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Abstract

To quantitatively provide reliable predictions for the hot and dense QCD matter, a
holographic model should be adjusted to describe first-principles lattice results available
at vanishing baryon chemical potential. The equation of state from two well-known lat-
tice groups, the HotQCD collaboration and the Wuppertal-Budapest (WB) collaboration,
shows visible differences at high temperatures. We revisit the Einstein-Maxwell-dilaton
(EMD) holographic model for hot QCD with 2+1 flavors and physical quark masses by
fitting lattice QCD data from the WB collaboration. Using the parameterization for the
scalar potential and gauge coupling proposed in our work [Phys.Rev.D 106 (2022) 12,
L121902], the equation of state, the higher order baryon number susceptibilities, and the
chiral condensates are in quantitative agreement with state-of-the-art lattice results. We
find that the critical endpoint (CEP) obtained from fitting the WB collaboration data is
nearly identical to the one from the HotQCD collaboration, suggesting the robustness of
the location of the CEP. Moreover, our holographic prediction for the CEP location is in
accord with more recent Bayesian analysis on a large number of holographic EMD models
and an effective potential approach of QCD from gap equations.
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1 Introduction

Studying the properties of the quark-gluon matter is essential to understanding the theory of

the strong interactions known as Quantum Chromodynamics (QCD), which is the fundamental

force describing the interactions between quarks and gluons. It is the main goal of heavy ion

collision experiments at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Col-

lider (LHC). However, obtaining a quantitative understanding of the QCD phase structure at

finite temperature T and baryon chemical potential µB remains challenging due to the strongly

coupled nature of the system under extreme conditions.

Several non-perturbative approaches have been proposed to study the QCD phase diagram

under various conditions. Lattice QCD, formulated on a grid of points in space and time,

provides a first-principle computation at zero baryon chemical potential and gives reliable infor-

mation at small µB by extrapolating the lattice data. Lattice QCD suggests that the chiral and

confinement/deconfinement phase transitions occur as an analytic crossover for small chemical

potentials [1–3]. On the other hand, effective theories such as the Dyson-Schwinger equation

(DSE) [4–9], the Nambu-Jona-Lasinio (NJL) model [10–13] and the functional renormalization

group (FRG) [14–16] have suggested that the crossover will become a first-order phase transi-

tion as µB increases. The critical point at the endpoint of the line of the first-order QCD phase

transitions is known as the QCD critical endpoint (CEP). Despite decades of theoretical and

experimental efforts, neither an exact location nor the properties of the CEP are well known.

Nevertheless, currently lattice QCD results disfavor the existence of the CEP for µB/T ≤ 3 and

µB < 300 MeV [17–22].

An alternative non-perturbative approach is the so-called holographic QCD by the gauge

gravity duality, which maps the strongly coupled non-Abelian gauge theories into a weakly

coupled gravitational system with one higher dimension. It aims to capture the essential char-

acteristics of realistic QCD and confront lattice QCD data at a quantitative level. Of particular
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interest is the Einstein-Maxwell-Dilaton (EMD) theory that was originally introduced in [23,24].

The holographic EMD theory has been used to study various issues related to the quark matter

in the literature, see [25–27] for recent reviews. In recent studies, efforts have been made to im-

prove the holographic QCD models and achieve a better quantitative description for hot QCD

with 2+1 flavors and physical quark masses, see e.g. [28–32]. Non-perturbative effects and flavor

dynamics are effectively incorporated into the model parameters by matching with lattice QCD

data. These improved models have shown qualitative consistency with the expected QCD phase

diagram, including the existence of a CEP. Chiral condensation and gluon dynamics have also

been studied, and the results are in quantitative agreement with lattice QCD simulations.

For holographic EMDmodels, the biggest difficulty is to find the scalar potential V (ϕ) and the

coupling between scalar and gauge field Z(ϕ). As an effective field theory, the model parameters

of the bulk gravitational theory should be fixed by matching with lattice QCD results, for which

it is crucial to use up-to-date lattice simulation to make reliable predictions at finite µB. In our

recent work [30], we provided a parameterization for V (ϕ) and Z(ϕ) with the five parameters fixed

completely through lattice simulations at µB = 0: the equation of state and the second-order

baryon number susceptibility. By adopting the lattice QCD data from the HotQCD collaboration

for 2+1 quark flavors, we have obtained quantitative descriptions for QCD matter [33, 34]. In

particular, we predicted the exact location of the CEP with (TCEP , µCEP ) = (105, 555) MeV. A

constraint on the holographic QCD phase transition from pulsar timing array observations can

be found in [35]. Surprisingly, our parameterization is able to also capture hot and dense QCD

matter for 2 flavors [36] and pure gluon [37].

Besides the HotQCD collaboration, another mainstream lattice QCD group is the Wuppertal-

Budapest collaboration (WB collaboration). The WB collaboration adopts a different setting

compared to HotQCD, resulting in a different equation of state [2,38]. In particular, the equation

of state at high T starts to disagree even when considering the error bars. It is therefore natural

to ask if the position of CEP is sensitive to the setting from both lattice QCD groups. In

this study, we will use the parameterization in our previous work [30] to fit the lattice data of

WB collaboration at zero density [2]. We will compare our results for the higher order baryon

number susceptibilities with the lattice computation from the WB collaboration [38], as well as

the equation of state at finite but small µB/T [20]. Both will give good quantitative agreement.

Moreover, the position of the CEP obtained from fitting the WB collaboration data is nearly

identical to the one we obtained by using the HotQCD data [30]. It suggests that the location

of CEP is pretty robust, not sensitive to the difference in the equation of state. Moreover, we

will also show our holographic computation of the chiral condensation for the light quarks and

the strange quark.

The subsequent sections of this work are organized as follows: In Section 2, we provide a

brief introduction to our holographic setup and compare our holographic results to the lattice

QCD data from the WB collaboration at zero baryon chemical potential. Section 3 is dedicated

to presenting the QCD phase structure derived from our holographic model, along with detailing

the location of the CEP. In Section 4, we delve into the computation of critical exponents in
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the vicinity of the CEP. We present our holographic computation of the chiral condensates for

the light and strange quarks in Section 5. Finally, we provide a summary and discussion in

Section 6.

2 Holographic setup and parameter fixing

The gravitational action of the five-dimensional EMD theory is given by

S =
1

2κ2N

∫
d5x

√
−g

[
R− 1

2
∇µϕ∇µϕ− Z(ϕ)

4
FµνF

µν − V (ϕ)

]
+ S∂ . (2.1)

where κ2N is the effective Newton constant and S∂ is the boundary term. The dilaton ϕ is

responsible for breaking the conformal invariance of boundary field theory and Aµ introduces

the baryon chemical potential. Non-perturbative effects are effectively adopted into V (ϕ) and

Z(ϕ) which are parameterized as [30]

V (ϕ) = −12 cosh [c1ϕ] +

(
6c21 −

3

2

)
ϕ2 + c2ϕ

6, (2.2)

Z(ϕ) =
1

1 + c3
sech

[
c4ϕ

3
]
+

c3
1 + c3

e−c5ϕ , (2.3)

with five free parameters c1, c2, c3, c4, c5.

The charged hairy planer black bole takes

ds2 = −f(r)e−η(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2 + dz2) ,

ϕ = ϕ(r), A = At(r)dt ,

(2.4)

with r the holographic radial coordinate. The black hole event horizon is given by the largest

root of f(rh) = 0, and the asymptotically AdS boundary is located at r → ∞. The asymptotic

expansion near the AdS boundary reads

ϕ =
ϕs

r
+ · · ·+ ϕv

r3
+ · · · , At = µB − κ2NnB

r2
+ · · · ,

f = r2 + · · ·+ fv
r2
, η = 0 + · · · ,

(2.5)

with ϕs, ϕv, µB, nB, fv constants that will be fixed by solving the equations of motion. The source

term ϕs essentially breaks the conformal symmetry and plays the role of the energy scale.

In our coordinate system, the boundary term for a well-defined Dirichlet variational principle

and for removing divergence is given by

S∂ = SGibbons-Hawking + Scounter

=
1

2κ2N

∫
r→∞

dx4
√
−h

[
2K − 6− 1

2
ϕ2 − 6c41 − 1

12
ϕ4 ln[r]− bϕ4 +

1

4
FρλF

ρλ ln[r]

]
.

(2.6)

Here h is the determinant of the induced metric at the AdS boundary and K is the trace of

the extrinsic curvature defined by the outward pointing normal vector to the boundary. The

4



parameter b is determined by requiring the pressure P (T = 0) = 0 at vanishing chemical

potential. Via the standard holographic dictionary, we can then obtain many thermodynamic

observables from the UV data (2.5). In particular, µB and nB are baryon chemical potential and

baryon number density, respectively. The free energy density, energy density, and pressure are

given by

Ω =
1

2κ2N

(
fv − ϕsϕv −

3− 48b− 8c41
48

ϕ4
s

)
,

ϵ =
1

2κ2N

(
−3fv + ϕsϕv +

1 + 48b

48
ϕ4
s

)
,

P =
1

2κ2N

(
−fv + ϕsϕv +

3− 48b− 8c41
48

ϕ4
s

)
.

(2.7)

Then one obtains the trace anomaly I = ϵ − 3P . Meanwhile, the temperature and entropy

density can be obtained at the event horizon r = rh.

T =
1

4π
f ′ (rh) e

−η(rh)/2, s =
2π

κ2N
r3h . (2.8)

The squared sound speed and the n-th order baryon number susceptibility are given by

c2s =
dP

dϵ

∣∣∣∣
µB

, χB
n (T, µB) =

∂n

∂(µB/T )n
P

T 4

∣∣∣∣
T

. (2.9)

The baryon number susceptibilities are closely related to various cumulants of the baryon number

distribution measured in heavy-ion collision experiments. In particular, at µB = 0 one has

χB
2 (T, 0) =

∂2

∂(µB/T )2
P

T 4

∣∣∣∣
T

= lim
µB→0

1

T 2

nB

µB

. (2.10)

The hairy black hole solutions will be obtained numerically after further requiring the regularity

at the event horizon. Please refer to [30,39] for more details about the thermodynamics of hairy

black holes.

As mentioned above, we fix all free parameters of the EMD model by matching the equa-

tion of state and the second-order baryon number susceptibility evaluated at µB = 0 with the

corresponding lattice QCD data of WB collaboration [2, 38]. We obtain that

c1 = 0.7055, c2 = 0.0038, c3 = 1.7877, c4 = 0.1050, c5 = 30.2054 ,

ϕs = 1080 MeV, κN
2 = (2π)1.76, b = −0.2554 .

(2.11)

These values are close to the one by fitting the lattice data of HotQCD collaboration [30], which

is expected since the results from both lattice groups show small but visible differences at high

temperatures. The fitting results are depicted in Fig. 1. The left panel involves the comparison

of the normalized entropy density, trace anomaly, and pressure obtained from our holographic

model and the corresponding lattice data [2]. The right panel shows the squared speed of sound.

One finds a good agreement with the lattice data over a considerable temperature range from

T = 100 MeV to 500 MeV.
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Figure 1: (Left) Dimensionless entropy density s/T 3, trace anomaly (ϵ − 3P )/T 4 and pressure
P/T 4 with (Right) squared speed of sound c2s at zero baryon density. Solid curves represent
results from our holographic model, and data with error bars are lattice QCD data from WB
collaboration [2].

Once obtaining the equation of state, one can compute the baryon number susceptibilities

χB
n using (2.9). They are the coefficients in the Taylor expansion of P around µB = 0, thus can

reflect the information of the equation of state at small µB. The baryon number susceptibilities

at µB = 0 serve as an important probe to test the accuracy of our model. In Fig. 2, we present

a direct comparison between χB
n obtained from our holographic model and the corresponding

lattice QCD computation from WB collaboration. The top left panel of Fig. 2 shows χB
2 and

TdχB
2 /dT , which we have used to determine the parameters c3, c4, c5 in the coupling function

Z(ϕ). The other three panels depict the temperature dependence of higher-order susceptibilities.

In all cases, we observe good quantitative consistency, further demonstrating the accuracy of

our holographic model.

3 Thermodynamics and CEP at finite µB

Using a novel expansion scheme, the most up-to-date lattice data for the QCD equation of state

is available up to µB/T = 3.5 [20]. To further validate the accuracy of our holographic model, we

compare the holographic prediction at finite µB with the one recently reported by [20]. In Fig 3,

we show the normalized entropy density, pressure, energy density, and baryon number density

as a function of temperature for various µB/T . Our holographic predictions for the entropy

density, pressure, and energy density are in quantitative agreement with the lattice results all

the way up to µB/T = 3.5. Regarding the baryon number density, there shows also quantitative

agreement for most of the values of T and µB, although the holographic model overestimates

the lattice results for nB at high temperatures T ≥ 195 MeV when µB/T ≥ 3.0. Nevertheless,

this further supports the reliability and effectiveness of our holographic model in describing the

thermodynamic properties of quark matter at nonzero µB.

After solving the bulk equations of motion, we can obtain all extrema of the free energy that

corresponds to the coexistence region of not only thermodynamically stable minima but also
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Figure 2: Baryon number susceptibilities χB
2 and TdχB

2 /dT (top left), χB
3 /χ

B
1 (top right), χB

4 /χ
B
2

(bottom left) and χB
6 (bottom right) at µB = 0 compared with lattice data [20,38,40]. The light-

gray band denotes the region of continuous limit from lattice QCD simulation.

metastable and unstable saddle points. The behavior of free energy density Ω versus temperature

at fixed baryon chemical potential is depicted in Fig. 4. At low µB, Ω is a single-valued function

of T , corresponding to a crossover without a clear phase boundary. In contrast, one observes

the characteristic multivalued swallow-shape for Ω, yielding a first-order phase transition. By

identifying the physical state corresponding to the minimum free energy density, we can locate

the boundary of the first-order phase transitions.

The T -µB phase diagram obtained from our holographic approach is shown in Fig. 5. The

black solid line represents the line of the first-order phase transitions and the red dashed one

denotes the inflection point of χB
2 that characterizes the crossover region. The CEP at the end

of the first-order phase transition line is indicated by a red dot. More precisely, the location

of the CEP is at (TCEP , µCEP ) = (109, 552) MeV. Remarkably, the CEP position obtained by

fitting the WB lattice data is very close to the one we reported by fitting the hotQCD data,

(TCEP , µCEP ) = (105, 555) MeV [30]. In contrast, an early study [29] fitting the WB lattice data

gave a significantly different location of the CEP, (TCEP , µCEP ) = (89, 724) MeV. Although a

relatively complicated form of V and Z was adopted in [29] (see [26] for a review), our model

improves the quality of the fitting for the same lattice data. For example, one can compare the

trace anomaly in Fig. 2 of [41] with our case in the left panel of Fig. 1 and the baryon number

density in Fig. 12 of [41] with our case in Fig 3. We also note that the scaling dimension of

the gauge theory operator dual to the dilaton field is ∆ ≈ 2.73 of [41], while in our approach
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Figure 3: Dimensionless entropy density s/T 3, pressure P/T 4, baryon density ρ/T 3, and energy
density ϵ/T 4 as functions of temperature T at various µB/T . The solid curves obtained from
our holographic model are compared with the lattice QCD data [20], represented by dots with
error bars.
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Figure 4: Free energy density Ω as a function of temperature T at different baryon chemical
potential µB. As µB increases, the smooth crossover becomes a first-order one.
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∆ = 3, which is much easier to extract the UV date from (2.5) numerically. A more recent

study [31] incorporated the potential reconstruction method together with machine learning.

The location of CEP for 2+1 flavors was found to be at (TCEP , µCEP ) = (94, 740) MeV which

is significantly from our results. However, as visible from Fig. 4 of [31], this holographic model

overestimates the lattice results for the trace anomaly for T ≤ 200MeV. Meanwhile, the baryon

number susceptibility χB
2 displayed in Fig. 5 of [31] yields a poor agreement with the lattice data.

D6

D2

D1D3 D4

D5

PNJL

F2

H1

H3CEP

N1

F1

H2

E1

0 200 400 600 800 1000

40

60

80

100

120

140

160

Figure 5: Holographic prediction for the QCD phase diagram in T -µB plane. The red dashed
line represents the crossover boundary, determined by the inflection point of χB

2 , and the black
solid curve is the first-order transition line obtained by minimum free energy density. Between
them there exists a critical endpoint(bold red dot) with TCEP = 109 MeV, µCEP = 552 MeV.
CEP predicted by other QCD models is also presented, including D1-D6 from Dyson-Schwinger
equation(DSE) [4–9], F1-F2 from functional renormalization group(FRG) [14, 15], Polyakov-
Nambu-Jona-Lasinio model [12], N1 from Nambu-Jona-Lasinio [10], E1 for effective potential
approach [42], as well as H1-H3 from different holographic QCD models [23, 28, 29]. The pink
and gray areas provide 68% and 95% confidence regions for the CEP location under different
parametric ansatz [43]. Surprisingly, the position of our CEP is completely within the 95%
confidence region.

Nevertheless, it is worth noting that a recent study [43] shows that the predictions for the

CEP location in different realizations of the model from a Bayesian analysis overlap at one

sigma, with TCEP = 101 − 108 MeV and µCEP = 560 − 625 MeV.1 Meanwhile, the CEP from

an effective potential approach is found to be located at (TCEP , µCEP ) = (101.3, 558) MeV [42].

Both agree with our CEP, suggesting that our prediction for the location of the CEP is robust.

1Note that the location of the CEP reported by [31] is outside the one sigma region of [43]. A better
choice of function configurations for the deformed factor and gauge coupling function in [31] could give potential
improvement on the fitting quality with lattice QCD.
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4 Critical phenomena near the CEP

The critical exponents are vital parameters used to describe critical points and are regarded

as universal physical quantities. They transcend the specifics of a physical system and depend

solely on the system’s degrees of freedom and correlation length. As one approaches the critical

endpoint (CEP), thermodynamic quantities often exhibit power-law scaling with temperature or

chemical potential. Consequently, along different directions, a set of critical exponents can be

defined to provide a more nuanced characterization of the system’s critical behavior.

The exponent α and γ are defined along the first-order axis which is the tangent of the first-

order line near the CEP, with the power law of the specific heat and baryon number susceptibility,

respectively.

Cρ ≡ T

(
∂s

∂T

)
ρB

= −T
(
∂2Ω

∂T 2
− (∂2Ω/∂T∂µ)2

(∂2Ω/∂µ2)

)
∼ |T − TCEP|−α. (4.1)

χB
2 =

1

T 2

(
∂nB

∂µB

)
T

∼ |T − TCEP|−γ. (4.2)

On either side of the first-order phase transition line, which is determined by the minimum

free energy, thermodynamic quantities display two distinct branches corresponding to the high-

temperature and low-temperature phases. These branches typically exhibit discontinuities at the

phase boundary, enabling us to observe significant changes in various thermodynamic quantities

during the first-order phase transition. The critical exponent β is related to the power-law

relationship of the discontinuous change in entropy density s along the first-order phase transition

line and the temperature T .

∆s = s> − s< ∼ (TCEP − T )β. (4.3)

Where s> and s< represent entropy density from the high-temperature and low-temperature

branches, respectively. And the critical exponent δ is defined follow the relation of s− sCEP and

µB − µCEP at the critical isotherm T = TCEP.

s− sCEP ∼ |µB − µCEP|1/δ . (4.4)

Fig. 6 shows the behavior of different thermodynamic quantities near the critical endpoint.

And critical exponents are obtained by fitting the slope of different log plots. The values of

the four critical exponents are shown in Table 1. We also compared the values of the critical

exponents near CEP given by our holographic model and the non-QCD fluids experiment data,

the results of 3D Ising model, the mean-field theory, and the holographic QCD model (the DGR

model) [23,44]. Surprisingly, our results are closest to the results of the mean-field theory, which

is consistent with the results of the holographic QCD model [23].

5 Chiral condensate

To incorporate flavor dynamics into our model, we adopt techniques akin to those in the KKSS

model [45]. This involves introducing a holographic probe action to describe the chiral conden-
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Figure 6: The critical exponents α, β, γ and δ from our holographic model.

Experiment 3D Ising Mean field DGR model HQCD

α 0.110-0.116 0.110(5) 0 0 1.9739 × 10−7(1603)

β 0.316-0.327 0.325±0.0015 1/2 0.482 0.5098(67)

γ 1.23-1.25 1.2405±0.0015 1 0.942 1.0159(62)

δ 4.6-4.9 4.82(4) 3 3.035 3.0399(843)

Table 1: Critical exponents from experiments in non-QCD fluids, the full quantum 3D Ising
model, mean-field (van der Waals) theory, the DGR model, and our 2+1-flavor holographic
model.

sates. With the hairy bulk geometry (2.4) for the (2+1)-flavor system, we adopt the following

effective action for the light quakes (u and d quarks) and the strange quark (s quark).

SXq =
1

2κ2N

∫
d5x

√
−gZq(ϕ)

[
−1

2
∇µXq∇µXq − V (Xq)

]
+ SXq ,∂ , (5.1)

with q = l for the light quarks and q = s for the s quark. The boundary term SXq ,∂ is essential

to obtain the physical condensation. The bulk scalar field Xq is dual to the chiral operator ψ̄qψq

with the scaling dimension ∆c = 3. Following our previous work [30], the coupling functions

Zq(ϕ) and V (Xq) take

Zq(ϕ) = a1e
aqϕ2

, V (Xq) = −3

2
X2

q + a0X
4
q , q = l, s , (5.2)

where a0, a1, aq are parameters that will be fixed by fitting lattice QCD data.
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The equation of motion on top of (2.4) reads,

X ′′
q +

(
f ′

f
− η′

2
+

3

r

)
X ′

q +
∂ϕZqXq

′ϕ′

Zq

− 1

f
∂XqV = 0 , (5.3)

and the behavior of Xq near the AdS boundary is given by

Xq(r) =
mq

r
+ · · ·+ σq

r3
+ · · · . (5.4)

Here σq is a constant and mq is nothing but the mass of each quark. Matching lattice QCD

data, we choose ml = 5.1MeV and ms = 102MeV. The chiral action suffers from divergence and

should be renormalized with a counter term that takes

SXq ,∂ =
1

2κ2N

∫
r→∞

dx4
√
−h

[
−1

2
a1X

2
q + a1a0X

4
q ln[r] +

a1 (1− 6aq)

6
X2

qϕ
2 ln[r]

]
. (5.5)

Then we can obtain the chiral condensate

⟨ψ̄ψ⟩q,T =
δ
(
SXq + SXq ,∂

)
δmq

=
a1
2κ2N

[
2σq + 2a0m

3
q +

1

4
mqϕ

2
s

]
. (5.6)

To compare directly with the W-B lattice simulation, we define the renormalized chiral conden-

sate and subtracted chiral condensate as [46]

⟨ψ̄ψ⟩R = −ml

X4

[
⟨ψ̄ψ⟩l,T − ⟨ψ̄ψ⟩l,0

]
and ∆l,s =

⟨ψ̄ψ⟩l,T − ml

ms
⟨ψ̄ψ⟩s,T

⟨ψ̄ψ⟩l,0 − ml

ms
⟨ψ̄ψ⟩s,0

. (5.7)

with ⟨ψ̄ψ⟩q,0 the chairl condensate at T = 0.2 The temperature dependence of the renormalized

chiral condensate and subtracted chiral condensate are depicted in Fig. 7 with a0 = 13, a1 =

2.76, al = 0.58, as = 0.8 andX = mπ = 135 MeV. One finds a remarkably quantitative agreement

with lattice data [46]. It could serve as a strong support for our holographic setup.
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Figure 7: Renormalized chiral condensate and subtracted chiral condensate compare with lattice
data [46].

2⟨ψ̄ψ⟩q,0 can be obtained either by treated as a free parameter to be adjusted to fit lattice data or by evaluating
⟨ψ̄ψ⟩q,T at sufficiently low temperatures. Both yield identical results, ⟨ψ̄ψ⟩l,0 = 1.81×107, ⟨ψ̄ψ⟩s,0 = −1.033×108.
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Our holographic predictions for the renormalized chiral condensate ⟨ψ̄ψ⟩R and subtracted

chiral condensate ∆l,s as a function of temperature are displayed in Fig. 8 along lines of con-

stant µB. One finds that both the renormalized chiral condensate ⟨ψ̄ψ⟩R and subtracted chiral

condensate ∆l,s for different µB tend to a fixed value at high temperatures. ⟨ψ̄ψ⟩R is promoted

while ∆l,s is suppressed as the baryon chemical potential is increased. For a given µB, ∆l,s is

larger at low temperatures and decreases as the temperature increases. At high temperatures,

the renormalized chiral condensates ⟨ψ̄ψ⟩R all decrease to negative values. One also notices the

formation of a characteristic multivalued S-shape for both chiral condensates when µB is larger

than the critical value µCEP = 552 MeV, suggesting the development of a first-order phase

transition.
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Figure 8: Temperature dependence of the renormalized chiral condensate and subtracted chiral
condensate for different values of µB. The characteristic multivalued S-shape develops when µB

is beyond the critical value µCEP = 552 MeV.

6 Conclusion and discussion

The motivation for our study arises from a unique situation in lattice QCD: there exist only two

sets of lattice configurations that provide the equation of state (EoS) for QCD matter at zero

chemical potential and finite temperature. While these lattice QCD results are quantitatively

consistent in the low-temperature regime, they exhibit visible discrepancies at high tempera-

tures. The discrepancies stem from differences in the choice of fermion propagators and initial

configurations employed by the two lattice groups, resulting in markedly distinct EoS for hot

QCD matter.

Currently, there is no definitive criterion to discern the discrepancies between these two sets

of lattice data. To address this issue, we have previously developed a holographic QCD model

that successfully reproduces the EoS consistent with one of these lattice groups, known as ”hot-

QCD.” Given the inconsistent behavior of lattice data in the high-temperature region, it becomes

imperative to establish another holographic QCD model that quantitatively predicts the critical

point in the QCD phase diagram based on the data from the other lattice group, referred to as

”WB”.
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The precise location of this critical point is of paramount importance, as it exhibits high

sensitivity to the model parameters. Thus, the primary motivation behind this work is to

thoroughly investigate and determine the exact position of the critical point, addressing the

discrepancies in the lattice data and advancing our understanding of the QCD phase diagram.

In this work, we build up a bottom-up holographic model to confront the most recent lat-

tice results for EOS from the different lattice QCD collaboration and offer a reliable first-order

transition line and CEP in the QCD phase diagram. By computing thermodynamic quantities

via holographic renormalization, the EOS is found to be quantitatively matched with the latest

lattice QCD simulation. The QCD first-order transition line is fixed from the free energy and

the corresponding CEP in the T − µB plane is predicted at (TC = 109MeV, µC = 552MeV).

The CEP in the 2+1 flavor holographic QCD model, calibrated using data from the Wuppertal-

Budapest lattice QCD group, aligns closely with predictions from a separate holographic model

established by the HotQCD collaboration [30]. This proximity is also mirrored in the Bayesian

analysis results on the location of the QCD critical point from a holographic perspective [43],

indicating that the location of the CEP exhibits low sensitivity to variations in lattice QCD

data inputs. Additionally, the associated critical exponents approximate those expected from

mean-field theory. Contrarily, as demonstrated by [36], the holographic 2-flavor CEP diverges

significantly from mean-field predictions, underscoring the distinctiveness of our holographic ap-

proach compared to conventional large N QCD models. Our development of diverse holographic

models, tailored to mimic specific QCD systems (e.g., 2+1 flavor [30], pure gluon [37] and 2-

flavor [36]) based on corresponding lattice QCD data, enables precise microscopic descriptions.

The similarity in critical exponents suggests that the 2+1-flavor model may belong to the same

critical class as the mean-field theory. Finally, we investigate the behavior of renormalized chi-

ral condensate and subtracted chiral condensate which is consistent with the WB lattice QCD

simulation [46].

Dedicating to a precise characterization of the properties and differences of the two phases

along the first-order phase transition is an interesting direction for further study. In the current

investigation, we have set up the preliminary hQCD model to quantitatively study the phase

transition in the QCD phase diagram. The current model captures the characteristic confining

properties and many other relevant physical quantities should be taken into account to complete

the phase diagram, including the chiral condensation and the transport properties in QGP and

hadron gas. In addition, the present results, in particular those regarding the CEP, should be

embedded into the framework of a more general and multidimensional view of the QCD phase

diagram, including an external magnetic field, an isospin chemical potential, and a rotation. It

will be interesting to consider the real-time dynamics in our hQCD model far from equilibrium.
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