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Abstract

Recent studies have provided evidence for the concurrent encoding of sensory percepts and
visual working memory contents (VWM) across visual areas; however, it has remained unclear
how these two types of representations are concurrently present. Here, we reanalyzed an
open-access fMRI dataset where participants memorized a sensory stimulus while
simultaneously being presented with sensory distractors. First, we found that the VWM code in
several visual regions did not generalize well between different time points, suggesting a
dynamic code. A more detailed analysis revealed that this was due to shifts in coding spaces
across time. Second, we collapsed neural signals across time to assess the degree of
interference between VWM contents and sensory distractors, specifically by testing the
alignment of their encoding spaces. We find that VWM and feature-matching sensory distractors
are encoded in separable coding spaces. Together, these results indicate a role of dynamic
coding and temporally stable coding spaces in helping multiplex perception and VWM within
visual areas.
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Introduction

To successfully achieve behavioral goals, humans rely on the ability to remember, update, and
ignore information. Visual working memory (VWM) allows for a brief maintenance of visual
stimuli that are no longer present within the environment 1–3. Previous studies have revealed that
the contents of VWM are present throughout multiple visual areas, starting from V1 4–12. These
findings raised the question of how areas that are primarily involved in visual perception can
also maintain VWM information without interference between the two contents. Recent studies
that had participants remember a stimulus while simultaneously being presented with sensory
stimuli during the delay period have found supporting evidence that both VWM contents and
sensory percepts are multiplexed in occipital and parietal regions 8,13,14. However, the
mechanism employed in order to segregate bottom-up visual input from VWM contents remains
poorly understood.

One proposed mechanism to achieve the separation between sensory and memory
representations is dynamic coding 25–27: the change of the population code encoding VWM
representations across time. Recent work has shown that the format of VWM might not be as
persistent and stable throughout the delay as previously thought 28,29. Frontal regions display
dynamic population coding across the delay during the maintenance of category 30 and spatial
contents in the absence of interference 31,32, and also shows dynamic recoding of the
memoranda after sensory distraction 33,34. The visual cortex in humans displays dynamic coding
of contents during high load trials 35 and during a spatial VWM task 36. However, it is not yet
clear whether dynamic coding of VWM might help evade sensory distraction in human visual
areas.

Another line of evidence suggests that perception could potentially be segregated from VWM
representations using stable non-overlapping coding spaces 15. For example, evidence from
neuroanatomy indicates that the sensory bottom-up visual pathway primarily projects to the
cytoarchitectonic Layer 4 in V1, while feedback projections culminate in superficial and deep
layers of the cortex 16. Functional results are in line with neuroanatomy by showing that VWM
signals preferentially activate the superficial and deep layers in humans 17 and non-human
primates 18, while perceptual signals are more prevalent in the middle layers 19. In addition to
laminar separation, regional multiplexing of multiple items could potentially rely on rotated
representations, as seen in memory and sensory representations orthogonally coded in the
auditory cortex 20 and in the storage of a sequence of multiple spatial locations in the prefrontal
cortex (PFC) 21. Non-overlapping orthogonal representations have also been seen in both
humans and trained recurrent neural networks as a way of segregating attended and
unattended VWM representations 22–24.

Here we investigated whether the concurrent presence of VWM and sensory information is
compatible with predictions offered by dynamic coding or by stable non-aligned coding spaces.
For this, we reanalyzed an open-access fMRI dataset by Rademaker et al. 8 where participants
performed a delayed-estimation VWM task with and without sensory distraction. To investigate
dynamic coding we employed a temporal cross-decoding analysis that assessed how well the
multivariate code encoding VWM generalizes from one time point to another 32,37–39, and a
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temporal neural subspace analysis that examined a sensitive way of looking at alignment of
neural populations coding for VWM at different time points. To assess the non-overlapping
coding hypothesis, we used neural subspaces 20,31,36 to see whether temporally stable
representations of the VWM target and the sensory distractor are coded in separable neural
populations. Finally, we examined the multivariate VWM code changes during distractor trials
when compared to the no-distractor VWM format.

Results

Temporal cross-decoding in distractor and no-distractor trials

In the previously published study 8 participants completed a VWM task where on a given trial
they were asked to remember an orientation of a grating, which they had to then recall at the
end of the trial. The delay period was either left blank (no-distractor) or a noise or randomly
oriented grating distractor was presented (Fig. 1a). To investigate the dynamics of the VWM
code, we examined how the multivariate pattern of activity encoding VWM memoranda changed
across the duration of the delay period. To do so, we ran a temporal cross-decoding analysis
where we trained a decoder (periodic support vector regression, see 40) on the target
orientation, separately for each time point and tested on all time points in turn in a
cross-validated fashion. If the information encoding VWM memoranda were to have the same
code, the trained decoder would generalize to other time points, indicated by similar decoding
accuracies on the diagonal and off-diagonal elements of the matrix. However, if the code
exhibited dynamic properties, despite information about the memonda being present
(above-chance decoding on the diagonal of the matrix), both off-diagonal elements
corresponding to a given on-diagonal element would have lower decoding accuracies (Fig. 1b).
Such off-diagonal elements are considered an indication of a dynamic code.

We ran the temporal cross-decoding analysis for the three VWM delay conditions: no-distractor,
noise distractor and orientation distractor (feature-matching distractor). First, we examined each
element of the cross-decoding matrix to test whether decoding accuracies were above chance.
In all three conditions and throughout all ROIs, we found clusters where decoding was above
chance (Fig. 1c-e, black outline; nonparametric cluster-permutation test against null; all clusters
p < 0.05) from as early as 4 s after the onset of the delay period. We found that decoding on the
diagonal was highest during no-distractor compared to noise and orientation distractor trials in
most regions of interest (ROI; Fig. 4a).
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Figure 1. Task and temporal cross-decoding. a) On each trial an oriented grating was
presented for the 0.5 s followed by a delay period of 13 s 8. In a third of the trials a noise
distractor was presented for 11 s during the middle of the delay; in another third another
orientation grating was presented; one third of trials had no distractor during the delay. b)
Illustration of dynamic coding elements. An off-diagonal element had to have a lower
decoding accuracy compared to both corresponding diagonal elements (see Methods for
details). c) Temporal generalization of the multivariate code encoding VWM
representations in three conditions across occipital and parietal regions.
Across-participant mean temporal cross-decoding of no-distractor trials. Black outlines:
matrix elements showing above-chance decoding (cluster-based permutation test; p <
0.05). Blue outlines with dots: dynamic coding elements; parts of the cross-decoding
matrix where the multivariate code fails to generalize (off-diagonal elements having
lower decoding accuracy than their corresponding two diagonal elements; conjunction
between two cluster-based permutation tests; p < 0.05). d) Same as c), but noise
distractor trials. e) Same as c), but orientation distractor trials. f) Dynamicism index; the
proportion of dynamic coding elements across time. High values indicate a dynamic
non-generalizing code, while low values indicate a generalizing code. Time indicates the
time elapsed since the onset of the delay period.

Second, we examined off-diagonal elements to assess whether there was any indication that
they reflected a non-generalizing dynamic code (see Methods for full details). Despite a high
degree of temporal generalization, we found dynamic coding clusters in all three conditions.
Some degree of dynamic coding was observed in all ROIs but LO2 in the noise distractor and
no-distractor trials, while it was only present in V1, V2, V3, V4, and IPS in the orientation
distractor condition (Fig. 1c-e, blue outline). The difference between noise and orientation
distractor conditions could not be explained by the amount of information present in each ROI,
as the decoding accuracy of the diagonal was similar across all ROIs in both the noise and
orientation distractor conditions (Fig. 4a). We saw a nominally larger number of dynamic coding
elements in V1, V2 and V3AB during the noise distractor condition and in V3 during the
no-distractor condition (Fig. 1d).

To qualitatively compare the amount of dynamic coding in the three conditions across the delay
period, we calculated a dynamicism index 32 (Fig. 1e; see Methods), which measured the
multivariate code’s uniqueness at each time point; more precisely, the proportion of dynamic
elements corresponding to each diagonal element. High values indicate dynamic code and low
values indicate a generalizing code. Across all conditions, most dynamic elements occurred
between the encoding and early delay periods (4-8 s), and the late delay and retrieval
(14.4-16.8 s). Interestingly, during the noise distractor trials in V1 we also saw dynamic coding
during the middle of the delay period; the multivariate code not only changed during the onset
and offset of the noise stimulus, but also during its presentation and throughout the extent of the
delay.
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Dynamics of VWM neural subspaces across time

The temporal cross-decoding analysis revealed more dynamic coding in the early visual cortex
primarily during the early and late delay phase and a more generalized coding throughout the
delay in higher-order regions. In order to understand the nature of these effects in more detail,
we conducted a separate series of analyses that directly assessed the neural subspaces in
which the orientations were encoded and how these potentially changed across time.
Specifically, we followed a previous methodological framework 36 and applied a principal
component analysis (PCA) to the high-dimensional activity patterns at each time point to identify
the two axes that explained maximal variance across orientations (see Fig. 2 and Methods).

Figure 2. Assessing the dynamics of neural subspaces in V1-V3AB. a) Schematic
illustration of the neural subspace analysis. A given data matrix (voxels x orientation
bins) was subjected to a principal components analysis and the first two dimensions
were used to define a neural subspace onto which a left-out test data matrix was
projected. This resulted in a matrix of two coordinates for each orientation bin and was
visualized (see right). The x and y axes indicate the first two principal components. Each
color depicts an angular bin. b) Schematic illustration of the calculation of an
above-baseline principal angle (aPA). A principal angle (PA) is the angle between the 2D
PCA-based neural subspaces (as in a) for two different time points t1, t2. A small angle
would indicate alignment of coding spaces; an angle of above-baseline would indicate a
shift in the coding space. The above-baseline principle angle (aPA) is the angle for a
comparison between two time points (t1, t2) minus the angle between cross-validated
pairs of the same time points. c) Each row shows a projection that was estimated for one
of two time ranges (middle and late delay) and then applied to all time points (using
independent, split-half cross-validated data). Opacity increases from early to late time
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points. For visualization purposes the subspaces were estimated on a
participant-aggregated ROI 36. Fig. S1 depicts the same projections as neural
trajectories. d) aPA between all pairwise time point comparisons (nonparametric
permutation test against null; FDR-corrected p < 0.05) averaged across 1,000 split-half
iterations. Corresponding p-values found in Supplementary Table 1.

First, we visualized the consistency of the neural subspaces across time. For this, we computed
low-dimensional 2D neural subspaces for a given time point and projected left-out data from six
time points during the delay onto this subspace 20,36. A projection of data from a single time point
resulted in four orientation bin values placed within the subspace (Fig. 2a, colored circles
indicate orientation). Taking into account projected data from all timepoints, if the VWM code
were generalizing, we would see a clustering of orientation points in a subspace; however, if
orientation points were scattered around the neural subspace, this would show a
non-generalizing code.

We examined the projections in a combined ROI spanning V1-V3AB aggregated across
participants. We projected left-out data from all six time point bins onto subspaces generated
from the early (7.2 s), middle (12 s), and late (16.8 s) time point data for each of the three
conditions. Overall, the results showed generalization across time with some exceptions (Fig.
2c, Fig. S1). The clustering of orientation bins in the no-distractor condition was most
pronounced (Fig. 4a). In contrast, the noise distractor trials showed a resemblance of some
degree of dynamic coding, as seen by less variance explained by early time points projected
onto the middle subspace and the early and middle time points projected onto late subspace
(Fig. 2c, Fig. S1).

To quantify the visualized changes, we measured the alignment between each pair of
subspaces by calculating the above-baseline principal angle (Fig. 2b) within the combined
V1-V3AB ROI. The above-baseline principal angle (aPA) measures the alignment between the
2D subspaces encoding the VWM representations: the higher the angle, the smaller the
alignment between two subspaces and an indication of a changed neural coding space. Unlike
in the projection of data from time points, the aPA was calculated participant-wise. Using a
split-half approach, we measured the aPA between each split-pair of subspaces and subtracted
the angles measured within each of the subspaces with the latter acting as a null baseline.

All three conditions showed significant aPAs (Fig, 2d; cyan stars; permutation test; p < 0.05,
FDR-corrected). Corresponding to the results from the cross-decoding analysis, the early (4.8s)
and late (16.8) delay subspaces showed the highest number of significant pairwise aPAs in all
conditions, with noise distractor trials having all pairwise aPAs including the early and late
subspaces being significant. The three conditions each had two significant aPAs between
timepoints in the middle of the delay period.
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Figure 3. Generalization between target and distractor codes in orientation
distractor VWM trials in V1-V3AB. a) Across-participant mean temporal
cross-decoding of the sensory distractor. Black outlines: matrix elements showing
above-chance decoding (cluster-based permutation test; p < 0.05). Blue outlines with
dots: dynamic coding element (conjunction between two cluster-based permutation tests;
p < 0.05). b) Same as a), but the decoder was trained on the target and tested on the
sensory distractor in orientation VWM trials. c) Same as a), but trained on the sensory
distractor and tested on the target. See Fig. S2 for ROIs from V4-LO2. d) Left: projection
of left-out target (green) and sensory distractor (gray) onto an orientation VWM target
neural subspace. Right: same as left, but the projections are onto the sensory distractor
subspace. e) Principal angle between the sensory distractor and orientation VWM target
subspaces (p = 0.0297, one-tailed permutation test of sample mean). Average across
1,000 split-half iterations. Errorbars indicate ± SEM across participants.
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Alignment between distractor and target subspaces in orientation distractor trials

Next, we assessed any similarity in encoding between the memorized orientation targets and
the orientation distractors by focusing on those trials where both occurred. First, we examined
whether the encoding of the sensory distractor is stable across its entire presentation duration
(1.5 s - 12.5 s after target onset) using the same approach as for the VWM target (Fig. 1e). We
found stable coding of the distractor in all ROIs with only a few dynamic elements in V2 and V3
(Fig. 3a, Fig. S2). We then assessed whether the sensory distractor had a similar code to the
VWM target by examining whether the multivariate code across time generalizes from the target
to the distractor and vice versa. When cross-decoded, the sensory distractor (Fig. 3c) and
target orientation (Fig. 3b) had lower decoding accuracies in the early visual cortex compared to
when trained and tested on the same label-type, indicative of a non-generalizing code. Such a
difference was not seen in higher-order visual regions, as the decoding of the sensory distractor
was low to begin with (Fig. S2).

Since we found minimal dynamics in the encoding of the distractor (Fig. 3a) and target (Fig. 1e),
we focused on temporally stable neural subspaces that encoded the target and sensory
distractor. We computed stable neural subspaces where we disregarded the temporal variance
by averaging across the whole delay period and binned the trials either based on the target
orientation (Fig. 3d, left subpanel) or the distractor orientation (Fig. 3d, right subpanel). We then
projected left-out data binned based on the target (Fig. 3d, green quadrilateral) or the distractor
(Fig. 3d, gray quadrilateral). This projection provided us with both a baseline (as when training
and testing on the same label) and a cross-generalization. Unsurprisingly, the target subspace
explained the left-out target data well (Fig. 3d, left subpanel, green quadrilateral); however, the
target subspace explained less variance of the left-out distractor data (Fig. 3d, left subpanel,
gray quadrilateral), as qualitatively seen from the smaller spread of the sensory distractor
orientations. A similar but less pronounced dissociation between projections was seen in the
distractor subspace (Fig. 3d, left, quadrilateral in green) with the distractor subspace better
explaining the left-out distractor data. We quantified the difference between the target and
distractor subspaces and found a significant aPA between them (p = 0.0297, one-tailed
nonparametric permutation test; Fig. 3e). These results provide evidence for the presence of
separable stable neural subspaces that might enable the multiplexing of VWM and perception
across the extent of the delay period.
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Figure 4. Cross-decoding between distractor and no-distractor conditions. a)
Decoding accuracy (feature continuous accuracy; FCA) across time for train and test on
no-distractor trials (purple), train and test on noise distractor trials (dark green) and train
and test on orientation distractor trials (light green). Horizontal lines indicate clusters
where there is a difference between two time courses (all clusters p < 0.05;
nonparametric cluster permutation test, see color code on the right). b) Decoding
accuracy as a proportion of no-distractor decoding estimated on the averaged delay
period (4-16.8s). Nonparametric permutation tests compared the decoding accuracy of
each analysis to the no-distractor decoding baseline (indicated as a dashed line) and
between a decoder trained and tested on distractor trials (noise- or orientation-within)
and a decoder trained on no-distractor trials and tested on distractor trials (noise or
orientation-cross). FDR-corrected across ROIs. * p < 0.05, *** p < 0.001. Corresponding
p-values found in Supplementary Table 2.
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Impact of distractors on VWM multivariate code

To further assess the impact of distractors on the available VWM information, we examined the
decoding accuracies of distractor and no-distractor trials across time. Decoding accuracy was
higher in the no-distractor trials compared to both orientation and noise distractor trials across
all ROIs, but IPS (Fig. 4a, red and blue lines, p < 0.05, cluster permutation test) across several
stages of the delay period. To further assess how distractors affected the delay period
information, we increased sensitivity by collapsing across it, because time courses were
comparable in all conditions (Fig. 4a). To assess to which degree VWM encoding generalized
from no-distractor to distractor trials, we trained a decoder on no-distractor trials and tested it on
both types of distractor trials (Fig. 4b noise- and orientation-cross). We expressed the decoding
accuracy of each distractor condition as a proportion of the decoding accuracy in the
no-distractor condition. Values close to one indicate comparable information, while values below
one mean the decoder does not generalize well. We found that the cross-decoding accuracies
were significantly lower than the no-distractor in all ROIs but V4 (in both noise and orientation)
and LO2 (only noise). Thus, in most areas the decoder did not generalize well from the
no-distractor to distractor conditions. However, the total amount of information in distractor trials
was generally slightly lower (Fig. 4a). Thus, we also compared the generalization to a decoder
trained and tested on the same distractor condition (Fig. 4b noise- and orientation-within), which
might thus be able to extract more information. We found that indeed information recovered in
areas V2 and V3AB in the noise distractor condition (Fig. 4b, pairwise permutation test). Thus,
there was more information in the noise distractor condition, but it was not accessible to a
decoder trained only on no-distractor trials. Additionally, a temporal cross-decoding analysis
where all training time points were no-distractor trials had less dynamic coding in early visual
regions (Fig. S3) when compared to the temporal cross-decoding matrix when trained and
tested on noise distractor trials (Fig. 1d). These results indicate a change in the VWM format
between the noise distractor and no-distractor trials.

Discussion

We examined the dynamics of visual working memory (VWM) with and without distractors and
explored the impact of sensory distractors on the coding spaces of VWM contents in visual
areas by reanalyzing previously published data 8. Participants completed a task during which
they had to maintain an orientation stimulus in VWM. During the delay period either no
distractor, an orientation distractor, or a noise distractor were presented. We assessed two
potential mechanisms that could help concurrently maintain the superimposed sensory and
memory representations. First, we examined whether changes were observable in the
multivariate code for memory contents across time, which we term dynamic coding. For this we
used two different analyses: temporal cross-classification and a direct assessment of angles
between coding spaces. We found evidence for dynamic coding in all conditions, but there were
differences in these dynamics between conditions and regions. Dynamic coding was most
pronounced during the noise distractor trials in early visual regions. Second, we assessed the
complementary question of temporally stable coding spaces. We computed the stable neural
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subspaces by averaging across the delay period. We saw that coding of the VWM target and
concurrent sensory distractors occurred in different stable neural subspaces. Finally, we
observed that the format of the multivariate VWM code during the noise distraction differs from
the VWM code when distractors were not present.

Dynamic encoding of VWM contents has been previously repeatedly examined. Temporal
cross-decoding analyses have been used in a number of non-human primate electrophysiology
and human fMRI studies 25,32,33,35,36,38,41. Spaak et al. 32 found dynamic coding in the non-human
primate PFC during a spatial VWM task. They observed a change in the multivariate code
between different stages; specifically a first shift between the encoding and maintenance
periods, and also a second shift between the maintenance and retrieval periods. The initial
transformation between the encoding and maintenance periods might recode the percept of the
target into a stable VWM representation, whereas the second might transform the stable
memoranda into a representation suited for initiation of motor output. A similar dynamic coding
pattern was also observed in human visual regions using neuroimaging 36. In this study, in all
three conditions we find a comparable pattern of results, where the multivariate code changes
between the early delay and middle delay, and middle delay and late delay periods.

When noise distractors are added to the delay period we find evidence of additional coding
shifts in V1 during the middle of the delay. Previous research in non-human primates has shown
that the presentation of a distractor induces a change in multivariate encoding for VWM in
lateral PFC (lPFC) 33. More precisely, a lack of generalization was observed between the
population code encoding VWM before the presentation of a distractor (first half of the delay)
and after its presentation (the second half). Additionally, continuous shifts in encoding have
been observed in the extrastriate cortex throughout the extent of the delay period when
decoding multiple remembered items at high VWM load 35. The dynamic code has been
interpreted to enable multiplexing of representations when the visual cortex is overloaded by the
maintenance of multiple stimuli at once. Future research could examine how properties of the
distractor and of the target stimulus could interact to lead to dynamic coding. One intriguing
hypothesis is that distractors that perturb the activity of feature channels that are used to
encode VWM representations induce changes in its coding space over time. It is important to
note that in this experiment, the activation of the encoded target features was highest for the
noise stimulus. Thus the shared spatial frequencies between noise distractor and the VWM
contents potentially contribute to a more pronounced dynamic coding effect.

In a complementary analysis we directly assessed subspaces in which orientations were
encoded in VWM. We defined the subspaces for three different time windows, early, middle and
late. We find no evidence that the identity of orientations is confusable across time, e.g. we do
not observe 45° at one given time point being recoded as 90° from a different time point. Such
dynamics have been previously observed in the rotation of projected angles within a fixed neural
subspace 20,22. Rather, we find a decreased generalization between neural subspaces at
different time points, as previously observed in a spatial VWM task 36. These results suggest
that the temporal dynamics across the VWM trial periods are driven by changes in the coding
subspace of VWM. We do observe a preservation of the topology of the projected angles, as
more similar angles remained closer together (e.g. the bin containing 45° was always closer to
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the bin containing 0° and 90°). Such a topology has been seen in V4 during a color perception
task 42.

We also find evidence that the VWM contents are encoded in a different way depending on
whether a noise distractor is presented or not. The decoder trained on no-distractor trials does
not generalize well, presumably because it fails to fully access all the information present in
noise distractor trials. If the decoders are trained directly on the distractor conditions the VWM
related information is much higher. Additionally, we see that the code generalizes better across
time when training on no-distractor trial time points and testing on noise distractor trials. This
may imply that by training our decoder on the no-distractor trials we are able to uncover an
underlying stable population code encoding VWM in noise distractor trials. Consistent with this
finding, Murray et al. 31 demonstrated that subspaces derived on the delay period could still
generalize to the more dynamic encoding and retrieval periods, albeit not perfectly.

Interestingly, we found limited dynamic coding in the orientation distractor condition; primarily a
change in the code between the early delay and middle delay periods was observed.
Nonetheless, we find distinct temporally stable coding spaces in which sensory distractors and
memory targets are encoded. These results correspond to prior research demonstrating a
rotated format between perception and memory representations 20, attended and unattended
VWM representations in both humans and recurrent-neural networks trained on a 2-back VWM
22 and serial retro-cueing tasks 23,43. Additionally, similar rotation dynamics have been observed
between multiple spatial VWM locations stored in the non-human primate lPFC 21. Considering
the consistency of these results across different paradigms, we speculate that separate coding
spaces might be a general mechanism of how feature-matching items can be concurrently
multiplexed within visual regions. With growing evidence of the relationship between VWM
capacity and neural resources available within the visual cortex 44–46, further research could
examine the number of feature-matching items that can be stored in non-aligned coding spaces.

It remains to be seen whether the degree of change or rotation between subspaces correlates
with behavior. In this experiment, we do not observe a behavioral deficit in the feature-matching
orientation distractor trials 8. Yet there is evidence from behavioral and neural studies that show
interactions between perception and VWM: feature-matching distractors behaviorally bias
retrieved VWM contents 47,48; VWM representations influence perception 49–52; neural visual
VWM representations in the early visual cortices are biased towards distractors 53; and the
fidelity of VWM neural representations within the visual cortex negatively correlates with
behavioral errors when recalling VWM during a sensory distraction task 54. In cases where a
distractor does induce a drop in recall accuracy or biases the recalled VWM target, VWM and
the sensory distractor neural subspaces might overlap more.

To our surprise, we did not observe a significant difference in the coding format of VWM
between orientation distractor and no-distractor trials. Our initial expectation was that the VWM
coding might undergo changes due to the target representation avoiding the distractor stimulus.
However, the presence of a generalizing code between no-distractor and orientation distractor
trials, along with the non-aligned coding spaces between the target and distractor in the
orientation trials, suggests an alternative explanation. We suggest that the sensory distractor
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stimulus occupies a distinct coding space throughout its presentation during the delay, while the
coding space of the target remains the same in both orientation and no-distractor trials.
Layer-specific coding differences in perception and VWM might explain these findings 17,19,55.
Specifically, the sensory distractor neural subspace might predominantly reside in the bottom-up
middle layers of early visual cortices, while the neural subspace encoding VWM might primarily
occupy the superficial and deep layers.

We provide evidence for two types of mechanisms found in visual areas during the presence of
both VWM and sensory distractors. First, our findings show dynamic coding of VWM within the
human visual cortex during sensory distraction and indicate that such activity is not only present
within the lPFC. Second, we find that VWM and feature-matching sensory distractors are
encoded in shifted coding spaces. Taking into account previous findings, we posit that different
coding spaces within the same region might be a more general mechanism of segregating
feature-matching stimuli. In sum, these results provide possible mechanisms of how VWM and
perception are concurrently present within visual areas.

Methods

Participants, stimuli, procedure, and preprocessing

The following section is a brief explanation of parts of the methods covered in Rademaker et al.
8. Readers may refer to that paper for details. We reanalyzed data from Experiment 1.

Six participants performed two tasks while in the scanner: a VWM task and a perceptual
localizer task. In the perceptual localizer task, either a donut-shaped or a circle-shaped grating
was presented in 9 second blocks. The participants had to respond whenever the grating
dimmed. There were a total of 20 donut-shaped and 20 circle-shaped gratings in one run.
Participants completed a total of 15-17 runs.

The visual VWM task began with the presentation of a colored 100% valid cue which indicated
the type of trial: no-distractor, orientation distractor, or noise distractor. Following the cue, the
target orientation grating was presented centrally for 500 ms, followed by a 13 s delay period. In
the trials with the distractor, a stimulus of the same shape and size as the target grating was
presented centrally for 11 s in the middle of the delay period (Fig. 1a). The orientation and noise
distractors reversed contrast at 4 Hz. At the end of the delay, a probe stimulus bar appeared at
a random orientation. The participants had to align the bar to the target orientation and had to
respond in 3 s.

The orientations for the VWM sample were pseudo-randomly chosen from six orientation bins
each consisting of 30 orientations. The orientation distractor and sample were counterbalanced
in order not to have the same orientation presented as a distractor. Each run consisted of four
trials of each condition. Across three sessions participants completed 27 runs of the task
resulting in a total of 108 trials per condition.
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The data were acquired using a simultaneous multi-slice EPI sequence with a TR of 800 ms, TE
of 35 ms, flip angle of 52°, and isotropic voxels of 2 mm. The data were preprocessed using
FreeSurfer and FSL and time-series were z-scored across time for each voxel.

Voxel selection

We used the same regions of interest (ROI) as in Rademaker et al. 8, which were derived using
retinotopic mapping. In contrast to the original study, we reduced the size of our ROIs by
selecting voxels that reliably responded to both the donut-shaped orientation perception task
and the no-distractor VWM task. In order to select reliably activating voxels, we calculated four
tuning functions for each voxel: two from the perceptual localizer and two from the no-distractor
VWM task. The tuning functions spanned the continuous feature space in bins of 30°. Thus, to
calculate the tuning functions, we ran a split-half analysis using stratified sampling where we
binned all trials into six bins (of 30°). For both halves, tuning functions were estimated using a
GLM that included six orientation regressors (one for each bin) and assumed an additive noise
component independent and identically distributed across trials. We calculated Pearson
correlations between the no-distractor memory and the perception tuning functions across the
six parameter estimates extracted from the GLM, thus generating one memory-memory and one
perception-perception correlation coefficient for each voxel.

The same analysis was additionally performed 1,000 times on randomly permuted orientation
labels to generate a null distribution for each participant and each ROI. These distributions were
used to check for the reliability of voxel activation to perception and no-distractor VWM. After
performing Fisher z-transformation on the correlations, we selected voxels that had a value
above the 75th percentile of the null distributions in both the memory-memory and
perception-perception correlations. This population of voxels was then used for all subsequent
analyses. IPS included reliable voxels from retinotopically derived IPS0, IPS1, and IPS2.

Periodic support vector regression

We used periodic support vector regression (pSVR) to predict the target orientation from the
multivariate BOLD activity 40. PSVR uses a regression approach to estimate the sine and cosine
components of a given orientation independently and therefore accounts for the circular nature
of stimuli. In order to have a proper periodic function, orientation labels from the range [0°, 180°)
were projected into the range [0, 2 ).π

We used the support vector regression algorithm using a non-linear radial basis function (RBF)
kernel implemented in LIBSVM 56 for orientation decoding. Specifically, sine and cosine
components of the presented orientations were predicted based on multivariate fMRI signals
from a set of voxels at specific time points within a trial (see Temporal Generalization). In each
cross-validation fold, we rescaled the training data voxel activation into the range [0, 1] and
applied the training data parameters to rescale the test data. For each participant we had a total
of three iterations in our cross-validation, where we trained on two thirds (i.e. two sessions) and
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tested on one third of the data (i.e. the left-out session). We selected three iterations in order to
mitigate training and test data leakage (see Temporal Generalization).

After pSVR-based analysis, reconstructed orientations were obtained by plugging the predicted
sine and cosine components into the four-quadrant inverse tangent:

where and are pSVR outputs in the test set. Prediction accuracy was measured as the
trial-wise absolute angular deviation between predicted orientation and actual orientation:

where θ is the labeled orientation and is the predicted orientation. This measure was then
transformed into a trial-wise feature continuous accuracy (FCA) 57 as follows:

The final across-trial accuracy was the mean of the trial-wise FCAs. Mean FCA was calculated
across predicted orientations from all test sets after cross-validation was complete. The FCA is
an equivalent measurement to standard accuracy measured in decoding analyses falling into
the range between 0 and 100%, but extended to the continuous domain. In the case of random
guessing, the expected angular deviation is , resulting in chance-level FCA at 50%.

Temporal cross-decoding

To determine the underlying stability of the VWM code, we ran a temporal cross-decoding
analysis using pSVR (Fig. 1). We trained on data from a given time point and then predicted
orientations for all time points, using the presented targets as labels. We trained on two-thirds of
the trials per iteration and tested on the left-out third. Training and test data were never taken
from the same trials, both when testing on the same and different time points.

We used a cluster-based approach to test for significance for above-chance decoding clusters
58. To determine whether the size of the cluster of the above-chace values was significantly
larger than chance, we calculated a summed t-value for each cluster. We then generated a null
distribution by randomly permuting the sign of the estimated above-chance accuracy (each FCA
value was subtracted by 50%, such that 0 corresponds to chance level) of all components within
the temporal cross-decoding matrix. We calculated the summed t-value for the largest randomly
occurring above-chance cluster. This procedure was repeated 1000 times to estimate a null
distribution. The empirical summed t-value of each cluster was then compared to the null
distribution to determine significance (p < 0.05; without control of multiple cluster comparisons).

Dynamic coding clusters were defined as elements within the temporal cross-decoding matrix
where the multivariate code at a given time point did not fully generalize to another time point; in
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other words, an off-diagonal element was significantly smaller in accuracy compared to its two
corresponding on-diagonal elements (aij < aiiand aij < ajj, Fig. 1b). In order to test for significance
of these clusters, we ran two cluster-permutation tests as done in previous studies to define
dynamic clusters 32,36. In each test, we subtracted one or the other corresponding diagonal
elements from the off-diagonal elements (aij – aii and aij – ajj). We then ran the same sign
permutation test as for the above-chance decoding cluster for both comparisons. An
off-diagonal element was deemed dynamic, if both tests were significant (p < 0.05) and it was
part of the above-chance decoding cluster.

Following 32, we also computed the dynamicism index as a proportion of elements across time
that were dynamic. Specifically, we calculated the proportion of (off-diagonal) dynamic elements
corresponding to a diagonal time point in both columns (corresponding to the test time points)
and rows (corresponding to the train time points) of the temporal cross-decoding matrix.

Neural subspaces

We adapted the method from 36 to calculate two-dimensional neural subspaces encoding VWM
information at a given time point. To do so, we used principal component analysis (PCA). To
maximize power, we binned trial-wise fMRI activations into four equidistant bins of 45 degrees
and averaged the signal across all trials within a bin (Fig. 2a). The data matrix X was defined as
a matrix where was the four orientation bins, and was the number of voxels. We
mean-centered the columns (i.e. each voxel) of the data matrix.

This analysis focused on the time points from 4 s to 17.6 s after delay onset. The first TRs were
not used since the temporal cross-decoding results showed no above-chance decoding. We
averaged across every three TRs leading to six non-overlapping temporal bins resulting in six X
matrices. We calculated the principal components (PCs) using eigendecomposition of the
covariance matrix for each X and defined the matrix V using the two largest eigenvalues as a

matrix, resulting in six neural subspaces, one for each non-overlapping temporal bin.

Neural subspaces across time

For visualization purposes, we used three out of the total of six neural subspaces from the
following time points: early (7.2 s), middle (12 s), and late (16.8 s). Following the
aforementioned procedure, these subspaces were calculated on half of the trials, as we
projected the left-out data onto the subspaces. The left-out data were binned into six temporal
bins between 4 s and 17.6 s after target onset with no overlap just like in the calculation of the
six subspaces. The projection resulted in a matrix P for each projected time bin
(resulting in a total of six P matrices). We use distinct colors to plot the temporal trajectories of
each orientation bin across time in a 2D subspace flattened (Fig. 2c) and not flattened (Fig. S1)
across the time dimension. Importantly, the visualization analysis was done on a combined

18

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.589170doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?tZWtfX
https://www.zotero.org/google-docs/?W9gkkT
https://www.zotero.org/google-docs/?nFxwIz
https://doi.org/10.1101/2024.04.12.589170
http://creativecommons.org/licenses/by/4.0/


participant-aggregated V1-V3AB region, which included all reliable voxels across the four
regions and all six participants (see Voxel Selection).

To measure the alignment between coding spaces at different times, we calculated an
above-baseline principal angle (aPA) between all subspaces (Fig. 2c). We used the MATLAB
function subspace for an implementation of the method proposed by 59 to measure the angle
between two V matrices. This provided us with a possible principal angle between 0-90°; the
higher the angle, the larger the difference between the two subspaces. In order to avoid
overfitting and as in the visualization analysis, we used a split-half approach to compute the aPA
between subspaces. Half of the binned trials were used to calculate Vi,A and Vj,Aand half for Vi,B

Vj,B, where A and B refer to the two halves of the split and and i and j refer to the two time bins
compared. For significance testing, the within-subspace angle (the angle between two splits of
the data within a given temporal bin (i.e. Vi,A and Vi,B)) was subtracted from the
between-subspace PA (the angle between two different temporal bins (e.g. Vi,A and Vj,B)). Unlike
the visualization analysis, the PA was calculated per participant 1,000 times using different splits
of the data on a combined V1-V3AB region that included the reliable voxels across the four
regions (see Voxel Selection). The final aPA value was an average across all iterations for each
participant.

Sensory distractor and orientation VWM target neural subspaces

For the orientation VWM target and sensory distractor neural subspace, we followed the
aforementioned subspace analysis, but instead of calculating subspaces on six temporal bins,
we averaged across the 4-17.6 s delay period and calculated a single subspace. As in the
previous analysis, we split the orientation VWM trials in half. We then binned the trials either
based on the target orientation or the sensory distractor. For visualization purposes, we
projected the left-out data averaged based on the sensory distractor and the target onto
subspaces derived from both the sensory distractor and target subspaces. As in the previous
visualization, the analysis was run on a participant-aggregated V1-V3AB region.

To calculate the aPA we had the following subspaces: VTarget,A, VDist,A, VTarget,B and VDist,B , where
the subspaces were calculated on trials binned either based on the target orientation or the
sensory distractor. The aPA was calculated by subtracting the within-subspace angle (VTarget,A

and VTarget,B, VDist,A and VDist,B) from the sensory distractor and working memory angle (VTarget,A

and VDist,B, VTarget,B and VDist,A). The split-half aPA analysis was performed 1,000 times and the
final value was an average across these iterations for each participant.

Data availability

The data is shared open-access https://osf.io/dkx6y/. The analysis scripts will be shared
open-access https://osf.io/XXX/ when published.
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Supplementary Figures

Supplementary Figure 1. Neural trajectories across time. Same as Figure 2c), but
the time dimension is on the z-axis.
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Supplementary Figure 2. Extension of Figure 3 for V4-LO2.
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Supplementary Figure 3. Temporal cross-decoding generalization between
distractor and no-distractor VWM trials. a) Across-participant mean temporal
cross-decoding of noise distractor trials when trained on no-distractor trials. b) Same as
a), but orientation distractor trials trained on no-distractor trials.
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Supplementary Table 1. FDR-corrected p-values corresponding to Figure 2d.
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Time points No distractor Noise distractor Orientation distractor

4.8 - 7.2s 0 0.032 0.031

4.8 - 9.6s 0.081 0 0.052

4.8 - 12s 0.092 0 0.052

4.8 - 14.4s 0.081 0 0

4.8 - 16.8s 0.031 0 0

7.2 - 9.6s 0.078 0.523 0.375

7.2 - 12s 0.031 0.067 0.2004

7.2 - 14.4s 0 0.031 0.081

7.2 - 16.8s 0.031 0 0.092

9.6 - 12s 0.289 0.0667 0

9.6 - 14.4s 0.158 0.067 0.031

9.6 - 16.8s 0.031 0 0.081

12 - 14.4 0.289 0 0.648

12 - 16.8s 0.031 0 0.067

14.4s - 16.8 0 0 0
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Supplementary Table 2. FDR-corrected p-values corresponding to Figure 4b.

Test V1 V2 V3 V3AB V4 IPS LO1 LO2

Noise-between
baseline 0 0 0 0 0.167 0 0 0.085

Noise-within
baseline 0 0.388 0.139 0.337 0.2001 0.027 0.079 0

Orientation-betwe
en baseline 0 0 0 0 0.0598 0 0.0258 0.0454

Orientation-within
baseline 0 0.176 0.2002 0.084 0.0258 0 0 0

Noise
generalization 0.092 0 0.092 0 0.454 0.246 0.107 0.378

Orientation
generalization 0.246 0.092 0.0896 0.118 0.763 0.246 0.551 0.251
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