points
on certain types of curves, called modular curves.

Computing the rank r is still a difficult problem, and there are some ways that might succeed
in computing it, but there is still no guarantee that the known algorithms can compute the
rank of all elliptic curves, look, for example, at Silverman’s book [23]. Also, these algorithms
for computing ranks are quite complicated, and in practice, it is challenging for humans to
perform them. Hence, these algorithms are implemented in computer algebra systems, such as
Magma [3].

(c) (Faltings, 1983 [8]) If g(C) ≥ 2, then C(Q) is finite. In [15], Mordell conjectured this statement,
so it took about 60 years until it was proved. This statement was so difficult and significant
that Faltings won a Fields medal for this proof. By now, there are a few different proofs of
this statement.

However, there are no practical algorithms to compute C(Q) for a given curve C, and it is
a very active area of research to find methods that can compute precise sets of rational points
on curves. As we have already seen in the case of elliptic curves, there are significant problems
that reduce to computing rational points on curves (e.g., Mazur’s theorem), so it is indeed
very important nowadays to further develop existing methods for determining rational points
on curves.

Unlike elliptic curves, the set C(Q) for g(C) ≥ 2 has no particular algebraic structure, so
sometimes we want to study it by embedding it into an object with more structure, called
the Jacobian J of the curve C; this is an abelian variety. As for elliptic curves, Weil [26] in
1929 proved, now called Mordell-Weil theorem, that J(Q) is a finitely generated abelian group,
i.e., J(Q) ∼= Zr

⊕
T , where T is a finite (torsion) subgroup and r is called the rank of J . In

contrast to elliptic curves, much less is known about possibilities for T , and the computation
of r is much more difficult. In some cases, there are ways to do so, for example, for Jacobians
of hyperelliptic curves, by Stoll [25], which is implemented in Magma.

3. The same exponent

Fix m ≥ 2. Let S = {am1 , . . . , amk } be a set of k distinct mth powers of integers a1, . . . , ak. We
now construct a polynomial fS ∈ Z[x] such that fS(Z) ∩ Pm = S.

3.1. First approach. The solution is inspired by Runge’s method (invented in 1887 by Runge
[19]; see [21, Chapter 5] for a nice survey). We first define an auxiliary polynomial

g(x) = (x− a1) · · · (x− ak).

Consider a polynomial

fS(x) = (x(x2 + 1)g(x))4m + (x2m − x2 + 2)g(x)2m + xm.

Theorem 3.1. We have

(i) S ⊆ fS(Z) ∩ Pm;
(ii) f(x) /∈ Pm for any x ∈ Z \ {0, a1, . . . , ak};
(iii) fS(Z) ∩ Pm = S.

Proof.

(i) We evaluate (note that this statement is true regardless whether a1 · · ·ak = 0 or not)

fS(0) = 2(a1 · · ·ak)
2m, g(ai) = 0, fS(ai) = ami , for 1 ≤ i ≤ k.
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(ii) Let x ∈ Z \ {0, a1, . . . , ak}. We first note that |g(x)| = |(x− a1) · · · (x− ak)| ≥ 1. Then

(x2m − x2 + 2)g(x)2m ≥ x2m − x2 + 2 ≥ x2m − |x|m + 2 > |x|m.

It follows that (x2m − x2 + 2)g(x)2m + xm > 0, so

fS(x) > (x(x2 + 1)g(x))4m = ((x(x2 + 1)g(x))4)m.

Now we prove that

(1) fS(x) < ((x(x2 + 1)g(x))4 + 1)m,

implying that f(x) cannot be an mth power because it is nested between two consecutive
mth powers. To prove inequality (1), it suffices to show

(2) m(x(x2 + 1)g(x))4m−4 > (x2m − x2 + 2)g(x)2m + xm.

The following two inequalities will help us to show (2). The first one is

(3) (x(x2 + 1)g(x))4m−4 > (x2m − x2 + 2)g(x)2m

which holds because g(x)4m−4 ≥ g(x)2m and the inequality

(x(x2 + 1))4m−4 > x2m − x2 + 2

is trivial (note that x 6= 0).

The second one is clear

(4) (x(x2 + 1)g(x))4m−4 ≥ (x(x2 + 1))4m−4 > |x|m ≥ xm.

Inequality (2) follows from m ≥ 2 and inequalities (3) and (4).
(iii) Follows directly from (i) and (ii).

�

3.2. Second approach. If m ≥ 3, there is another way to construct the required polynomial
fS ∈ Z[x]. The term (x2m − x2 +2)((x− a1) · · · (x− ak))

2m in the previous construction was used
to ensure that f(0) in not an mth power if a1 · · ·ak 6= 0. One could try a simpler construction

gS(x) = ((x − a1) · · · (x− ak))
m + xm.

By Fermat’s Last Theorem, gS(x) is not an mth power unless x ∈ {0, a1, . . . , ak}. However, we
want to exclude the possibility for x = 0 if a1 · · · ak 6= 0. We instead use a more general Fermat’s
Equation, as suggested by Samir Siksek. Consider

fS(x) = 3((x− a1) · · · (x− ak))
m + xm.

Lemma 3.2. Let m ≥ 3. If (x1, x2, x3) ∈ Z3 satisfy 3xm
1 + xm

2 = xm
3 , then x1 = 0.

Proof. We distinguish three cases according to whether m has a prime divisor p ≥ 5, m is a power
of 3, or m ≥ 4 is a power of 2.

(i) Let p ≥ 5 be a prime number dividing m. By a generalized approach to Fermat’s Last
Theorem by Kraus [10], the equation 3xp

1 + xp
2 = xp

3 has only trivial solutions x1x2x3 = 0,
which implies that x1 = 0. See also notes by Siksek [24] for a nice explanation of the modular
method. In this concrete case, see [24, Theorems 1, 15] for an argument that a non-trivial
solution to 3xp

1 + xp
2 = xp

3 corresponds to a certain newform of weight 2 and level 6, which
does not exist. Hence, if 3xm

1 + xm
2 = xm

3 , then x1 = 0.
(ii) If m is a power of 3, it suffices to consider m = 3. The cubic curve

X : 3x3
1 + x3

2 = x3
3

has genus one and X(Q) 6= ∅, hence it is isomorphic over Q to an elliptic curve. As pointed
out in §2.2 (b), using Magma [3], we prove that the rank of X is zero, and that X(Q) consists
only of the point at infinity, which corresponds precisely to x1 = 0.

(iii) If m ≥ 4 is a power of 2, it suffices to consider m = 4. Integral solutions to 3x4
1 + x4

2 = x4
3

correspond to the rational points on a curve

X ′ : 3x4 + y4 = 1.

One can consider a curve

X/Q : y2 = 1− 3x4.
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As we stated in §2.2 (c), we can embed X into its Jacobian J , and, using Magma, we prove
J(Q) ≃ Z/2Z. Hence, we conclude #X(Q) ≤ #J(Q) = 2, so X(Q) = {(0,±1)}, implying
X ′(Q) = {(0,±1)}, and hence, that x1 = 0.

�

Corollary 3.3. We have fS(Z) ∩ Pm = S.

Proof. It follows by Lemma 3.2 that fS(x) ∈ Pm only when x ∈ S, and we compute directly that
fS(ai) = ami for every 1 ≤ i ≤ k. �

We note that this approach does not work directly for m = 2 as the equation

qx2
1 + x2

2 = x2
3

has solutions with x1 6= 0 for any q ∈ Z. We may assume that q > 0. If q is not a square of
an integer, then, consider x2 = 1 and note that Pell’s equation x2

3 − qx2
1 = 1 has infinitely many

solutions. If q = r2 is a square of an integer r, then (rx1, x2, x3) is a Pythagorean triple, and we
can find infinitely many of them (for example, let x1 = 2s, x2 = s2 − r2, x3 = s2 + r2, for s ∈ Z).

4. General case

In this section, using Mihăilescu’s theorem, we construct a polynomial with the desired property
in the general case. Let S = {b1, . . . , bk} ⊆ P be a finite set of perfect integer powers. We construct
a polynomial fS ∈ Z[x] such that fS is the identity on S, and fS(x) /∈ P , for all x ∈ Z \ S. Define
an auxiliary polynomial

g(x) = ((x− b1) · · · (x− bk))
4 + 1,

and let

fS(x) = g(x)((x − 1)g(x) + 1).

We now prove that fS satisfies the property asked in Question 1.1, hence giving a positive answer
to Question 1.1.

Theorem 4.1.

(i) Let x ∈ Z. Then fS(x) ∈ P if and only if x ∈ S.
(ii) We have fS(Z) ∩ P = S.

Proof.

(i) Let x ∈ Z be such that fS(x) = yn, for some integers y, n with n ≥ 2. Since g(x) and
(x− 1)g(x) + 1 are coprime integers, we conclude that there is z ∈ Z such that g(x) = ±zn,
and since g(x) > 0, we may assume that g(x) = zn. Denote

c := (x− b1) · · · (x− bk).

Then we have

zn − c4 = 1.

Since the exponent of c is greater than 3, by Mihăilescu’s theorem, the only possibility is
that z = 1 and c = 0, implying that x = bi for some 1 ≤ i ≤ k. If x ∈ S, we evaluate
fS(x) = x ∈ P .

(ii) Follows from (i) and the fact that fS is the identity on S.

�

5. Generalizations.

It is interesting to see whether our approaches work when we ask the same questions with
integers replaced by rational numbers. Denote by Q = {am : a ∈ Q,m ≥ 2} the set of all rational
powers, and, for a fixed integer m ≥ 2, let Qm = {am : a ∈ Q} be the set of all mth powers of
rational numbers. We have naturally two questions.
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5.1. Rational numbers: The same exponent.

Question 5.1. Let S ⊆ Qm be a finite subset of mth rational powers. Is there a polynomial
fS ∈ Q[x] such that fS(Q) ∩Qm = S?

We first note that for m ≥ 3 we can give a positive answer to Question 5.1. It is clear that
the first approach cannot be used because there is no version of Theorem 3.1 that covers rational
numbers. In this approach, we use the property that distinct integers differ by at least 1, which
is not true for rational numbers; their absolute difference can be arbitrarily small. However,
Lemma 3.2 remains true for rational numbers, i.e., if we replace the condition (x1, x2, x3) ∈ Z3

by (x1, x2, x3) ∈ Q3. This follows because the equation 3xm
1 + xm

2 = xm
3 is homogeneous, so any

rational solution easily leads to an integer solution. Hence, if S = {am1 , . . . , amk } is a set of k distinct
mth powers of rational numbers a1, . . . , ak, where m ≥ 3, then again, for the polynomial

fS(x) = 3((x− a1) · · · (x− ak))
m + xm,

we have that fS(Q) ∩Qm = S.

5.2. Rational numbers: General case. On the other hand, the approach from §4 does not work
directly over rational numbers. We cannot use the coprimality argument in the factorization so
easily; we would need to take care of possible denominators. Hence, we can formulate the question:

Question 5.2. Let S ⊆ Q be a finite set of perfect rational powers. Is there a polynomial fS ∈ Q[x]
such that fS(Q) ∩Q = S?

This question was answered affirmatively by Santicola [20], who noted that it is sufficient to use
special cases of Mihăilescu’s theorem proven by Lebesgue [9] to answer Question 1.2. Furthermore,
Santicola’s construction uses the results of [1, 4, 7]. To handle possible denominators and to prove
the key lemma [20, Lemma 6], Santicola used the result of Pethő [17], and independently of Shorey
and Stewart [22].

5.3. Challenge. We see that this article has already inspired further research. It is also interesting
to consider this question over other rings and fields. We challenge the interested reader to try to
answer the analogous questions over Z[i] or Q[i], or, in general, over OK or K, where K/Q is any
number field.
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