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Abstract. In the computational age, life-scientists often have to
write Python code to solve bio-image analysis (BIA) problems. Many
of them have not been formally trained in programming though.
Code-generation, or coding assistance in general, with Large Lan-
guage Models (LLMs) can have a clear impact on BIA. To the best of
our knowledge, the quality of the generated code in this domain has
not been studied. We present a quantitative benchmark to estimate the
capability of LLMs to generate code for solving common BIA tasks.
Our benchmark currently consists of 57 human-written prompts with
corresponding reference solutions in Python, and unit-tests to eval-
uate functional correctness of potential solutions. We demonstrate
our benchmark here and compare 15 state-of-the-art LLMs. To en-
sure that we will cover most of our community needs we also outline
mid- and long-term strategies to maintain and extend the benchmark
by the BIA open-source community. This work should support users
in deciding for an LLM and also guide LLM developers in improving
the capabilities of LLMs in the BIA domain.

1 Introduction
Many projects in biology involve state-of-the-art microscopy and
quantitative bio-image analysis (BIA), which increasingly requires
solid programming skills for the experimentalists. As programming
is commonly not taught to life-scientists, we see potential in using
large language models to assist people in this task. Modern Large
Language Models (LLMs) such as chatGPT (OpenAI et al. 2023)
change the way how humans interact with computers. LLMs were
originally developed to solve natural language processing tasks such
as text classification, language translation, or question answering.
These models are also capable of translating human languages into
programming languages, e.g. from English to Python. They can pro-
duce executable code that solves a task defined by human natural
language input [6]. This capability has huge potential for interdisci-
plinary research areas such as microscopy bio-image analysis [22].
LLMs can fill a gap where scientists with limited programming skills

∗ Corresponding Author. Email: robert.haase@uni-leipzig.de

meet more advanced image analysis tasks. LLMs are indeed capable
of writing BIA code as demonstrated in [23], but it is yet unclear
where the limitations of this technology are in the BIA context. So a
systematic way to analyze LLMs in this domain is needed. In a more
general setting multiple LLM code generation benchmarks have been
proposed [7, 3, 17, 27, 13]. We think the bioimaging community
urgently needs its own benchmark, an openly accessible, quantita-
tive way to measure LLM capabilities, in particular given that LLM
technology is developing rapidly. Here, we present the core of this
benchmark. It is derived from HumanEval [7], an established code-
generation benchmark and tailored for scientific data analysis ques-
tions in the bioimaging context.

All code used for the benchmark, sampled prompt-responses from
the evaluated LLMs, and Python Jupyter notebooks for reproducing
Figures in this preprint are available via this Github repository: https:
//github.com/haesleinhuepf/human-eval-bia

2 Methods
Our benchmark currently consists of 57 human-written Python func-
tions containing documentation, the docstring, of what the function
is supposed to do. An example is shown in Figure 1. We kept the
docstring intentionally brief and natural, because we intend to use
LLMs to facilitate coding for bio-image analysts and this would bet-
ter reflect a typical use-case. The docstring and the function signa-
ture is then passed to an LLM as part of a prompt asking to complete
the code. Note that the human-written implementation function body
just serves as a reference solution and is not passed to the LLM. Our
benchmark also provides the unit-tests for the functions, so we can
evaluate functional correctness. If the code generated by the language
model is executable and produces results which pass these unit-tests,
we consider the LLM has having solved the problem. Every prompt
is sent multiple times to the LLM, and we track how often the gener-
ated code passes the tests. Here, we follow the established standard
measure pass@k [7] estimating the probability that, if asked k times,
the LLM will at least once give a correct answer. We particularly
focus on the practically most relevant special case pass@1, i.e. we
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Figure 1. The example test-case label_binary_image_and_count_labels
is implemented as Jupyter Notebook consisting of a function signature
consuming a binary image and a docstring describing what the function is
supposed to do. These two serve as part of a prompt to the LLM asking
to complete the code. The function body serves as a reference solution
(sometimes referred to as canonical solution), which allows writing a unit
test. If the unit test passes for the code generated by an LLM we define
the LLM as capable of solving the task. An up-to-date list of all test-cases
is available online: https://github.com/haesleinhuepf/human-eval-bia/blob/
main/test_cases/readme.md

want to know how likely it is that the first generated solution works.
We also summarize the libraries required by the generated code and
the typical resulting error messages.

Our selected prompts range from basic image analysis tasks, such
as applying an edge-preserving denoising filter to an image, over in-
termediate tasks such as labeling objects in a binary image and count-
ing them, shown in Figure 1, to more challenging workflows combin-
ing image processing steps, descriptive statistics, tabular data wran-
gling and dimensionality reduction. There is also a positive-control
test-case, called return_hello_world, which is intentionally kept very
simple to test if a specific LLM model is capable of solving a trivial
base task at all.

To enable extension of our benchmark and reproduction of our
results, we provide the infrastructure to turn the folder of test-case
Jupyter Notebooks into a JSONL file suitable for evaluation with Hu-
manEval [7]. We also did minor modifications to this framework to
be able to execute the benchmark for our purposes. For example, we
added code that moves example images to the temporary folder from
which the test-case code is executed. With this, our benchmark can
cover functions that require accessing files and folders, which the
original HumanEval benchmark was not capable of. All modifica-
tions are explained in our Github repository and the supplementary
Zip file.

We introduce our benchmark by comparing the capabilities of a
range of state-of-the-art LLMs covering commercial and freely avail-
able or open source models. We cover gemini-pro [25], gpt-3.5-
turbo-1106, gpt-4-1106-preview, gpt-4-2024-04-09, codegemma,
codellama [24], claude-3-opus-20240229 [2], command-r-plus [8],
llama3 [21], mixtral [16] and phi3 [1]. The gemini-pro model was
accessed via the Google Vertex API [14], which did not support spec-

ifying a model version. Thus, we document here that the benchmark
was executed on April 16th and 17th 2024. Code for benchmark-
ing gemini-1.5-pro and gemini-ultra are available as well, but we
were not able to execute it due to rate limits. For the open source
models, we set up two kubernetes clusters each with 128 GB of
RAM and 4 GPUs (one cluster with Tesla P40 and one with RTX
2080) running ollama version 0.1.32 [19]. The open source models
versions were codegemma:7b-instruct-fp16, codellama:70b-instruct-
q4, command-r-plus:104b-q4, llama3:70b-instruct-q8, llama3:70b-
instruct-q4, llama3:8b-instruct-fp16, mixtral:8x22b-instruct-v0.1-
q4, mixtral:8x7b-instruct-v0.1-q5 and phi3:3.8b-mini-instruct-4k-
fp16. The open source model codellama:7b-instruct-q4, named
codellama in the following and in Figures for technical reasons, was
prompted using ollama version 0.1.29 for Windows [20].

To benchmark the models, we generated 10 code samples for each
of the 57 test-cases from each of the 15 models. Benchmarking of the
commercial models was done on a Windows 10 Laptop with an AMD
Ryzen 9 6900 CPU, 32 GB of RAM and a NVidia RTX 3050 TI GPU
with 4 GB of RAM. For the open source models, the notebooks were
run on a virtual machine with Intel Xeon Gold 6226R CPUs, 24 GB
of RAM and a NVIDIA V100S-8Q GPU with 8GB of RAM.

All test-cases (human-readable Jupyter Notebooks and packaged
as JSONL file), sampling and evaluation code, generated samples
and data analysis/visualization notebooks are available in the Github
repository of the project. All respective Python package versions are
documented in the environment.yml file in the Github repository and
the supplementary Zip file facilitating full reproducibility of our anal-
ysis.

3 Results

The pass-rates visualized in Figure 2 correspond to pass@1 count-
ing the success rate from drawn examples. Detailed pass@k rates
with k=1, k=5 and k=10 are shown in Figure 3. They reveal that
the three leading models, gpt-4-turbo-2024-04-09, claude-4-opus-
20240229 and gpt-4-1106-preview have a similar performance in
terms of pass-rates of 47± 38%, 47± 40% and 46± 39%, respec-
tively.

Analysis of the pass-rates for individual test-cases are shown in
Figure 4. The results highlight that most of the test-cases were solved
by at least one LLM. Interestingly, some test-cases could not be
solved by any LLM, even though we would consider them rela-
tively simple, e.g.deconvolve_image, extract_surface_measure_area
and open_image_read_voxel_size.

Details about how often the LLMs required specific Python li-
braries are summarized in Figure 5. For example, the skimage library
was used in 22 of our human-written reference codes and thus, ap-
pears 220 times. By contrast, skimage was only used in a range of 68
to 154 generated code samples. Interestingly, our human-written ref-
erence codes were not using opencv, the "cv2" Python package, but
the number of LLMs generated code where "cv2" appeared ranged
from 31 to 132 cases.

Common error messages and corresponding counts for each LLM
are given in Figure 6. This analysis reveals a few systematic differ-
ences between the models, most notably gemini-pro often left out
import statements leading to common error messages such as "name
’np’ is not defined" and llama3 and command-r-plus produced by far
the most syntax errors.

Sampling the LLMs using our prompts took from under 2 hours for
the smaller models to 15-20 hours for the larger ones but exact com-
parisons aren’t available because different models ran on different

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 25, 2024. ; https://doi.org/10.1101/2024.04.19.590278doi: bioRxiv preprint 

https://github.com/haesleinhuepf/human-eval-bia/blob/main/test_cases/readme.md
https://github.com/haesleinhuepf/human-eval-bia/blob/main/test_cases/readme.md
https://doi.org/10.1101/2024.04.19.590278
http://creativecommons.org/licenses/by/4.0/


hardware and infrastructure. The models gpt-3.5-turbo-1106, both
gpt-4 models together, and claude-3-opus-20240229 caused costs of
$0.52, $13.02, and $24.58, respectively. All other models did not
cause direct costs as the use of their API was free.

Figure 2. Quantitative pass-rate comparison of all tested LLMs and, as
a sanity check, the human reference solution: Measured fraction of passed
tests visualized as box plot summarizing measurements from 57 test-cases.
The corresponding, updated notebook is available online: https://github.com/
haesleinhuepf/human-eval-bia/blob/main/demo/summarize_by_case.ipynb

4 Discussion
We presented a benchmark for comparing code generation capabil-
ities of LLMs in the domain of Bio-Image Analysis. These bench-
marks are crucial to decide, e.g. if and how to apply this technology
in routine projects, training or advanced applications.

It should be mentioned that we did not use any code-completion
tools, such as Github copilot, to write the test-cases. In general we
think it is necessary to not use such LLM-based tools while writing
the test-cases, because we might introduce a systematic bias towards
the underlying LLMs. For example, Github copilot is based on the
same model-family as ChatGPT. If the test-cases were written with
the help of copilot, the benchmark might misleadingly reveal better
performance of GPT-models.

Adding or modifying test-cases (e.g. the ones still failing), after a
first benchmark has been executed, must be done carefully. We rec-
ommend a peer-review scheme, e.g. using Github pull-requests, to
make sure good scientific practice is maintained. To this end, we pro-
vide a pull-request template with a short questionaire to support con-
tributors. Additionally, we provide tools that detect if the code sam-
ples generated by LLMs are attempting to use Python libraries which
are not installed yet. The missing libraries can then be added and the
evaluation step can be repeated. We generally encourage contribu-
tors to add test-cases that can be implemented with common Python
libraries, we however acknowledge that some subdomains (such as
neuroimaging) may require specific libraries, e.g. nibabel [4], to in-
teract with data. Mid- and long-term modifications should be done

Figure 3. Detailed pass@k with k = 1, k = 5 and k = 10 is a way
to estimate the chance to retrieve at least on functional code snippet when
generating k samples. The corresponding, updated notebook is available
online: https://github.com/haesleinhuepf/human-eval-bia/blob/main/demo/
summarize_by_passk.ipynb

with care to maintain this benchmark. One of our major aims is to
avoid biases towards specific LLMs.

We limited sample generation for the benchmarking to 10 samples
per LLM per test-case. pass@k analysis was done using k=1, k=5
and k=10. The established standard set by [7] is 200 samples and
k=1, k=10 and k=100. As our benchmark is in early development, we
considered drawing 200 samples as not well-invested compute time
and costs. Once the benchmark contains more test-cases and models,
we will reconsider this decision. But also from a practical perspective
when using LLMs on a daily basis, it appears unreasonable to draw
hundreds of samples.

The estimated costs also demonstrate the potential of the technol-
ogy. Requested code is commonly served within seconds, and draw-
ing hundreds samples from the paid-per-prompt models causes rel-
atively small costs depending on the model, so LLMs for BIA code
generation can be cost-efficient. For situations were sending data to
third parties isn’t an option, running LLMs locally is a viable option
with decent performance from smaller models.

Our benchmark is a single-shot benchmark presenting the prompt
to the LLM with no history of a former conversation. In daily use,
one can interact with LLMs using chat-interfaces and iteratively en-
gineer a prompt. Thus, it should be noted that the tested LLMs may
be more capable than measured in our experiment, when used in a
chat scenario. Furthermore, most of the models are generic LLMs
but codegemma and codellama are specialized versions for coding.
Interestingly, codegemma:7b performs as well or better as some
much larger models suggesting that specialization can compensate
for model size.

The test-case selection may introduce a certain bias from our sub-
disciplines. We often work with fluorescence microscopy imaging
data, often showing nuclei, cytoplasm and membranes. Our test-
cases are derived from practical situations we come across often.
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Figure 4. Test-cases and corresponding pass@1 for each LLM. Pass@1 reports the probability that a generated solution works if a user asks the LLM just a
single time. The corresponding, updated notebook is available online: https://github.com/haesleinhuepf/human-eval-bia/blob/main/demo/summarize_by_case.
ipynb

Mid-/long-term we hope that community contributions to the bench-
mark’s Github repository will allow us to cover the field more
broadly. For example, algorithms analyzing histological, hyperspec-
tral, or super-resolution imaging data, would be welcome additions
to our test-case collection. On the other hand, we would exclude
test-cases without practical relevance in bio-image analysis. For ex-
ample, an algorithm for image-classification for natural images, e.g.
showing cats and dogs, are considered off-topic and should not be in-
cluded. We intentionally included test-cases and prompts which we
presume are currently not solvable by LLMs, and we encourage the

community to add more. With this, the benchmark could guide LLM
developers in this field towards more advanced code-generation.

In our evaluation of LLMs we see two main groups of models: one
group more capable than the other, as shown by pass-rates about a
third as high as for the other models. There might be several reasons
for this: 1) Many open-source models in our test are much smaller
than the tested commercial models, e.g. llama3 has 70B parameters
and the GPT models are about two orders of magnitude larger. Al-
though model size limits LLM capabilities, it is interesting to note
that specialist models like codegemma performs nearly on par with
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Figure 5. Used Python libraries in generated code from the tested LLMs.
If one generated code snippet contained the same library twice, it is
only counted once. The Notebook for generating this table can be found
online: https://github.com/haesleinhuepf/human-eval-bia/blob/main/demo/
summarize_used_libraries.ipynb

Figure 6. Snippets of common error messages and how often these
were observed when evaluating the generated code from tested
models. The Notebook for generating this table can be found on-
line: https://github.com/haesleinhuepf/human-eval-bia/blob/main/demo/
summarize_error_messages.ipynb

llama3 (and much better than codellama with a similar size) despite
having an order of magnitude less parameters. 2) In bio-image anal-
ysis, we use some specific Python libraries, such as aicsimageio [5],
vedo [18] or pyclesperanto_prototype [11], which might not be men-
tioned in the training data of some models. On the other hand, in nat-
ural image processing, libraries such as OpenCV [15] are common,
while our community often uses scikit-image [26] for similar pur-
poses. As natural image processing is a very active research field, the
LLM’s training data may contain more examples from that domain.
The DS-1000 benchmark [17], focusing on general data-science use-
cases, does not cover scikit-image or opencv. The focus of our bench-
mark may enable the LLM community to develop models covering
more BIA use-cases and Python libraries, and thus help improve bi-
ological research.

We will continuously extend this benchmark with support of the
BIA community. With the development of new models, we also
would like to adapt the benchmark depending on how LLMs de-
velop. For example, vision-models, LLMs that can also take im-
ages as input, need to be considered for benchmarking too. Our pre-
sented benchmark does not have the capability to test vision-models
yet. Another direction for development could be efficiency of gen-
erated code as proposed earlier [9]. In particular in the context of
processing 3D+t imaging data, accelerated image processing tech-
niques can by key [10]. The presented benchmark could also be
used to improve prompts systematically, for example in projects such
as napari-chatGPT [23] and bia-bob [12]. More generally, it might
be interesting to investigate different strategies for knowledge repre-
sentation. For example, fine-tuned models, models with virtually un-
limited context length, and retrieval augmented generation are three
techniques for storing and accessing information how to use Python
libraries. We would also like to evaluate these techniques quantita-
tively in the bio-image analysis context.

5 Conclusion

We developed a benchmark for measuring LLM performance in gen-
erating code for solving bio-image analysis tasks. It can guide exper-
imentalists to decide which LLM to use and potentially to pay for
when developing bio-image analysis scripts and tools. We also con-
sider this benchmark for LLM-developers in our domain as a metric
to guide further development. Last but not least: We encourage the
community to send pull-requests with new test-cases to our Github
repository to ensure the benchmark is covering needs in our field
broadly. With this work, we want to establish a fully community-
driven approach to benchmarking LLMs for BIA.
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