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Supplementary data 1. Balanced sample demographic details 

 

Table S1. Demographic statistical results on the HIC balanced sample 

Variable HCs 

Latam  

(n = 57) 

HIC  

(n = 57) 

bvFTD 

Latam  

(n = 18) 

HIC  

(n = 18) 

AD 

Latam  

(n = 39) 

HIC  

(n = 39) 

Statistics 

(all 

groups) 

Post-hoc 

comparisons 

Groups p-value 

Sex 

(F:M) 

Latam 38:19 8:10 26:13 χ2=3.21,  

p = 0.21 a 

bvFTD-

AD 

n.s  b 

HCs-

bvFTD 

n.s  b 

HCs-

AD 

n.s  b 

HIC 37:20 9:9 24:15 χ2=1.28,  

p = 0.52 a 

 

bvFTD-

AD 

n.s  b 

HCs-

bvFTD 

n.s  b 

HCs-

AD 

n.s  b 

 Geographic 

comparison 

χ2=0.04,  

p = 0.84 a 

χ2=0.11,  

p = 0.73 a 

χ2=0.22,  

p = 0.63 a 

   

Age (years) Latam 71.16 (8.22) 66.81 (6.34) 76.22 (7.31) F = 2.09, 

p = 0.13 a, 

bvFTD-

AD 

n.s c 



ηp2 = 0.03 HCs-

bvFTD 

n.s c 

HCs-

AD 

n.s c 

HIC 72.25 (8.14) 69.14 (12.11) 74.77 (7.94) F = 2.25, 

p = 0.06 a, 

ηp2 = 0.07  

bvFTD-

AD 

n.s c 

HCs-

bvFTD 

n.s c 

HCs-

AD 

n.s c 

 Geographic 

comparison 

t-score = 

1.51, 

p = 0.24c, 

ηp2 = 0.02 

t-score = 1.82, 

p = 0.22 c, 

ηp2 = 0.03 

t-score = 1.13, 

p = 0.31 c, 

ηp2 = 0.02 

   

Years of 

education 

Latam 13.15 (5.15) 16.97 (5.28) 

 

12.54 (7.81) F = 2.43,  

p = 0.06 a,  

ηp2 = 0.07 

bvFTD-

AD 

n.s c 

HCs-

bvFTD 

n.s c 

HCs-

AD 

n.s c 

HIC 15.25 (5.36) 14.36 (3.72) 

 

14.02 (4.35) F = 3.15,  

p = 0.08 a,  

ηp2 = 0.07 

bvFTD-

AD 

n.s c 

HCs-

bvFTD 

n.s c 

HCs-

AD 

n.s c 

 Geographic

comparison 

t-score = 

1.56, 

p = 0.17c, 

ηp2 = 0.02 

t-score = 1.33, 

p = 0.22c, 

ηp2 = 0.02 

t-score = 0.99, 

p = 0.39c, 

ηp2 = 0.01 

   

Results are presented as mean (SD). Demographic data was assessed through ANOVAs –except for sex, 

which was analyzed via Pearson’s chi-squared (χ2) test. Effects sizes were calculated through partial eta 

squared (ηp2). HCs: healthy controls, bvFTD: behavioral variant of fronto-temporal dementia, AD: 

Alzheimer’s disease. US: Unmatched sample. MS: Matched sample. 
a p-values calculated via independent measures ANOVA. 
b p-values calculated via chi-squared test (χ2). 
c p-values calculated via unpaired t-test. 

 

 

 



 

 

Supplementary data 2. Neuroimaging acquisition and preprocessing details 

 

Image acquisition parameters are included in Table S2. MRI cortical thickness metrics and volumetric 

estimates included voxel-based and surface-based morphometry.1  The structural volumetric analysis 

preprocessing included the removal of non-brain tissue, a segmentation of the subcortical white matter (WM) 

and deep gray matter (GM) volumetric structures (including amygdala, hippocampus, caudate, putamen, and 

ventricles), and intensity normalization. Finally, we obtained averaged atrophy maps for each group (bvFTD, 

AD, and HC) and each region in Latam and HIC that were normalized against controls to obtain 90 w-scores 

(corresponding to the AAL-90 atlas).2 

For the resting-state protocol, across centers, participants were asked not to think about anything in 

particular keeping their eyes closed, and to avoid moving artifacts or falling asleep.  In each center, we obtained 

3D volumetric and 10-minute-long resting-state MRI sequences from all participants. Before preprocessing, 

the first five volumes of each subject’s resting-state session were discarded to ensure a steady state 

magnetization. The data was then preprocessed using the Data Processing Assistant for Resting-State fMRI 

(DPARSF V2.3).3 The images were slice-time corrected (using a reference on the middle slice of each volume) 

and then aligned to the first scan of the session to correct head movement artifacts. To reduce the effects of 

motion and physiological artifacts, a total of six head-motion parameters, as well as white matter (WM) and 

cerebrospinal fluid (CSF) signals, were removed as nuisance variables from the analysis. The WM and CSF 

masks for this procedure were derived from the tissue segmentation of each subject’s T1 scan in the native 

space. None of the participants showed head movements greater than 3 mm and/or rotations higher than 3°. 

Finally, images were normalized to the MNI space using the echo-planar imaging (EPI) template from SPM12, 

smoothed using an 8-mm full-width-at-half-maximum isotropic Gaussian kernel, and bandpass filtered with a 

frequency range between 0.01–0.1 Hz to correct and remove low-frequency drifts from the MRI scanner. Data 

was parcellated with the Automated Anatomical Labelling (AAL90).4 A weighted transformation was 

performed to control for scanner effects in the data. This process yielded subject-specific timeseries on 90 

nodes. Using the pre-processed resting state fMRI time series as input, we captured static and linear 

associations using Pearson’s R static functional connectivity (SFC).5 Finally, we obtained 90x90 functional 

connectivity matrices (corresponding to the AAL-90 atlas) per participant. 

 

 

 

 

 

 

 

 

 

 



 

 

Table S2. Specific neuroimaging parameters per center 

 Parameters 

Argentina (center 

1) 

3-T Phillips scanner with a standard head coil, the whole-brain T1-rapid anatomical 3D 

gradient echo volumes were acquired parallel to the plane connecting the anterior and 

posterior commissures, with the following parameters: repetition time (TR) = 8300 ms; 

echo time (TE) = 3800 ms; flip angle = 8º; 160 slices, matrix dimension = 224 x 224 x 160; 

voxel size = 1 mm x 1 mm x 1 mm. Also, functional spin echo volumes, parallel to the 

anterior-posterior commissures, covering the whole brain, were sequentially and 

ascendingly acquired with the following parameters: TR = 2640 ms; TE = 30 ms; flip angle 

= 90º; 49 slices, matrix dimension = 80 x 80 x 49; voxel size in plane = 3 mm x 3 mm x 3 

mm; slice thickness = 3 mm; sequence duration = 10 minutes; number of volumes = 220. 

Chile (center 2) Using a 3-T Siemens Skyra scanner with a standard head coil, we acquired whole-brain T1-

rapid gradient echo volumes, parallel to the plane connecting the anterior and posterior 

commissures, with the following parameters: repetition time (TR) = 1700 ms; echo time 

(TE) = 2000 ms; flip angle = 8º; 208 slices, matrix dimension = 224 x 224 x 208; voxel size 

= 1 mm x 1 mm x 1 mm. On the other hand, functional EP2D-BOLD pulse sequences, 

parallel to the anterior-posterior commissures, covering the whole brain, were acquired 

sequentially intercalating pair-ascending first with the following parameters fMRI 

parameters: TR = 2660 ms; TE = 30 ms; flip angle = 90º; 46 slices, matrix dimension = 76 

x 76 x 46; voxel size in plane = 3 mm x 3 mm x 3 mm; slice thickness = 3 mm; sequence 

duration = 13.3 minutes; number of volumes = 300. 

Colombia (center 

2) 

Using a 3-T Siemens Skyra scanner with a standard head coil, we acquired whole-brain T1-

rapid gradient echo volumes, parallel to the plane connecting the anterior and posterior 

commissures, with the following parameters: repetition time (TR) = 2400 ms; echo time 

(TE) = 2000 ms; flip angle = 8º; 192 slices, matrix dimension = 256 x 256 x 192; voxel size 

= 1 mm x 1 mm x 1 mm. Finally, functional EP2D-BOLD pulse sequences, parallel to the 

anterior-posterior commissures, covering the whole brain, were acquired sequentially 

intercalating pair-ascending first with the following parameters fMRI parameters: TR = 

2660 ms; TE = 30 ms; flip angle = 90º; 46 slices, matrix dimension = 76 x 76 x 46; voxel 

size in plane = 3 mm x 3 mm x 3 mm; slice thickness = 3 mm; sequence duration = 10.5 

minutes; number of volumes = 240. 

HIC LONI 

(Participants with 

bvFTD) 

This sample contained acquisitions from 3T MRI scanners. For T1-weighted images 

MPRAGE sequences with the following parameters were used: repetition time (TR) = 2300 

ms; echo time (TE) = 2.98 ms; flip angle = 25º; 160 slices, matrix dimension = 240 x 256 

x 160; voxel size = 1 mm x 1 mm x 1 mm. For fMRI, sequence was EPI-BOLD, the field 

of view was 220x220x163mm, TE = 30ms, TR=3000ms, flip angle=90º, acquisition time 

= 10:00 minutes, 2X accelerated (even/odd interleave), P>>A phase encoding. 



HIC ADNI 

(Participants with 

AD) 

This sample contained acquisitions from 3T MRI scanners. For T1-weighted images 

MPRAGE sequences with the following parameters were used: repetition time (TR) = 6800 

ms; echo time (TE) = 3.1 ms; flip angle = 25º; 160 slices, field of view (FOV) of 260-

270mm, voxel size = 1 mm x 1 mm x 1 mm. For fMRI, sequence was EPI-BOLD, the field 

of view was 220x220x163mm, TE = 30ms, TR=3000ms, flip angle=90º, acquisition time 

= 10:00 minutes, 2X accelerated (even/odd interleave), P>>A phase encoding. 

 
 
 
 
Supplementary data 3. DTI data collection and processing 

The structural connectome was obtained applying diffusion tensor imaging (DTI) to diffusion weighted 
imaging (DWI) recordings from 16 healthy right-handed participants (11 men and 5 women, mean age: 24.75 
± 2.54 years) recruited online at Aarhus University, Denmark. Subjects with psychiatric or neurological 
disorders (or a history thereof) were excluded from participation. The MRI data (structural MRI, DTI) were 
recorded in a single session on a 3 T S Skyra scanner. The following parameters were used for the structural 
MRI T1 scan: voxel size of 1 mm3; reconstructed matrix size 256 × 256; echo time (TE) of 3.8 ms and 
repetition time (TR) of 2300 ms. DWI data were collected using the following parameters: TR = 9000 ms, TE 
= 84 ms, flip angle = 90°, reconstructed matrix size of 106 × 106, voxel size of 1.98 × 1.98 mm with slice 
thickness of 2 mm and a bandwidth of 1745 Hz/Px. Furthermore, the data were recorded with 62 optimal 
nonlinear diffusion gradient directions at b = 1500 s/mm2. Approximately one non-diffusion weighted image 
(b = 0) per 10 diffusion-weighted images was acquired. Additionally, the DTI images were recorded with 
different phase encoding directions. One set was collected applying anterior to posterior phase encoding 
direction and the second one was acquired in the opposite direction. The AAL template was used to parcellate 
the entire brain into 90 regions (76 cortical regions and 14 subcortical regions). The parcellation contained 45 
regions in each hemisphere. To co-register the EPI image to the T1-weighted structural image, the linear 
registration tool from the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford)6 was employed. The T1-
weighted images were co-registered to the T1 template of ICBM152 in MNI space. The resulting 
transformations were concatenated, inverted and further applied to warp the AAL template from MNI space 
to the EPI native space, where the discrete labeling values were preserved by applying nearest-neighbor 
interpolation. SC networks were constructed following a three-step process. First, the regions of the whole-
brain network were defined using the AAL template. Second, the connections between nodes in the whole-
brain network (i.e., edges) were estimated using probabilistic tractography for each participant. Third, results 
were averaged across participants. 
 
Data preprocessing was performed using FSL diffusion toolbox (Fdt) with default parameters. Following this 
preprocessing, the local probability distributions of fiber directions were estimated at each voxel6. The 
probtrackx tool in Fdt was used to provide automatic estimation of crossing fibers within each voxel, which 
has been shown to significantly improve the tracking sensitivity of non-dominant fiber populations in the 
human brain7. The connectivity probability from a seed voxel i to another voxel j was defined by the proportion 
of fibers passing through voxel i that reached voxel j (sampling of 5000 streamlines per voxel7. All the voxels 
in each AAL parcel were seeded (i.e. gray and white matter voxels were considered). This was extended from 
the voxel level to the region level, i.e. in a parcel consisting of n voxels, 5000 × n fibers were sampled. The 
connectivity probability P!" from region i to region j was calculated as the number of sampled fibers in 
region i that connected the two regions, divided by 5000 × n, where n represents the number of voxels in 
region i. The resulting SC matrices were thresholded at 0.1% (i.e. a minimum of five streamlines). 
 
Due to the dependence of tractography on the seeding location, the probability from i to j was not necessarily 
equivalent to that from j to i. However, these two probabilities were highly correlated across the brain for all 
participants (r > 0.70, p < 10−50). As the directionality of connections cannot be determined using diffusion 

https://www.sciencedirect.com/topics/medicine-and-dentistry/connectome
https://www.sciencedirect.com/topics/medicine-and-dentistry/diffusion-tensor-imaging
https://www.sciencedirect.com/topics/medicine-and-dentistry/neurologic-disease
https://www.sciencedirect.com/topics/medicine-and-dentistry/neurologic-disease
https://www.sciencedirect.com/topics/medicine-and-dentistry/diffusion-mri
https://www.sciencedirect.com/topics/medicine-and-dentistry/dna-template
http://www.fmrib.ox.ac.uk/fsl
https://www.sciencedirect.com/topics/medicine-and-dentistry/tractography
https://www.sciencedirect.com/topics/neuroscience/diffusion-mri


MRI, the unidirectional connectivity probability P!" between regions i and j was defined by averaging these 
two connectivity probabilities. This unidirectional connectivity was considered a measure of SC between the 
two areas, with C!" = C"!. The regional connectivity probability was calculated using in-house Perl scripts. For 
both phase encoding directions, 90 × 90 symmetric weighted networks were constructed based on the AAL 
parcellation, and normalized by the number of voxels in each AAL region, thus representing the SC network 
organization of the brain of each participant. Finally, the data was averaged across participants. 

 
 
Supplementary data 4. Bayesian optimization 

 
Bayesian Optimization was implemented in Matlab. An expected-improvement acquisition function was used 

to optimize the DMF model parameters8. The optimization was run assuming a stochastic objective function, 

letting the algorithm randomly select the initial conditions for each simulation 

 

Supplementary data 5. Results of the reproducibility analysis. 

 

 
Figure S1. Replication of panels A and G of Fig. 2, but using a subsample of the HIC group matching the 
Latam group sample size, and also balanced in terms of demographic variables. 
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Supplementary data 6. Visual representation of the ANCOVA results. 

 

 
Figure S2. Visual representation of the ANCOVA results. Model parameter vs. years with disease (YWD) fits 

for all the factor combinations in the analysis (HIC/Latam, male/female), shown for AD patients only, given 

that the ANCOVA analysis showed significant differences between models for the gender variable in the AD 

Latam sample. 
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