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Abstract 

Ribosomes are the molecular machinery that catalyse all the fundamental steps in v olv ed in the translation of mRNAs into proteins. Given the 
complexity of this process, the efficiency of protein synthesis depends on a large number of factors among which ribosome drop-off (i.e. the 
premature detachment of the ribosome from the mRNA template) pla y s an important role. Ho w e v er, an in vitro quantification of the extent to 
which ribosome drop-off occurs is not trivial due to difficulties in obtaining the needed experimental evidence. In this work we focus on the study 
of ribosome drop-off in Saccharom y ces cere visiae b y using ‘Ribofilio‘, a no v el softw are tool that relies on a high sensitiv e strategy to estimate 
the ribosome drop-off rate from ribosome profiling data. Our results show that ribosome drop-off events occur at a significant rate also when S. 
cerevisiae is cultured in standard conditions. In this context, we also identified a correlation between the ribosome drop-off rate and the genes 
length: the longer the gene, the lo w er the drop-off rate. 
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ntroduction 

rotein synthesis is one of the fundamental biochemical pro-
esses that characterise living organisms. A crucial step of this
omplex process consists of the translation of the messenger
NA (mRNA), where the information specified by the nu-

leotide sequence composing the mRNA template is decoded
nto the corresponding amino acids chain. Ribosomes are the
olecular machinery that operates mRNA translation and al-

ows it to proceed accurately and efficiently ( 1 ,2 ). Despite the
ctivity of the ribosomes, protein synthesis can be subject to
ifferent kinds of errors that might lead either to amino acid
isincorporations ( 3 ) or to the premature termination of the

ranslation process ( 4 ,5 ). In some cases, translation abortion
s a regulated mechanism that intervene to resolve stalled ri-
osomes ( 6 ), an event that occurs mainly when the cell faces
tressing conditions that hinder mRNA translation such as,
or example, amino acid starvation ( 7 ) or the local depletion of
ernary complexes ( 8 ). In bacteria, the tmRNA-SmpB complex
 9 ,10 ), RF3 ( 11 ) , ArfA ( 12 ) and ArfB ( 13 ) are main abortion-
ediating factors that rescue stalling ribosomes and eventu-

lly lead to the premature termination of the protein synthe-
is. A proofreading mechanism is also known to interrupt the
ynthesis of miscoded polypeptides ( 14 ). In other cases, are
he features of the mRNA template that trigger the transla-
ion abandonment as it happens when the nucleotide sequence
ncludes ‘false’ stop codons ( 15 ,16 ). 

Premature translation abandonment could also be the con-
equence of unspecific events, generally referred to as pro-
essivity errors ( 17 ,18 ). These are errors that occur during
he translation process that are not related to the specific se-
uence that is currently translated and not dependent on the
equence of the protein being synthesized. Since the ribosome,
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as a molecular machine, undergoes a series of complex con-
formational changes during the elongation process, any such
change can turn into an irreversible mistake. These mistakes
taken together are called ‘processivity errors’ when they lead
to a stop of translation and a drop-off of the ribosome from
the mRNA template. The drop-off rate represents an unspe-
cific processivity error, dependent on the inner machinery of
the ribosomes more than on the specific sequence that the ri-
bosome is translating. There are known sequences that induce
a drop-off of the ribosomes, which are some kind of prema-
ture termination to allow different transcripts using the same
mRNA sequence (short or long). These mechanisms are very
rare though and they are unlikely to have an influence at the
translatome level. 

All the processes described so far lead eventually to the de-
tachment of the ribosome from the mRNA template before
it reaches the stop codon. Following ( 5 ), we will define ‘ ribo-
some drop-off ’ all these events, independently on the underly-
ing mechanism. 

Ribosome drop-off is not expected to occur only when the
cell faces stressing conditions. Rather, it is reasonable to as-
sume that a ‘basal’ drop-off rate can be associated with a non
stressing environment. 

Interestingly, following the seminal works of Kurland
et al. (reviewed in ( 19 )), some studies reported on ribosome
drop-off and investigated its magnitude and dynamics. In
( 18 , 20 , 21 ), ribosome drop-off was clearly detected and esti-
mated for the β-galactosidase gene through different in vitro
approaches. In ( 22 ), an in vivo experiment estimated the
drop-off rate for E. coli to be 4 × 10 

−4 events per codon.
Noticeably, in ( 23 ), theoretical arguments demonstrate that
the presence of a basal drop-off rate leads necessarily to an
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Table 1. Essential features and references of the analysed datasets 

Dataset ID GEO series GEO sample ID: Ribo-seq GEO sample ID: RNA-seq Culture medium 

D1 GSE91068 GSM2420488 GSM2420486 Synthetic Defined (SD) 
D2 

GSE134152 
GSM3938059 GSM3938057 Synthetic Defined (SD) 

D3 GSE91068 GSM2420489 GSM2420487 Methionine Restricted 
D4 

GSE134152 
GSM3938060 GSM3938058 Glucose Restricted 

D5 GSE13750 GSM346111 GSM346117 Rich (YEPD) (1) 
D6 GSE13750 GSM346114 GSM346118 Rich (YEPD) (2) 
D7 GSE13750 GSM346115 GSM346120 Amino Acid Starvation (1) 
D8 GSE13750 GSM346116 GSM346122 Amino Acid Starvation (2) 

Column 1: dataset’s reference ID, used in this paper; the IDs of the datasets used as reference in the comparative analysis ( S. cerevisiae cultured in standard 
conditions) are highlighted in bold. Column 2: GSE series number. Column 3: GSM ID of the Ribo-seq data. Column 4 is the GSM ID of the corresponding 
mRNA data. Column 5: culture medium. 

Table 2. Ribosome drop-off rates estimated by Ribofilio (bin-size = 50) 

Dataset Drop-off rate per bin ( r b ) Drop-off rate per codon ( r c ) RMSE R 

2 SE CI p-value 

D1 0.0051 0.0003 0.0143 0.4907 0.0006 r b ± 0.0011 < 0 .00001 
D2 0.0102 0.0006 0.025 0.6887 0.0007 r b ± 0.0013 < 0 .00001 
D3 0.0100 0.0006 0.0762 0.4104 0.0011 r b ± 0.0021 < 0 .00001 
D4 0.0073 0.0004 0.0282 0.4993 0.0003 r b ± 0.0006 < 0 .00001 
D5 0.0057 0.0003 0.4843 0.0341 0.0021 r b ± 0.0041 0 .0038 
D6 0.0053 0.0003 0.3147 0.0462 0.0019 r b ± 0.0038 0 .0029 
D7 0.0079 0.0005 0.5336 0.0594 0.0027 r b ± 0.0053 0 .0016 
D8 0.0077 0.0005 0.4188 0.0709 0.0027 r b ± 0.0052 0 .0020 

Column 1: Dataset ID (Table 1); the datasets used as reference in the comparative analysis ( S. cerevisiae cultured in standard conditions) are highlighted in 
bold. Column 2: Drop-off rate per bin (rb). Column 3: Drop-off rate per codon (rc). Column 4: RMSE. Column 5: coefficient of determination (R2). Column 6: 
Standard Error Estimate (SE).Column 7: Confidence Interval 95%. Column 8: P -value resulting from the t -test (null hypothesis: r b = 0) performed according 
to Equation (6). 
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exponential distribution of the ribosomes density along the
Coding Sequence (CDS) of the translated mRNA when the
initiation rate of translation is the limiting rate. Interestingly,
theoretical arguments have also shown that when the initia-
tion rate is larger than the termination rate, the distribution
of ribosomes along the mRNA in the presence of drop-off can
become very different from a negative exponential ( 24 ). 

In ( 5 ), the authors provided a quantitative method to es-
timate the ribosome drop-off rate through the analysis of
Ribosome-profiling (Ribo-seq) data and used it to characterise
protein synthesis abortion in Esc heric hia coli . Surprisingly, the
measurements obtained in that work turned out to be in the
range of 10 

−4 events per codon, thus reflecting the results pre-
viously obtained in vivo ( 22 ). 

As discussed in ( 25 ), Ribosome drop-off has a clear impact
on the dynamics of protein synthesis and an accurate quan-
titative estimate of the drop-off rate should be carefully con-
sidered when modelling ribosomes traffic and protein synthe-
sis ( 26 ,27 ). Noteworthy, a better understanding of the quan-
titative aspects of premature mRNA translation termination
could shed light on the mechanisms that regulate the efficiency
of protein synthesis ( 28 ) with straightforward follow-ups in
the biomolecular engineering domain such as, for example, the
optimisation of the design of protein expression vectors for
gene therapy or, more in general, for the production of recom-
binant proteins. The occurrence of ribosome drop-off could
also be related to some interesting experimental observations
about the mRNA translation process such as the relationships
between the length of the Coding Sequences (CDS) and the
corresponding protein abundance ( 29 ,30 ) or the relationship
between CDS length and ribosomes density ( 26 , 31 , 32 ). 

These arguments, together with the results obtained for E.
coli in ( 5 ) motivated us to further investigate ribosome drop-
off from a quantitative perspective in a more complex organ- 
ism. In this work we study the features of ribosome drop-off 
in Saccharomyces cerevisiae through a data-driven computa- 
tional approach. To this aim we developed Ribofilio, a soft- 
ware tool that allows effective quantification of the ribosome 
drop-off rate from the analysis of Ribo-seq data. 

We show that while the ribosome drop-off rate is, overall,
still in the range of 4 × 10 

−4 events per codon, the dynamics 
of ribosome drop-off in S. cerevisiae is significantly different 
from E. coli ( 5 ), reflecting the higher complexity of both the 
eukaryotes genome and its expression. Relying on Ribofilio,
we characterise the possible drivers of this difference and we 
identify an interesting correlation between the genes length 

and the ribosome drop-off rate . 

Materials and methods 

The analysed datasets 

In ( 32 ) Ingolia and the coauthors describe one of the most used 

experimental protocols for Ribo-seq and use it for the profil- 
ing of S. cerevisiae in log-phase growth on a rich medium. In- 
terestingly, the study involved also cells cultured in conditions 
of acute amino acids starvation to understand how the ribo- 
some profiles reflected the dynamics of the translation pro- 
cess in nutrients restricted media. The data produced in ( 32 ) 
offered us the chance to estimate the ribosome in drop-off 
rate in S. cerevisiae growing in a standard environment and 

to compare it with the corresponding rates determined when 

the cells are grown in a stressing environment. Indeed, we used 

the Ribofilio pipeline to analyse the datasets referred to as D 5,
D 6, D 7, and D 8 in Table 1 , obtaining the results reported in
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The experimental protocol proposed in ( 32 ) has been ex-
ensively used in subsequent studies investigating the dynam-
cs of protein translation from the analysis of Ribo-seq data.
n this work, we are interested in estimating the ribosome
rop-off rate in S. cerevisiae both in standard and in stress-
ng conditions. Therefore, we selected two additional studies
rom the literature (namely ( 33 ) and ( 34 )) where the Ribo-seq
ata were produced following the experimental protocol de-
cribed in ( 32 ) and according to the experimental settings we
re interested in. 

In ( 33 ), Zou et al. studied the translational profile of S. cere-
isiae through the analysis of Ribo-seq and RNA-seq data ob-
ained from cells cultured in a methionine-restricted medium
nd is compared with the ‘control’ counterpart, cultured in
tandard conditions. We used all samples in this dataset, re-
erred to as D 1 and D 3 (Table 1 ) from which we estimated
he respective ribosome drop-off rates reported in Table 2 . 

The study presented in ( 34 ) investigates the relationships
etween caloric restriction and extended life span in S. cere-
isiae . To this aim, Ribo-seq and RNA-seq data is collected
rom cells growing in conditions of glucose restriction and the
btained ribosome profiles are related with the corresponding
eference data. The datasets we refer to as D 2 and D 4 in this
ork (Table 1 ), are taken from ( 34 ). We applied the Ribofilio
ipeline on these datasets obtaining the results reported in
able 2 ). 

he Ribofilio pipeline 

ibofilio is a novel, open source software tool coded in Python
hat estimates the ribosome drop-off rate from the analysis of
ibo-seq data. It inputs the genome transcripts, the Ribo-seq

eads (in .bed format) and if the RNA-seq data is provided,
he Ribo-seq counts are normalised using the counts associ-
ted with the RNA-seq reads. To ensure the robustness of the
oftware, extensive module testing was applied, reaching a test
overage of 81 % . See Supplementary Section S1.B for more
etails about test coverage. 
To foster the usability, reproducibility and replicability of

he analysis, Ribofilio is embedded into a snakemake ( 35 )
ipeline which is hosted in a public git-hub repository ( https:
/ github.com/ SherineAwad/ ribofilio/ ) where it is version con-
rolled and extensively documented. A simple statement (‘ –
se-conda‘) allows us to pull any environment that was used
n previous runs, thus replicating straightforwardly any com-
utation. In addition, the implementation of the pipeline of-
ers the possibility to perform the whole analysis workflow
tarting from the raw data, namely the .fastq reads resulting
rom the sequencing process and can be easily tailored to a
road spectrum of case studies, including the estimation of
he drop-off rate on subsets of genes of interest. 

The pipeline is composed of two subsequent parts, de-
cribed in greater details in the following paragraphs. In the
rst step, the input data is pre-processed and prepared for the
ubsequent phase. The second step, instead, is operated by Ri-
ofilio which produces the output of the pipeline. 

he Ribofilio pipeline: data pre-processing 
or the upstream analysis of both the Ribo-seq and the re-

ated RNA-seq data, we applied the following procedure. The
aw data was filtered using trim_galore ( 36 ) (release 0.6.7) to
lter out poor quality reads and remove adapters contamina-
ion. Adapters are artificial pieces of DNA introduced prior
to sequencing to ensure that the DNA fragment being se-
quenced attaches to the sequencing flow cell which if not re-
moved, will interfere with downstream analysis ( 37–39 ) . This
refinement of the read sequences allows to reduce the proba-
bility of errors in the subsequent mapping phase; the pres-
ence of mis-sequenced nucleotides introduces artefacts that
can increase the similarities between the query sequences and
wrong mapping positions in the reference genome, thus in-
creasing the probability of incorrect mapping. More specifi-
cally, we used -a parameter in trim_galore to specify adapters
to be removed for each data set (personal communication, see
Supplementary Table S2 ). We then filtered out all the reads
that were shorter than 20 nucleotides to reduce the preva-
lence of multi-mapping errors. Shorter reads have a much
higher chance of mapping to multiple places in the reference
genome, simply due to combinatorics; thus with short reads,
we cannot be confident that the part of the genome that the
read mapped to actually reflects the origin of the read. After-
wards, the remaining reads were mapped against yeast tran-
scripts Saccharomyces_cerevisiae.R64-1-1.cdna.all.fa to filter
out the reads coming from the sequencing of rRNAs. We used
the Bowtie2 aligner ( 40 ) (release 2.4.5). Finally, we generated
a bed format file using the ‘bedtools bamtobed’ command
( 41 ). Supplementary Table S1 reports the primary alignments
percentages for all the analysed datasets. To allow the repro-
ducibility of the analysis we performed, we included in the
Github repository a Makefile to pull from the source database
the datasets and the transcripts we used. 

The Ribofilio pipeline: computing the ribosome drop-off rate
In the second part of the pipeline, Ribofilio estimates the ribo-
somes drop-off rate from the analysis of the aligned Ribo-seq
reads produced in the previous step. 

Ribofilio implements the algorithm successfully used in ( 5 ),
to which we refer the reader for the details. The specifics of
the implementation we use in this work are reported in Sec-
tion S1.A. In summary, we divide each reference transcript in
bins of l nucleotides and we count the total amount of Ribo-
seq reads having their 3’ ends mapping in each bin, consider-
ing all the reference features. If the RNAseq reads are avail-
able, we normalise the count of the Ribo-seq reads in each
bin with the abundance of the corresponding RNA-seq reads
mapping in the same bin. See Section S1.A Equation ( 5 ). Fi-
nally, we average the number of (normalised) Ribo-seq reads
by dividing the total amount of reads by the number of genes
that cover the bin, with an adjustment for genes that only par-
tially cover one bin, according to ( 5 ). 

The result of this process is one discrete vector Y that con-
tains the (normalized) number of Ribo-seq per bin averaged
over the whole set of genes considered. 

We then use the vector Y to compute the drop-off rate per
bin r b , as detailed in the next paragraphs. 

Theoretical foundations 

Exponential distribution of ribosome density 
Following the theoretical considerations expressed in ( 5 ) and
and ( 23 ), we hypothesise that ribosome drop-off is a random
event occurring with a probability which is independent on
the position of the ribosome on the CDS and on the other
ribosomes translating the same mRNA. 

We consider a spatial Poisson process, with a fixed drop-
ping rate per step. Unlike decay process in which decay rate

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://github.com/SherineAwad/ribofilio/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
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is a constant giving the mean number of decaying particles
per unit of time, in this spatial Poisson process, the rate gives
the number of steps per unit length. An approximation de-
rives from the fact that the spatial process of translation is
over a discrete set of steps (the codons). If we exclude col-
lisions between the ribosomes (this assumption is approxi-
mately true when initiation is the rate-limiting step), the run
distance before drop-off is approximately exponentially dis-
tributed (more precisely, it is a geometric distribution that for
large distances is very well approximated by an exponential
distribution). 

From this it follows that in a large population of mRNA
in which initiation is asynchronous the probability density to
find a ribosome at position X is a negative exponential. The
distribution can be formulated as follows: 

Y = Ae −r b X (1)

where X is the bin number ( X ∈ {1, 2, …, N } ), A is the in-
tercept (which is of no interest for us here) and r b represents
the drop-off rate per bin . As mentioned in the previous sub-
section, the variable Y gives the mean number of Ribos-seq
reads found in position X , which we interpret as the expected
density of ribosomes at this position at a steady state trans-
lation process in the cell population (se detailed calculations
and definitions in the Supplementary Materials). 

Ribofilio estimates r b by regressing log ( Y ) on X through a
linear regression. Indeed, if the data is distributed according to
an exponential model, it can be fit by a straight line with slope
r b in a semi-logarithmic plot. More precisely, to take into ac-
count the peculiar variability of the data, Ribofilio performs
a weighted linear regression, where the elements of Y that are
supported by a greater number of genes (typically located at
the beginning of the vector) have a greater weight in the re-
gression. 

The drop-off rate per codonr c , in turn, can be calculated
starting from r b . Considering a bin of length (in number
of codons) l c , then the probability that the ribosome does
not drop-off within a bin of l c codons is (1 − r c ) l c . Conse-
quently, the probability r b that any ribosome drops-off any-
where within the bin is 1 − (1 − r c ) l c and the drop-off rate per
codon is r c = 1 − (1 − r b ) 1 / l c 

Estimate of r b and its standard error 
Given that we determine r b by regressing experimental data,
both the statistical significance of the estimated value and the
associated error should be computed. 

We express the error associated with r b in terms of the con-
fidence interval (CI), that we obtain starting from the standard
error of the regression S E and the margin of error M E which,
in turn, are computed according to Equations ( 2 ) and ( 3 ) re-
spectively: 

S E = 

√ ∑ 

(y i − ˆ y ) 2 

N − 2 

/ 

√ ∑ 

(x i − x̄ ) 2 (2)

M E = t α/ 2 × S E (3)

where the critical value is calculated using a 95% confidence
level ( α = 0.05), according to Equation ( 4 ): 

1 − α/ 2 = T (t α/ 2 ) (4)

where T ( t α/ 2 ) is the (cumulative) distribution function of the t
distribution with N − 2 degrees of freedom computed at t α/ 2 .
Here, N is the number of bins considered. Finally, from the 
margin of error we obtain the confidence interval: 

CI = r b ± M E . (5) 

To evaluate to which extent the relationship between the av- 
erage number of reads Y and the number of bins holds (i.e. to 

test the null hypothesis that r b is equal to zero), we performed 

a t -test. In particular, we determine the t-score ( t ) using Equa- 
tion ( 6 ): 

t = 

r b 
S E 

(6) 

and we compute the P -value (one-sided, because the alterna- 
tive hypothesis is r b > 0) using the t -score ( t ) and N − 2 de-
grees of freedom. 

To evaluate to which extent the data fits the exponential 
model that we use to describe the trend of the ribosome 
density along the CDS, we rely on two widely used metrics,
namely the root mean square error (RMSE) and the coeffi- 
cient of determination ( R 

2 ). In this way we can evaluate the 
goodness of fit of our model from two different perspectives.
Indeed, the RMSE is calculated as the standard deviation of 
the residuals and, thus, it evaluates the dispersion of the data 
around the predicted (model) values: the lower the RMSE, the 
more the data is distributed close to the model curve. While 
mathematically related to the RMSE, R 

2 estimates the propor- 
tion of the variance in the data that can be ‘explained’ by the 
predictor variable (number of bins), thus informing us in our 
case on how well the exponential model explains the variabil- 
ity of the ribosome density along the CDS. The closer R 

2 is to 

1, the better the fit. 

Comparing drop-off rates from different datasets 
To compare the drop-off rates computed from two different 
datasets we used the W elch’ s t-test, thus computing the t-score 
( t ) following Equation ( 7 ): 

t = 

(r b 1 − r b 2 ) √ 

SE 

2 
1 + SE 

2 
2 

(7) 

where r b 1 and r b 2 are the drop-off rates of group 1 and group 2 

respectively and SE 1 and SE 2 are the standard error of group 

1 and group 2 respectively. From the t-score we computed the 
p-value (two-sided, because the alternative hypothesis is that 
r b 1 � = r b 2 ) to evaluate the probability that the null hypothesis 
(the compared drop-off rate are the same) is true. 

Results 

We used the Ribofilio pipeline to estimate the Ribosome drop- 
off rate in S. cerevisiae from the analysis of the Ribo-seq data 
listed in Table 1 . This data was collected in different experi- 
mental settings, thus allowing us to compute the drop-off rate 
both in standard (‘control’) and non-standard conditions. 

Estimating the ribosome drop-off rate in 

S. cerevisiae 

We estimated the ‘basal’ Ribosome drop-off rate from the 
analysis of the control datasets D 1, D 2. Table 2 summarises 
the results we obtained and highlights, in particular, the pa- 
rameters (namely, RMSE and R 

2 ) that estimate the goodness 
of fit with the exponential model underlying ribofilio and the 
correspondent outcomes of the t -test (Equation 6 ) that evalu- 
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(a) Dataset D1: Synthetic Defined (b) Dataset D3: Methionine Restricted

(c) Dataset D2: Synthetic Defined (d) Dataset D4: Glucose Restricted

Figure 1. Weighted linear regression plot using bin-size equals 50 for the Y vector for D1, D2, D3 and D4. (see Equation 6 in supplementary material). 
The x-axis is the bin number and the y-axis is the Y vector in Log exponential. The red line corresponds to the drop-off rate r b . 
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tes to which extent the slope of the fitting curve (and, thus,
he drop-off rate) is different from zero. 

As it is apparent by observing the log-linear plots depicted
n Figure 1 A and C the data coming from the analysed datasets
an be fitted by a straight line having a slope r b significantly
ifferent from zero ( t -test P -value < 0.05 Eq. 6 ) which, re-
erring to Equation ( 1 ) corresponds to the Ribosome drop-
ff rate per bin. Noticeably, these measurements turned out
o be independent on the chosen bin size, as reported in
upplementary Table S14 . Supplementary Figure S5 in the
upplementary material shows r b versus r c rates in the four
ain datasets D1, D2, D3 and D4. 
Summing up, our analysis reveals that, in standard condi-

ions, the average density of the ribosomes along the CDS of S.
erevisiae decays exponentially with a rate r c per codon rang-
ing in the order of magnitude of 10 

−4 . Surprisingly, this value
is consistent with the correspondent values obtained in vitro
and in silico for E. coli ( 5 ,22 ). However, it is worth noticing
that, differently from the case of E. coli , in S. cerevisiae the
exponential model fits sub-optimally the decay of the average
ribosome density along the CDS. Indeed, either the estima-
tion of the amount of data variability explained by the model
( R 

2 ) and of the goodness of fit ( RMSE ) associated with r b (Ta-
ble 2 ) suggest that a more complex scenario might underlie
the dynamics of ribosome trafficking in yeast which is consis-
tent with the greater complexity of S. cerevisiae with respect
to E. coli . Interestingly, by looking either at Table 2 or Fig-
ures 1 A, C, 2 A and C, we notice that the choice of the growth
medium could potentially affect the ribosome drop-off rate in
the control case. Indeed, while r b and r c are not varying sig-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
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Table 3. Drop-off rate per codon for dataset D1 and dataset D2 per Gene Length subsets 

D1 

Gene Length Drop-off rate per bin ( r b ) Drop-off rate per codon ( r c ) RMSE R 

2 SE CI P -value 

< 500 0.0275 − 0 .0017 0.0628 0.0663 0.0362 r b ± 0.0834 0 .2341 
]500–1000] 0.0607 0 .0035 0.0454 0.6601 0.0111 r b ± 0.0234 < 0 .00001 
]1000–2000] 0.0375 0 .0022 0.0356 0.7754 0.0031 r b ± 0.0063 < 0 .00001 
]2000–3000] 0.0281 0 .0017 0.0302 0.8478 0.0013 r b ± 0.0026 < 0 .00001 
]3000–4000] 0.0265 0 .0016 0.0249 0.9196 0.0008 r b ± 0.0016 < 0 .00001 
]4000–5000] 0.0228 0 .0014 0.0354 0.9088 0.0007 r b ± 0.0014 < 0 .00001 
> 5000 0.0133 0 .0008 0.0784 0.8355 0.0007 r b ± 0.0013 < 0 .00001 

D2 

Gene Length Drop-off rate per bin ( r b ) Drop-off rate per codon ( r c ) RMSE R 

2 SE CI p-value 

< 500 − 0 .0304 − 0 .0018 0.0586 0.0846 0.0274 r b ± 0.0631 0 .1499 
]500–1000] 0 .1104 0 .0063 0.0272 0.9144 0.007 r b ± 0.0147 < 0 .00001 
]1000–2000] 0 .0589 0 .0034 0.0368 0.8914 0.0032 r b ± 0.0065 < 0 .00001 
]2000–3000] 0 .0378 0 .0022 0.0402 0.8831 0.0016 r b ± 0.0031 < 0 .00001 
]3000–4000] 0 .0328 0 .0019 0.0436 0.9089 0.0011 r b ± 0.0023 < 0 .00001 
]4000–5000] 0 .0268 0 .0016 0.0477 0.9113 0.0009 r b ± 0.0017 < 0 .00001 
> 5000 0 .0139 0 .0008 0.0818 0.8407 0.0006 r b ± 0.0012 < 0 .00001 

Column 1: Gene length sub-group. Column 2: Drop-off rate per bin (rb). Column 3: Drop-off rate per codon (rc). Column 4: RMSE. Column 5: coefficient of 
determination (R2). Column 6: Standard error estimate (SE). Column 7: Confidence interval 95%. Column 8: P -value resulting from the t -test (null hypothesis: 
r b = 0) performed according to Equation (6). 
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nificantly, the parameters evaluating the goodness of fit turn
out to be sensibly different depending on whether the Syn-
thetic Defined medium or YEPD is used. This feature suggests
that the growth medium might condition the protein transla-
tion’s dynamics in a subset of genes in such a way that it is not
captured by estimating the drop-of rate at the whole dataset
level. 

Within this context, the most parsimonious hypothesis is
that the global drop-off rate is determined by factors that act
differently on different (group or classes of) genes and that in
each (group or classes of) genes the drop off rate is constant
with the length. Thus, the average distribution of the ribo-
some density along the CDS results from the contribution of
multiple processes that, when singled out, can be described by
independent exponential decay models. 

Enjoying the flexibility of Ribofilio which makes it easy to
focus the analysis on subsets of genes, we tested our hypothesis
by computing the ribosome drop-off rate in different groups
of genes, classified according functional criteria (GEO ontolo-
gies) or to structural criteria, i.e. the genes length. 

Our analysis based on the GEO categories (Table 2
and Supplementary Table S4 , Supplementary Table S5 , and
Supplementary Table S6 ) provided with no conclusive infor-
mation about the relationship between genes’ functions and
the ribosome drop-off rate. Instead, we found that r b varies
significantly depending on the genes length. Intriguingly, it
turned out that lower drop-off rates are associated with longer
genes. See Supplementary Tables S9 and S10 in the supple-
mentary text for a significant t-test comparison of dataset D1
and D2 drop-off rate vs its corresponding drop-off rate of GO
subset respectively. 

The length of the translated genes affects the 

ribosome drop-off rate 

To identify a possible relationship between genes length and
ribosome drop-off rate, we run Ribofilio using subset mode
‘-s‘ on different gene length windows, namely (]0, 500], ]500,
1000], ]1000, 2000], ]2000, 3000], ]3000, 4000], ]4000,
5000] and > 5000). 

The genes-length-specifc values of r b and r c estimated for 
all the datasets considered in this paper are reported in Ta- 
ble 3 and Supplementary Tables S7 and S8 . Figure 3 (A), (B),
(C) and (D) illustrate a sample of the results obtained for the 
dataset D1. Additional plots are reported in Supplementary 
Figures S2 , S3 , and S4 . A complete set of Figures can be 
found in the supplementary material folder hosted in the 
Github repository https:// github.com/ SherineAwad/ Ribofilio/ 
tree/ master/ supplementary _ materials/ . 

By inspecting the results we notice that, excluding the case 
of the shortest genes (gene length < 500), all the obtained 

drop-off rates turned out to be significantly different from zero 

( P -value < 0.001) and also significantly different from the cor- 
respondent values computed when all the genes are considered 

independently on their lengths ( Supplementary Tables S11 ,
S12 and S13 ). Moreover, both R 

2 and the RMSE turned 

out to be improved with respect to the correspondent val- 
ues associated with the global values of r b , thus supporting 
our hypothesis that the ribosome density along the CDS de- 
cays exponentially with different rates depending on the gene 
length. In this scenario, the ribosome drop-off rate estimated 

at the global level would result from the interplay between 

the length-specific rates. Figure 4 summarises this result. See 
Supplementary Figures S1 for genes length distribution of 
S. cerevisiae . 

The absence of a detectable drop-off rate for short genes 
(length ≤ 500) remains puzzling and, in general, calls for a 
more finely tuned ribosomes processivity in S. cerevisiae when 

compared to E. coli . 

Variability of the (gene length-specific) ribosome 

drop-off rate with respect to the environmental 
conditions 

To examine environmental factors that could affect the ri- 
bosome drop-off rate, possibly in a gene-specific way, we 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://github.com/SherineAwad/Ribofilio/tree/master/supplementary_materials/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
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(a) D5: Rich (YEPD) (1) (b) D7: Amino Acid Starvation (1)

(c) D6: Rich (YEPD) (2) (d) D8: Amino Acid Starvation (2)

Figure 2. Weighted linear regression plot using bin-size equals 50 for the Y vector for D5, D6, D7, and D8. (see Equation 6 in supplementary material). 
The x-axis is the bin number and the y-axis is the Y vector in Log exponential. The red line corresponds to the drop-off rate r b . 
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xtended our analysis to the data collected in experiments
here S. cerevisiae was cultured in stressing environmental

onditions. In particular, we considered the datasets D 3, D 4
 S. cerevisiae grown in methionine and glucose restricted me-
ia, respectively) D 7 and D 8, referring to acute amino-acid
tarvation and we compared them with the corresponding
ontrol datasets, namely D 1, D 2, D 5 and D 6 respectively. 

First, we checked whether the different experimental condi-
ions might influence the drop-off rate at the global level. Ta-
le 4 reports the results of the W elch’ s t -test (Equation 7 ) that
e used to evaluate possible differences between the results
btained in the different experimental conditions and the re-
spective reference counterparts. See Supplementary Table S17
in the supplementary text for the gene length subsets sizes. 

Inspecting Table 4 we notice that only in two out of four
cases (methionine and glucose restriction) the drop-off rate
was significantly different from the reference dataset, albeit
the direction of the variation (greater and smaller than the
reference, respectively, Table 2 ) is towards opposite directions.

We studied the drop-off rate of treatment datasets (D3 and
D4) of the control datasets (D1 and D2) respectively. See Fig-
ure 1 B and D, respectively and see Table 2 for the regres-
sion fits. To examine whether the treatment condition changes
the drop-off rate, we compared the drop-off rate of the

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
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(a) Gene length ]500-1000] (b) Gene length ]1000-2000]

(c) Gene length ]3000-4000] (d) Gene length ]4000-5000]

Figure 3. Weighted linear regression plot using bin-size equals 50 for the Y vector for the control dataset D1 (synthetic defined) using different gene 
length cutoffs. (see Equation 6 in supplementary material). The x-axis is the bin number and the y-axis is the Y vector in Log exponential. The red line 
corresponds to the drop-off rate r b . 
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control dataset and its corresponding treatment dataset. Ta-
ble 2 shows the drop-off rate and the corresponding fitting
statistics of treatment datasets D3 and D4 when compared to
the control datasets D1 and D2, respectively. 

We also examined the drop-off rate under both rich and
starvation conditions. Table 2 shows the drop-off rate for un-
der rich conditions (datasets D5 and D6), and under starva-
tion conditions (datasets D7 and D8. See Figure 2 A and C and
B and D, respectively). Table 2 shows there is no significant
change in drop-off rate when comparing rich conditions (D5
and D6) with starvation conditions (D7 and D8). Although
there is a significant change of the drop-off rate under the
treatment condition (see Table 2 ), the low RMSE and R 

2 show
that there are other factors affecting the drop-off rate rather 
than the rich and starvation conditions. 

Variability of the ribosome drop-off rate with 

respect to the functional (gene ontology) category 

To further investigate other factors that possibly affect the 
drop-off rate, we run ‘ribofilio‘ using subset mode ‘-s‘ on 

different gene ontology terms. See Supplementary Table S3 

for the details of each GO category description and set size.
Supplementary Tables S4 - S6 show the drop-off rate and its 
corresponding regression fitting statistics for each GO term 

per each control dataset. Response to stress (GO:0006950) 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
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Figure 4. Drop-off rate per bin ( r b ) for each gene length subset group. The 
different colours represent the different analysed datasets. The values of 
r b are standardised to facilitate the visualisation. The subset [0–500] is 
remo v ed from this plot because the associated values of r b turned out to 
be not significantly different from zero. 
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Table 4. Welch’s t -test to compare ‘control’ and test of D1 versus D3, 
D2 versus D4, D5 versus D7 and D6 versus D8 

Dataset ID P -value 

D1 versus D3 0.0001 
D2 versus D4 0.0001 
D5 versus D7 0.2602 
D6 versus D8 0.2338 

Column 1: Dataset ID (Table 1 for the respective GEO coordinates). Col- 
umn 2: P -value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/6/2/lqae036/7650920 by M

ax-Planck Society user on 19 April 2024
nd Transmembrane Transporter Activity (GO:0022857)
how significant fitting statistics ( P- value < 0.01) when com-
ared to control datasets D1 and D2. However, other gene
ntology categories show random or no significance across
ontrol datasets which deems the results inconclusive about
he relationship between gene ontology and drop-off rate. 

iscussion and conclusion 

n accurate estimation of the ribosome drop-off rate turns
ut to be fundamental in a broad spectrum of cases where
he mRNA translation efficiency needs to be determined. Ri-
ofilio is a novel piece of software produced to compute the
ibosome drop-off rate when Ribo-seq data (and, optionally,
he RNAseq data) is available. We offer Ribofilio embedded
nto a module-tested and FAIR pipeline, made available as an
pen-source tool and maintained (version controlled) in a ded-
cated GitHub repository . Remarkably , the Ribofilio pipeline
s designed to be run also on subsets of genes, grouped ac-
ording to the user’s interest. Section S4, for instance, presents
 case study where Ribofilio is run on single genes, namely
SH2 and MLH1. Supplementary Tables S15 and S16 show

he drop-off rate of the control data sets D1 and D2 and the
reatment dataset D3, D4 respectively on genes MSH2 and

LH1. 
We used the Ribofilio pipeline on Ribo-seq data produced

or S. cerevisiae and we found that ribosome drop-off events
ccur at a significant rate that we estimated in various exper-
mental conditions. 

The algorithm implemented by Ribofilio, based on ( 5 ), as-
umes a position-independent, constant probability of ribo-
ome drop-off which entails a negative exponential distri-
ution of the ribosomes density along the Coding Sequence
CDS). In ( 5 ) it was shown that this model provides an accu-
ate description of the average trend of the ribosomes density
along the E. coli ’s Open Reading Frames. In this work, we de-
termined that also in S. cerevisiae the ribosomes density, on
average, decays exponentially along the CDS. Noticeably, in
this case, we observed a more ‘noisy’ trend of the data around
the regression curve as indicated by the value of the parame-
ters that estimates the goodness of fit. 

It’s worth noticing that the deviation from the ‘straight line’
at larger length scales is due to the lack of statistics, since very
few genes contribute to this part of the data and therefore the
individual, gene-to-gene variations dominate the behaviour of
the mean coverage. At short length scales, close to the start
codon, there is an accumulation of reads commonly believed
to be the so-called ‘ramp’, a region of the ORF in which traf-
fic jam seem to occur and that therefore does not fulfill the
conditions for the exponential decay . More in general, a pos-
sible interpretation of the observed sub-optimal fit of the ex-
ponential model is that when all the genes of S. cerevisiae are
considered together, the trend of the ribosomes density along
the CDS results from the concurrent interplay of multiple fac-
tors acting differently at the single gene’s level. In other words,
the sub-optimal fit of the exponential model shown, e.g., in
Figure 1 suggests that either gene-specific features or environ-
mental conditions could affect the ribosomal drop-off rate. 

To gain possible insights on the impact of environmen-
tal conditions, we considered the drop-off rate computed in
datasets exposed to different environmental conditions such
as, e.g. datasets D5-D8. Despite we observed some differences
in the goodness of fit depending on the growth medium, we
did not found any measurable evidence correlating the ribo-
some drop-off rate with the tested environmental conditions. 

To study the impact of the gene-specific features on the over-
all dynamics, we computed the ribosome drop-off rates in sub-
sets of genes partitioned according to different criteria, such
as their functional role (based on the GO classification) or
the length of the respective CDS. Our results show that the
genes’ functional role is not a factor that affect the drop-off
rate but that the genes’ length could be. More precisely, our re-
sults show that genes (CDS) with different lengths exhibit sig-
nificantly different ribosome drop-off rates. Therefore, when
all the genes are considered together independently on their
length, the overall drop-off rate results from the combination
of the single length dependent rates. 

Interestingly, we also noticed that longer CDS are associ-
ated with lower drop-off rates. This relationship between the
measured drop-off rate and the length of the CDS entails rel-
evant consequences at the biological level. 

Biological relevance of the ribosome drop-off rate 
In general, when S. cerevisiae is cultured in standard ‘control’
conditions, we determined that the order of magnitude of the
ribosome drop-off rate is in the range of 10 

−4 per codon. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae036#supplementary-data
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Albeit it could look negligible, this value becomes in fact rel-
evant when it is evaluated in the context of the protein trans-
lation process at the molecular level. 

To gain a better insight of the impact of ribosome drop-off
in this context, it is useful to compute the probability P S for a
ribosome to reach the stop codon of the CDS, thus terminating
the synthesis of a full protein. The value of P S can be computed
directly from the estimated r c . Indeed, given that according to
our model the ribosome density decays exponentially along
the CDS with rate r c , the probability that a ribosome will reach
the stop codon located L codons far from the start is: P s =
(1 − r c ) L ∼ e −r c L when r b � 1. 

As an illustrative example, if we consider a CDS of the
length of 100 codons (which stays within the first quartile of
S. cereveisiae ’s CDS length distribution) and r c = 10 

−4 , P S

assumes a value of 0.99 which means that, on average, about
99% of the ribosomes that initiated the translation process
will reach the stop codon. If, instead, if we consider a CDS
of the one of the longest CDS length of S. cerevisiae, namely
YLR106C with L = 4911 P S would be 0.611 which means
that only 61 . 1% of the ribosomes would reach the 3 

′ end of
the CDS. 

This example suggests that if the ribosome drop-off rate
was the same for all the genes (and equal to the rate measured
globally), longer genes would not be translated reliably. 

Interestingly, our results show that the ribosome drop-off
rate is lower in longer CDSs, thus suggesting the possible ex-
istence of ‘compensatory features’ in longer CDSs that leads
to the reduction of the drop-off rate. 

Once ribosomes terminate (either prematurely or at the
stop codon) they can be recycled. This drop-off rate concerns
the unspecific premature stop of translation by the ribosomes
which represents a waste for the cell. It may also represent
a resource to make sure that ribosomes stop translation of
unnecessary proteins in cases of acute stress. In addition, the
drop-off rate affects longer genes. The translation of longer
genes is less efficient because the probability to successfully
reach the stop codon decreases exponentially with the length
of the mRNA. 

Despite ribosomes could drop-off with a lower probability
when translating longer mRNAs, our measurements would
suggest that the efficiency of the translation can be related
to the length of the translated CDS, with less efficiency as-
sociated with longer transcripts, due to the greater number
(on average) of drop-off events. This observation is consistent
with the well known experimental evidence showing that, in
a broad range of organisms including S. cerevisiae, the aver-
age ribosomal density is inversely correlated with the CDS’s
length ( 26 ). 

Our model assumes at first that initiation rate is the rate lim-
iting step. While we realised that this was consistent as well
in our results in E. coli , it may be not true for all genes and
not true for all organisms. In fact, we are interested only in
the probability to drop-off. Once the drop-off probability is
known, the probability to reach the end of the mRNA is dis-
tributed according to a geometric distribution, which resem-
bles an exponential distribution in the continuous approxima-
tion. In addition, the drop-off rate presented in this paper is
not estimated at the level of single sequences. The reason for
this is that the data is too noisy to determine a trend. We also
think that the finding of the drop-off variation as a function of
the length of the genes is puzzling and deserves the role of be-
coming an hypothesis to be tested experimentally with specific 
tools. 

Data availability 

All the data used in the paper is publicly available in 

the GEO data repository. The interested users might wish 

to use the following Makefile to pull this data automati- 
cally: https:// github.com/ SherineAwad/ Ribofilio/ blob/ master/ 
data/Makefile and https://doi.org/10.17617/3.H7OPIB . 
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Supplementary Data are available at NARGAB Online. 
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