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Astronomical observations place increasingly tighter and more diverse constraints on the properties of neu-
tron stars (NS). Examples include observations of radio or gamma-ray pulsars, accreting neutron stars and x-ray
bursts, magnetar giant flares, and recently, the gravitational waves (GW) from coalescing binary neutron stars.
Computing NS properties for a given EOS, such as mass, radius, moment of inertia, tidal deformability, and
innermost stable circular orbits (ISCO), is therefore an important task. This task is unnecessarily difficult be-
cause relevant formulas are scattered throughout the literature and publicly available software tools are far from
being complete and easy to use. Further, naive implementations are unreliable in numerical corner cases, most
notably when using equations of state (EOS) with phase transitions. To improve the situation, we provide a
public library for computing NS properties and handling of EOS data. Further, we include a collection of EOS
based on existing nuclear physics models together with precomputed sequences of NS models. All methods
are accessible via a Python interface. This article collects all relevant equations and numerical methods in full
detail, including a novel formulation for the tidal deformability equations suitable for use with phase transitions.
As a sidenote to the topic of ISCOs, we discuss the stability of non-interacting dark matter particle circular
orbits inside NSs. Finally, we present some simple applications relevant for parameter estimation studies of GW
data. For example, we explore the validity of universal relations, and discuss the appearance of multiple stable
branches for parametrized EOS.

PACS numbers: 04.25.dk, 04.30.Db, 04.40.Dg, 97.60.Jd,

I. INTRODUCTION

Neutron stars (NS) are among the most interesting astro-
physical objects, as their description requires both general rel-
ativity and nuclear physics. The latter comes into play via the
equation of state (EOS) of matter up to densities exceeding
nuclear saturation density. The EOS is assumed to be univer-
sal, i.e., not dependent on the star’s origin. NSs are distin-
guished individuals with different surface temperature, mag-
netic field strengths and topologies, rotation rates, and propen-
sity for glitches or radiation outbursts. However, they can be
described by a few scalar properties well enough for many as-
trophysical applications. The most basic NS features are cap-
tured by the simple case of slowly rotating, non-magnetized
stars. Such models are completely determined by the central
density and the EOS. The purpose of this paper and the pro-
vided software is to enable readers to compute those models
with ease.

The most important NS properties are the following. First
and foremost, the gravitational mass, which completely de-
termines the metric outside the NS. There is also a “baryonic
mass”, which expresses the baryon number in units of mass,
and which is important as a conserved quantity, e.g., in the
context of neutron star mergers. The difference between bary-
onic and gravitational mass defines the binding energy. The
NS size is usually expressed as the proper circumferential ra-
dius, which also determines the surface area. Another impor-
tant property is the compactness, defined as gravitational mass
over proper circumferential radius. It directly determines the
surface redshift, and is strongly correlated with other proper-
ties such as oscillation frequencies, moment of inertia, or tidal
deformability. The moment of inertia is obviously relevant for
questions related to spin-down or glitches. It also determines
the lowest order rotational corrections to the metric in compar-

ison to the nonrotating case. The tidal deformability of a NS is
the proportionality factor between external tidal fields and the
induced quadrupole moment. It is very important for the late
inspiral phase of BNS mergers as it determines the main cor-
rections of the orbital dynamics compared to the binary black
hole case, and thus the observable gravitational wave (GW)
signal.

The equations governing mass and radius of nonrotating
neutron stars (NS) are known since the early work by [1, 2].
This also established that the NS mass is bounded, and that
the maximum mass depends on the EOS. Not all solutions
for static NS are stable against radial perturbations. The sin-
gle parameter sequence of NS consists of one or more stable
and unstable branches, which depends on the EOS. Criteria
for the stability have been collected by [3]. The equations for
the moment of inertia were derived by [4] for slowly rotating
NS. More recently, equations that govern the tidal deforma-
bility have been derived in [5–8]. The computation of the
above properties requires the solution of an ordinary differ-
ential equation system (ODE) with singular boundary condi-
tions.

One complication is given by the possibility of phase tran-
sitions in the EOS, which can lead to discontinuities in the en-
ergy density as function of pressure. We note that phase tran-
sitions do not necessarily lead to discontinuities. Those which
do are the problematic ones in the context of this work, and we
will use the terms synonymously in the following. Although
a true discontinuity can be treated analytically for the tidal
deformability ODE [9, 10], such treatment is infeasible for
the more typical case of EOS that merely exhibit very sharp
features. That case is also problematic for direct numerical
solution.

Measurements of NS properties can help to constrain the
equation of state (EOS) of neutron star matter. There are dif-
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ferent avenues towards this goal. Any measurement of a NS
mass provides a lower bound for the maximum NS mass. An-
other avenue is the measurement of mass-radius relations by
electromagnetic observations (see, e.g., [11–13]). The mo-
ment of inertia can also serve to constrain the EOS and might
be measured, e.g., via observation of double pulsar systems
[14]. Another possibility is the measurement of mass and tidal
deformability using observations of gravitational waves from
BNS coalescence, such as the famous event GW170817 [15–
20]. Further, the stability of a BNS merger remnant is related
to the maximum NS mass. If electromagnetic counterparts
in a BNS multimessenger observation carry information on
the fate of the remnant, it can be used to constrain the EOS.
This was already done (under additional assumptions) using
the short gamma ray burst associated with GW170817 [21].

Despite the astrophysical importance of computing NS
properties, the available software infrastructure is very lim-
ited. Although there exists a plethora of solvers for the basic
NS structure, these codes are severely lacking with regard to
some of the following aspects: a) public availability b) ease
of installation c) documentation d) dependence on free open
source software only e) reliability, also in corner cases f) error
estimates g) code quality h) usability from within other codes
i) completeness of NS properties and j) EOS handling.

One purely technical hurdle is the lack of a standardized
exchange format for generic EOS. One notable file format for
tabulated nuclear physics EOS is developed by the CompOSE
project [22]. It is well-documented and complete in the sense
that all required metadata is contained. However, this stan-
dard does not allow popular analytic EOS models, leaves the
interpolation method unspecified, and lacks an easy to use in-
terface for reading and evaluating an EOS from within other
code.

The aim of our work is to address all of the above issues.
Recently, we provided tools for computing NS properties as
part of the library RePrimAnd, which was developed to sup-
port general relativistic magnetohydrodynamics simulations
[23]. It also provides an elaborate framework for handling of
EOS. The library is publicly available and documented [24].
It can be used from within C++ or Python.

This article collects everything required for computing NS
properties in the RePrimAnd library, such as basic notation
and definitions, all equations needed for computing NS struc-
ture, and a discussion how to avoid numerical pitfalls. We
convert formulas scattered across the literature into a coherent
notation and point out details that are usually not discussed
but important for actual computations. Further, we reformu-
late some equations to facilitate numerical solution. Most no-
tably, we provide a formulation of the differential equations
for tidal deformability that is robust when the EOS exhibits
phase transitions, and we correct a faulty approximation for
the limit of low compactness.

We also perform extensive tests of the accuracy, which
leads to a model for the error bounds. This model is incor-
porated in the library, allowing to directly specify the desired
accuracy. A related practical problem regards the impact of
approximated EOS representations that use interpolation and
low-density extrapolation. We will provide some guidance re-

garding requirements for tabulated EOS.
Finally, we present some simple results obtained with the

new library, which might be useful for gravitational wave
(GW) and multi-messenger astronomy. Firstly, we collect NS
properties for a number of nuclear physics EOS available in
the literature, such as tidal deformability and moment of in-
ertia. Next, we study the reliability of empirical relations be-
tween NS compactness and tidal deformability that allegedly
depend only weakly on the EOS, by performing numerical
searches for EOS causing larger deviations. The finding are
relevant for studies that combine constraints of mass-radius
and mass-tidal deformability relations, e.g., using NICER and
GW data. We also point out how splitting of stable branches
complicates parameter estimation with parametrized EOS for
BNS GW detections. Last but not least, we provide a small
collection of ready-to-use EOS files representing existing nu-
clear physics EOS models.

II. FORMULATION

In the following we collect all equations needed for com-
puting the properties of nonrotating NS. Most are well known
but scattered throughout the literature and use different no-
tation and conventions. We recast some expressions into the
variants that are employed in the RePrimAnd library, and
which are advantageous for numerical solution. The main
novelty, described in Sec. II D, is our new formulation of the
ODE that governs tidal deformability, which is applicable also
to EOS with phase transitions.

A. Conventions

We use geometric units throughout this work unless noted
otherwise, that is, units in with G = c = 1. This leaves open
one degree of freedom, which can be fixed by choosing a mass
unit. Denoting time, length, and mass units by uT , uL, uM ,
respectively, the unit system is given by

uL = uM
G

c2
, uT =

uL

c
(1)

We stress that when computing NS properties using equa-
tions assuming geometric units, the gravitational constant G
is implicitly given by the geometric unit system. Comparing
results obtained in different geometric unit systems is not just
a matter of converting back to SI units, unless both use the
same value of G. In contrast, the choice of the mass unit is
irrelevant because, unlike the constant G, it is not a physi-
cal constant that would appear in the full equations stated in
arbitrary units. Often, geometric unit systems are specified
by the condition G = c = M⊙ = 1. Without providing
the precise values assumed for G and M⊙, it is impossible
to compare results to a precision better than around 0.01%
since both constants are not known very accurately (although
their product is). For the NS solutions in this work, we use
values of exactly G = 6.674 30 × 10−11 m3 kg−1 s−2 and
M⊙ = 1.988 41× 1030 kg (from [25]).
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We assume that NS matter in GR can be described by the
stress-energy tensor of a perfect fluid, given by

Tµν = (E + P )uµuν + Pgµν (2)

Above, u is the 4-velocity of the fluid, E is the total en-
ergy density in the restframe of the matter, and P is the pres-
sure. This means that we make the approximation of isotropic
pressure, and exclude any shear-stresses. For a discussion of
NS structure with anisotropic pressure, we refer to [26]. We
note that realistic NS can have minor shear stresses within the
crust. This is irrelevant when computing spherical equilibrium
models under the assumption of zero shear deformation, and
it is commonly neglected when computing the tidal deforma-
bility.

We denote the baryon number density in the fluid restframe
by nB . Introducing a mass constant mB > 0, one can de-
fine a “baryonic mass density” (or mass density for short)
ρ ≡ mBnB . The constant mB is arbitrary and usually cho-
sen around the neutron mass, while the exact value varies
between different sources. When comparing baryonic mass
density between different sources, this should be taken into
account. In the RePrimAnd framework, the convention is
mb = 1.66× 10−24 g.

Further, we will use the specific internal energy ϵ and rela-
tivistic enthalpy h defined by

ϵ ≡ E − ρ

ρ
(3)

h ≡ E + P

ρ
= 1 + ϵ+

P

ρ
(4)

Note that the definitions of ρ, ϵ, h depend on the choice of mB ,
such that ρ and h differ by a global factor between different
choices. The specific internal energy ϵ also differs by an off-
set, not just a factor. In particular, E → 0 for ρ → 0 does not
imply that ϵ approaches zero, nor that it is positive. The zero-
density limit depends on the choice of mB . The conditions
ϵ > −1, h > 0 hold independently of this choice, assuming
only that E > 0, P ≥ 0.

B. Equation of State

In general, NS matter has three degrees of freedom, usually
parametrized in terms of baryon number density nB , temper-
ature T , and electron fraction Ye (one usually assumes macro-
scopic charge neutrality since astrophysical objects are as-
sumed to carry negligible net charge, and NS matter is as-
sumed to be highly conductive). The variables nB and Ye are
equivalent to the thermodynamic state variables V (volume)
and particle numbers Ni for protons and neutrons.

The behavior of matter is completely described by a sin-
gle thermodynamic potential, meaning a scalar function of a
particular set of state variables. There are different but com-
pletely equivalent thermodynamic potentials, each based on
a different set of state variables. When using state variables
(V, T,Ni), the corresponding potential is the Helmholtz free
energy F (V, T,Ni).

Given a thermodynamic potential and its canonical state
variables, one can derive all other quantities. Such derived re-
lations are collectively referred to as equation of state (EOS).
For the Helmholtz free energy, pressure and entropy are given
by the partial derivatives P = ∂F/∂V and S = ∂F/∂T ,
respectively, and the internal energy is given by U = F +
TS. We can parametrize the EOS as functions P (ρ, T, Ye),
E(ρ, T, Ye), and S(ρ, T, Ye).

For most applications, only the EOS is needed in some
form, but not the underlying thermodynamic potential. In fact,
nuclear physics models are often distributed as tables sam-
pling the EOS functions. We note that this makes it more dif-
ficult to interpolate such tables in a consistent manner. There
are also some toy models where the EOS is directly prescribed
as analytic expressions.

It should be noted that one cannot chose the various EOS
functions independently. The existence of a thermodynamic
potential implies thermodynamic consistency constraints. For
example, ∂P/∂T = ∂S/∂V = ∂2F/∂T∂V . If those con-
straints are violated, an EOS is physically invalid. Results
based on such inconsistent EOS are not just wrong, but am-
biguous, since there are different ways to express the same
quantity which cease to yield identical results.

In this work, we are concerned only with scenarios where
pressure and energy density can be expressed as functions
P (ρ) and E(ρ) of the mass density alone. This is called
a barotropic EOS. Physically, employing a barotropic EOS
means that two of the matter degrees of freedom are restricted
somehow. The most relevant example for our aims is to model
cold neutron stars, where thermal effects can be neglected and
one can set T = 0 for all practical purposes. Further, we want
to model equilibrium models. For those, the electron fraction
becomes a function of density because weak processes drive
the matter towards β-equilibrium.

For perturbed NS, β-equilibrium is maintained if the pertur-
bation timescale is much longer than the intrinsic timescales
of weak processes. This is the case for tidal deformations in
the limit of large separation. We note that for the timescales
accessible to ground-based gravitational wave detectors, ap-
proximating deformations as static might be insufficient in
any case. For further discussion of dynamical tidal effects
see, e.g., [27]. Here, we only consider static deformations.

In this work, we assume that pressure cannot be negative,
and we exclude exotic types of matter, assuming that E ≥ 0
and ϵ > −1. We further exclude any contributions to energy
or pressure unrelated to baryonic matter, such as dark mat-
ter clouds or radiation fields outside a NS. Thus, we assume
P (0) = E(0) = 0.

An important subset of barotropic EOS is given by the isen-
tropic barotropic EOS, which are defined by a constant spe-
cific entropy. A NS model following such an EOS will con-
tinue to do so when perturbed adiabatically, i.e., such that
TdS = 0 and hence PdV + dU = 0. For barotropic EOS,
this condition implies that

dE

dρ
= h,

dϵ

dρ
=

P

ρ2
,

dh

dP
=

1

ρ
(5)

Our main use case are cold NSs, which indeed follow an
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isentropic barotropic EOS. One can construct other examples
of NS with isentropic barotropic EOS by making the artificial
assumption of a radial temperature profile such that the spe-
cific entropy remains constant. A counter-example that cannot
be modeled that way is a hot NS with constant temperature.

How matter reacts to small perturbations can be expressed
by the adiabatic speed of sound, which for an isentropic
barotropic EOS is given by the derivative

c2s =
dP

dE
=

1

h

dP

dρ
(6)

On physical grounds, we rigorously demand that any EOS sat-
isfies

0 ≤ c2s < 1 (7)

The condition c2s ≥ 0 is required for stability of matter,
otherwise perturbations would be exponentially growing in-
stead of propagating as sound waves. This condition some-
times gets violated when stitching together EOS computed for
different density regimes, or when interpolating coarsely sam-
pled EOS using ill-suited interpolation methods that produce
overshoots.

The causality condition cs < 1 is required for any phys-
ically valid model. Already on the mathematical level, the
equations that govern relativistic hydrodynamics break down
if there are superluminal characteristic speeds. Note that the
equations describing the static solutions discussed here do ad-
mit mathematically valid solutions also for the case with su-
perluminal soundspeeds. However, we do not consider such
solutions since they are not valid in the wider context of the
general relativistic hydrodynamics evolution equations.

We point out that nuclear physics EOS models are based on
approximations and often violate causality above some den-
sity. We still use portions of such EOS, restricting the validity
range to lower densities such that cs < 1 is satisfied.

For isentropic barotropic EOS, the condition c2s ≥ 0 im-
plies that P (ρ) increases monotonically but not necessarily
strictly monotonic. We can therefore obtain the inverse func-
tion ρ(P ), which is strictly monotonic but may have disconti-
nuities.

Although valid EOS with non-monotonic P (ρ) could be
constructed in the non-isentropic case, we exclude such EOS
for the purpose of this work. The reason is that otherwise there
would be an infinitude of solutions for spherical NS equilib-
rium models at given central density, caused by the additional
freedom of choosing a branch from of a multi-valued ρ(P ) in
any pressure interval within the non-monotonic range. We are
unaware of an astrophysical use case justifying such compli-
cations.

Similarly to ordinary matter such as water, nuclear matter
may exist as a mixture of different phases at the same pres-
sure but different density. How nuclear matter behaves while
transitioning through such a regime depends on the exact na-
ture of those phases. One possibility is that the pressure as a
function of density stays constant within the density range of
the transition. In this case, the speed of sound is zero over the
same range (see Eq. (6)). The density as function of pressure
thus has a discontinuity at such a phase transition.

Another possibility is that the pressure does increase across
the phase transition. This may occur for complex matter with
more than one conserved charge [28]. The jump in the func-
tion ρ(P ) induced by phase transitions can thus vary both re-
garding its steepness and its size (for a discussion of the influ-
ence of the steepness on NS properties, see [29]).

We remark that non-isentropic barotropic EOS might have
a range where P (ρ) = const even if there is no physical phase
transition. For example, one could prescribe specifically de-
signed functions T (ρ) and/or Ye(ρ). Further, we remark that
an EOS with a phase transition might only be a valid descrip-
tion of matter on timescales longer than NS oscillation peri-
ods. This affects the criteria for the stability of NS, as dis-
cussed in [30].

In the remainder of this work, we will not distinguish the
different physical scenarios above, since our only concern is
the impact of discontinuities or steep gradients on the numer-
ical solutions. We will therefore use the term phase transi-
tion synonymously for any sharp features in the EOS where
cs ≪ 1 over a density range.

One important quantity for equilibrium models is the
pseudo-enthalpy defined as

H(P ) = exp

(∫ P

0

dP ′

P ′ + E(P ′)

)
(8)

We require that the above integral is finite, such that H(0) =
1. This mild restriction on the EOS is not a practical concern.
We note that the enthalpy h depends on the choice of the for-
mal baryon mass constant mB , while the pseudo-enthalpy H
does not.

We can use H to parametrize the EOS as P (H). By con-
struction, H(P ) is a smooth and strictly monotonic. Thus,
P (H) is also smooth and strictly monotonic. This is still true
across a phase transition. Since P (ρ) has a plateau across a
phase transition, the same holds for H(ρ). Correspondingly,
mass density ρ(H) and energy density E(H) have a disconti-
nuity at a phase transition.

The pseudo-enthalpy H obeys the following identity, which
is useful in the context of hydrostatic equilibrium.

d

dP
lnH(P ) =

1

E(P ) + P
(9)

For isentropic barotropic EOS, the pseudo enthalpy H
agrees with the regular enthalpy h up to a constant factor, that
is,

H(ρ) = h(ρ)/h(0). (10)

This can be shown by combining Eq. (5) and Eq. (9) to obtain
d ln(H)/d ln(h) = 1. For isentropic EOS, we can also write
Eq. (6) as

c2s =
d ln (H)

d ln (ρ)
(11)
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1. Polytropic EOS

The polytropic EOS (or polytrope for short) is a barotropic
isentropic EOS that is frequently used in the context of neu-
tron stars as a toy model for reference. We remark that poly-
tropes already appear in classical thermodynamics as curves
of constant specific entropy for the classical ideal gas EOS.
That is not how they are used in the context of nuclear matter,
however. For the classical ideal gas, the pressure at zero tem-
perature is zero, whereas cold nuclear matter has the degener-
acy pressure arising from Pauli’s exclusion principle and other
contributions. Polytropic EOS can still be used as a simple
analytic prescription to approximate zero-temperature nuclear
matter. When used like this, they are not derived from any
thermodynamic potential. Also, being a toy model, polytropic
EOS neither depend on nor provide the electron fraction.

The polytropic EOS is given by

P (ρ) = KρΓ, Γ ≡ 1 +
1

n
(12)

The constant Γ is a parameter called polytropic exponent and
is alternatively specified by the polytropic index n. The con-
stant K is called polytropic constant and it has awkward units
with non-integral exponents depending on Γ. We therefore
use an alternative constant ρp with units of a density, writing

P (ρ) = ρp

(
ρ

ρp

)Γ

, ρp ≡ K−n (13)

The specific energy follows from the adiabatic assumption
Eq. (5)

ϵ(ρ) = ϵ0 + n

(
ρ

ρp

) 1
n

(14)

The constant ϵ0 is another free parameter, although it is typi-
cally set to zero. Enthalpy and pseudo-enthalpy follow as

H(ρ) =
h

h0
= 1 +

n+ 1

h0

(
ρ

ρp

) 1
n

, h0 = 1 + ϵ0 (15)

We can parametrize the EOS in terms of H as follows

P (H) = ρp

(
(H − 1)

h0

1 + n

)1+n

(16)

ϵ(H) = ϵ0 +
h0

Γ
(H − 1) (17)

ρ(H) = ρp

(
(H − 1)

h0

1 + n

)n

(18)

Finally, the soundspeed follows from Eq. (11) as

c2s(H) =
H − 1

nH
(19)

This constrains the range where the EOS is physically valid.
The condition c2s ≥ 0 requires that n > 0 (equivalent to Γ >
1). Further, we find that cs < 1 for any density if n ≥ 1

(equivalent to Γ ≤ 2). For the case Γ > 2, causality is violated
above a critical density given by

Hc =
1

1− n
(20)

For comparison between different sources, we should dis-
cuss what happens when changing between a convention us-
ing mb to using another value m′

b. First, we note that the
constant ρp does not transform like the baryonic mass den-
sity ρ. Instead, the conditions P ′ = P, ρ/mb = ρ′/m′

b lead
to ρ′p/ρp = (m′

b/mb)
1+n. Second, the offset ϵ0 changes as

(1 + ϵ′0)/(1 + ϵ0) = m′
b/mb (this also implies that one can

find a value mb such that ϵ0 = 0).
For many applications, one can ignore the above issue. The

value mb only enters when computing baryon numbers or
number densities. Using ρ′ = ρ, ρ′p = ρp, ϵ

′
0 = ϵ0 instead

of the formally correct transformation will yield exactly the
same results for most NS properties, including the baryonic
mass. Only the definition of baryonic mass changes, such that
the total baryon number of the NS will differ.

2. Joining EOS Segments

Often it is useful to assemble a barotropic isentropic EOS
from several parts, using different prescriptions in different
density ranges. The matching condition is that P (ρ) and
E(ρ) are continuous across the segment boundaries (compare
Eq. (5),Eq. (6), and Eq. (7)).

One application is to extend an EOS based on sample points
with strictly positive density down to zero density in a well-
defined way. This can also be regarded as a way of interpo-
lating between zero density and the lowest non-zero sample
point. Assuming we have an arbitrary EOS that is defined
above some density ρm, with pressure Pm = P (ρm) and spe-
cific internal energy ϵm = ϵ(ρm), we obtain a matching poly-
tropic EOS from Eq. (13) and Eq. (14) as

ρp = ρm

(
ρm
Pm

)n

, ϵ0 = ϵm − n
Pm

ρm
(21)

where the polytropic index n is a free parameter. We point out
that a valid choice has to obey the constraint

n <
(1 + ϵm)ρm

Pm
(22)

This condition ensures that h > 0 and c2s > 0 (compare
Eq. (6)). In practice, it is not very restrictive since for real-
istic EOS and low matching densities, P ≪ E. It might be
a problem however when matching at high densities or when
matching EOS with unusual low-density behavior.

We also note that fixing n such that ϵ0 = 0 would serve
no meaningful purpose. The energy per baryon in the zero-
density limit depends on the assumed nuclear composition,
and unless the former agrees with the arbitrary constant mb,
we find that ϵ(0) ̸= 0.
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A second application of EOS matching is to approximate a
given EOS by joining several polytropic segments appropri-
ately. Approximations to many nuclear physics EOS models
by means of piecewise polytropic EOS are provided in [31].

A piecewise polytropic EOS is fully specified by providing
ρp and ϵ0 for the lowest segment, the polytropic exponents Γi

for each segment, and the densities ρi of the segment bound-
aries. The parameters ϵ0,i and ρp,i of the remaining segments
then follow from applying Eq. (21) to each segment bound-
ary. In this work, we also set ϵ0 = 0 for the lowest segment,
as in [31]. As discussed for the polytropic EOS, this has no
consequences except for the baryon number.

To compute H(ρ), one cannot use Eq. (15) valid for poly-
tropic EOS. The reason is that H is an integral quantity, given
by Eq. (8), and one has to split the integral into the individ-
ual segments. However, it is much easier to use the fact that,
since the piecewise polytropic EOS is isentropic by construc-
tion, it must fulfill Eq. (10). We can therefore use the regular
enthalpy h, computed from Eq. (12) and Eq. (14). In the range
of segment i, we obtain the EOS in terms of H as

h(H) = H (23)

P (H) = ρp,i

(
H − 1− ϵ0,i

1 + ni

)1+ni

(24)

ϵ(H) = ϵ0,i +
H − 1− ϵ0,i

Γi
(25)

ρ(H) = ρp,i

(
H − 1− ϵ0,i

1 + ni

)ni

(26)

c2s(H) =
H − 1− ϵ0,i

niH
(27)

which is valid for our choice of ϵ0,0 = 0. The same expres-
sions (up to notation) for the piecewise polytropic EOS can
also be found in [31].

We note that the valid range of piecewise polytropic EOS
can be limited by causality. For a segment i, we find that
cs > 1 if and only if

H ≥ 1 + ϵ0,i
1− ni

and 0 < ni < 1 (28)

The lowest segment within which the above condition is sat-
isfied then limits the validity range of the entire EOS.

C. TOV Equations

In the following, we collect the equations describing the
basic structure of spherically symmetric NS, and cast them
into the form used in the RePrimAnd library. For a more
didactic introduction, we refer to textbooks [32, 33].

Any spherically symmetric spacetime metric is static and
can be written as

ds2 = −e2ν(r)dt2 + e2λ(r)dr2 + r2dΩ (29)

For this choice of coordinates, the radial coordinate r is the
proper circumferential radius. In this form, the time coordi-
nate is only fixed up to a constant factor. We follow the stan-
dard choice where coordinate time agrees with proper time for

an Eulerian observer far away from the star, that is, ν → 0 for
r → ∞.

The metric potentials λ and ν follow a set of ordinary dif-
ferential equations known as TOV [1, 2] equations, which can
be written as

d

dr
λ(r) = re2λ(r)

(
4πE(r)− m(r)

r3

)
, (30)

d

dr
ν(r) = re2λ(r)

(
4πP (r) +

m(r)

r3

)
, (31)

where

m(r) ≡ r

2

(
1− e−2λ

)
(32)

For a didactic derivation we refer to [33]. Eq. (30) can also be
written as

d

dr
m(r) = 4πr2E(r) (33)

The above expressions require the matter state at each ra-
dius. Given the pressure at the center, the pressure elsewhere
is related by the hydrostatic equilibrium condition, which in
turn follows from ∇µT

µν = 0.

d

dr
P (r) = − (E(r) + P (r))

d

dr
ν(r) (34)

We assume that E can be expressed as function of P alone.
That allows us to integrate the above differential equation. Us-
ing Eq. (9), hydrostatic equilibrium in terms of H becomes

d

dr
lnH(r) = − d

dr
ν(r) (35)

Therefore, H can be directly expressed in terms of the metric
potential ν as

H(r) = H(0)eν(0)−ν(r) ≡ H(0)e−µ(r) (36)

Note that during the numerical ODE integration, we do not
need the central value ν(0), only the difference

µ(r) = ν(r)− ν(0) (37)

For our implementation, we use µ as independent variable
instead of the radius r. We can obtain another ODE for the ra-
dius by inverting Eq. (31). The result is similar to [34], where
ln(H) is used as independent variable. However, the ODE is
still irregular at the center, which can be avoided by a simple
variable substitution x ≡ r2. Eq. (31) becomes

dν

dx
= e2λ

(
2πP +

m

2r3

)
> 0, (38)

which can be inverted, resulting in

dx

dµ
=

dx

dν
=

2e−2λ

4πP + m
r3

(39)

A similar expression (based on ln(H)) can be found in [9].
As will be discussed later, the term mr−3 has a well-defined



7

finite limit for r → 0. Therefore, the above ODE is com-
pletely regular. The ODE for the metric potential λ follows
from Eq. (30) and Eq. (31) as

d

dµ
λ(µ) =

4πE − m
r3

4πP + m
r3

, (40)

and it is completely regular as well. The system is closed by
the functions P (H) and E(H) which are defined by the EOS.

Finally, we need to discuss the boundary conditions. At the
origin, we have µ(0) = 0 by definition. For our choice of ra-
dial coordinates, regularity of the metric at the center implies
λ(0) = 0 and, from Eq. (32), m(0) = 0. In order to find the
behavior of solutions near the origin, we first write

m

r3
=

λ

x
σ(−2λ) (41)

where

σ(l) =
el − 1

l
(42)

= 1 +
1

2
l +

1

6
l2 +

1

24
l3 +

1

120
l4 +O(l5) (43)

is a smooth function. To get an expression for λ/x, we com-
bine Eq. (39) and Eq. (40) into

dλ

dx
=

(
4πE − λ

x
σ(−2λ)

)
e2λ

2
(44)

Next we employ a Taylor-expansion in terms of x, writing

λ =
∑
i

λkx
k, E =

∑
i

Ekx
k (45)

Note that there can be no term linear in r as this would imply
that the final three-dimensional solution becomes non-smooth
at the center of the star. Inserting the above expansion into
Eq. (44) and Eq. (43) yields the coefficients. To first order, we
find

λ

x
= κ1(E0, E(µ), x) +O(x2) (46)

κ1 =
4π

3
E0

(
1 +

3

5

(
E

E0
− 1

)
+

4π

3
E0x

)
(47)

For later use, we also replaced the coefficient E1 by first order
finite differences in terms of E,E0. Together with Eq. (41),
we find that the RHS of ODEs Eq. (39) and Eq. (40) remains
finite and non-zero at the origin. Knowing the behavior near
the origin is required for the numerical integration, which will
be discussed in Sec. III A.

Finally, we discuss the solution outside the star. Since
P = E = 0, Eq. (40) implies that λ + µ = const, and
Eq. (33) implies that m(r) = M , where M = m(R) is the
gravitational mass of the NS and R the proper circumferential
surface radius. From Eq. (32) we find λ → 0 for r → ∞. Us-
ing the standard gauge choice for the time, ν → 0 for r → ∞,

we thus arrive at λ = −ν outside the star. At the surface,
Eq. (32) yields

ν(R) = −λ(R) = ln

(√
1− 2M

R

)
(48)

Further, P (R) = 0 and therefore H(R) = 1. From Eq. (36),
we find µ(R) = ln(H(0)). Since µ is our independent vari-
able, the interval over which we need to integrate the ODE is
known in terms of the central pseudo-enthalpy. Finally, we
obtain ν(0) = ν(R)− µ(R) = ν(R)− ln(H(0)).

D. Tidal Deformability

In the following, we describe a robust method for comput-
ing the tidal deformability of nonrotating NS in the limit of
vanishing orbital frequency. We will start from the formula-
tion derived in [5, 6, 9] and then cast it into a form that allows
numerical integration also in the presence of phase transitions.

We make the standard assumption that the same barotropic
EOS used to compute the unperturbed model also holds when
the star is perturbed by a tidal field, in the limit of vanishing
orbital frequency. It is worth pointing the physical implica-
tions behind this assumption.

First, the assumption is valid for the case of an isentropic
barotopic EOS, in particular for cold NS models. For hot NS
models on the other hand, this assumption will not hold in
general. However, thermal effects can be safely neglected for
BNS systems near merger.

Second, NS matter also has another degree of freedom ex-
pressed by the electron fraction. For the EOS describing a
cold NS, it is given as function of density by the condition
of β-equilibrium. In the limit of very long orbital periods,
β-equilibrium would be maintained, but such timescales will
likely remain inaccessible to gravitational wave observations
of BNS mergers. Here, we neglect the impact of any deviation
of the electron fraction in the tidally perturbed star from the
one given by the EOS of the background model, and do not
try to estimate the corresponding error.

As detailed in [5] (beware of a typo corrected in [6]), the
dimensionless tidal deformability Λ is given by

Λ =
2

3β5
k2, where β =

M

R
(49)

where the Love-number k2 is given by

k2 =
8

5
β5 (1− 2β)

2
(2 + 2β (ys − 1)− ys)

× [2β (6− 3ys + 3β (5ys − 8)

+2β2
(
13− 11ys + β (3ys − 2) + 2β2 (1 + ys)

))
+3 (1− 2β)

2
(2− ys + 2β (ys − 1))

ln (1− 2β)]
−1

(50)
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The quantity ys is the surface value ys ≡ y(R) of a radial
function y(r) that is the unique solution of the ODE

r
d

dr
y = −y2 − ye2λ

(
1 + 4πr2 (P − E)

)
− r2Q (51)

r2Q = 4πr2e2λ
(
5E + 9P +

E + P

c2s

)
− 6e2λ − 4

(
r
dν

dr

)2 (52)

which was derived in [9] from the original formulation in [5,
6] (note our definitions of λ, ν differ from [9] by a factor 2).
The variable y is defined as y = rH′/H, where H fulfills a
second order ODE given in [5] (note H is denoted H , not to
be confused with our notion for the pseudo-enthalpy H).

The solution of y is unique because the boundary conditions
for H given in [5] imply that y(0) = 2. The behavior of y for
r → 0 can be found using a Taylor expansion in r. Together
with Eq. (41), we find that

y ≈ 2− 4

7
π

(
1

3
Ec + 11Pc +

Ec + Pc

c2s

)
r2 (53)

where Ec and Pc denote the central values. We note that our
result contradicts a similar expansion in terms of ln(H) pro-
vided in [9]. For comparison, we use Eq. (38) and Eq. (35) to
express Eq. (53) as

y ≈ 2 +
2

7

Ec + 33Pc +
3
c2s
(Ec + Pc)

Ec + 3Pc
ln

(
H

Hc

)
(54)

It is important to note that the ODE coefficients in Eq. (52)
are degenerate at phase transitions (see also [9]). The culprit is
the term (E + P )/c2s. We recall that phase transitions feature
a range of mass density over which P is constant and cs = 0.
For hydrostatic solutions, the pressure is smooth across the
phase transition while the density has a jump. Taken together,
the ODE coefficient as function of radius acquires a delta-
function component at a phase transition. Even if the EOS
only has a plateau with nearly constant pressure, it results
in a very sharp peak. Integrating the original ODE numeri-
cally across a phase transition is impossible. One could com-
pute the jump across a phase transition analytically, as done in
[9, 10]. We do not follow this approach since phase transitions
would then have to be described separately, thus complicating
the EOS handling.

In practice, EOS can exhibit behaviors between an ideal-
ized phase transitions and merely sharp features, which also
makes any semi-analytic approach ambiguous. In Fig. 1, we
show the problematic term ρ/c2s for a selection of nuclear
physics EOS models (see Sec. IV A). Although these contain
only very weak phase transitions, the resulting peaks are quite
sharp and difficult to resolve. In order to circumvent this prob-
lem altogether, we will now transform the ODE into a form
that has regular coefficients at phase transitions and can be
integrated using standard numerical methods.

We start by noting that the offensive term is closely related
to the derivative of the density.

E + P

c2s
=

ρh

c2s
= ρh

d ln ρ

d lnH
= −h

dρ

dν
(55)

FIG. 1. The term ρ/c2s as function of pseudo-enthalpy H − 1, for
various tabulated EOS models (described in Sec. IV A) from nuclear
physics. The pseudo-enthalpy be regarded as a proxy for the radial
coordinate in NS models. The inset highlights some of the sharp
peaks, which are problematic for the standard formulation of the tidal
deformability ODE.
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Above, we used Eq. (11) and Eq. (35).
We can now simply cancel the degeneracy by using the den-

sity instead of the radius as independent variable.

dy

dρ
=

(
dρ

dν

)−1(
dy

dν

)
(56)

= − hc2s
E + P

dy

dν
= −c2s

ρ

dy

dν
(57)

= −c2s
ρ

(
dν

dx

)−1(
dy

dx

)
(58)

From Eq. (51) and Eq. (52), we get

dy

dx
=

1

2x

[
−y2 + (6− y) e2λ

]
+ 8x

(
dν

dx

)2

− 2πe2λ
[
(P − E) y + 5E + 9P +

ρh

c2s

] (59)

Using the identity

e2λ − 1 = 2xe2λ
m

r3
(60)

we can rewrite the first term as
1

2x

[
−y2 + (6− y) e2λ

]
= −y − 2

2x
(y + 3) + (6− y) e2λ

m

r3

(61)

Collecting terms, we find

dy

dρ
=

4πh

4πP + m
r3

+
c2s
ρ
A (62)

A =
2

4πP + m
r3

(y − 2

2x
(y + 3) e−2λ + (y − 6)

m

r3

+ 2π (P − E) y + 2π (5E + 9P )
)

− 4xe2λ
(
4πP +

m

r3

) (63)
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The coefficients of the new ODE for y are finite across phase
transitions. They are also finite at the center, as follows from
Eq. (46) and Eq. (53). Even if a phase transition happens ex-
actly at the center, they remain finite. Although Eq. (63) con-
tains a term (y−2)/x which in this case diverges (see Eq. (53))
like 1/c2s, the coefficient c2sA in Eq. (62) remains finite.

At the surface, on the other hand, the term c2s/ρ in the new
ODE is now problematic, because the limit of zero density is
not finite for all EOS. For example, it diverges for a polytropic
EOS with Γ < 2 (compare Eq. (18) and Eq. (19)).

To solve the problem near the surface, we derived yet an-
other formulation, without sacrificing the good behavior at
phase transitions. For this, we first change the dependent vari-
able to

ŷ(ρ) = y(ρ)− d(ρ) (64)

d(ρ) =

∫ ρ

0

4πh

4πP + m
r3

dρ′ (65)

The term mr−3 in the integrand can be written as function of
density ρ since the density is strictly decreasing with radius
for solutions of the TOV equations. The integrand is finite
also at phase transitions, where it simply exhibits a plateau.
The integration can thus easily be carried out numerically. The
above subtraction eliminates the first term in Eq. (62), which
becomes

dŷ

dρ
=

c2s
ρ
A =

d ln(H)

dρ
A (66)

Finally, we change the independent variable to ν, writing

dŷ

dν
=

dŷ

dρ

dρ

dν
= −dŷ

dρ

dρ

d ln(H)
= −A (67)

The RHS given by Eq. (63) is completely unproblematic both
at phase transitions and at the surface. The discontinuity in
y is now contained entirely in the variable d. Although d(ρ)
is smooth, ρ(ν) and therefore d(ρ(ν)) have a jump at a phase
transition.

As a crosscheck, we can recover the analytical contribution
of a phase transition discussed in [9, 10]. Denoting the density
range of the phase transition by [ρ−, ρ+], the radial location
by rT , and the constant enthalpy and pressure across the tran-
sition by hT and PT , respectively, we find

d(ρ+)− d(ρ−) = (ρ+ − ρ−)
4πhT

4πPT + m(rT )
r3T

(68)

since the integrand in Eq. (65) is constant across the phase
transition. Using ŷ+ = ŷ−, a straightforward computation
yields

∆y ≡ y+ − y− =
4π (E+ − E−)

4πPT + m(rT )
r3T

(69)

which agrees with [10]. A similar result in [29] seems to
be intended to describe phase transitions near the surface and
agrees in the limit of small PT .

Normally, the above ODE behaves well also at the center.
Only in the rare case where the central density coincides with
a phase transition, the coefficient A diverges like 1/c2s (com-
pare Eq. (53)). To sidestep this remaining problem, we use
the formulation given by Eq. (62) to integrate y up to some
radius inside the star, and then switch to the formulation given
by Eq. (67) to integrate ŷ up to the surface.

E. Moment of Inertia

The moment of inertia of uniformly rotating NS in the slow
rotation limit was derived in [4]. This involves the solution
of an ODE for a function ω̄ related to frame dragging, with
coefficients determined by the TOV solution describing the
nonrotating NS. In detail,

d2ω̄

dr
= 4πρhe2λ

(
r
dω̄

dr
+ 4ω̄

)
− 4

r

dω̄

dr
(70)

Compared to the form in [4], we inserted Eq. (30) and
Eq. (31). To solve the ODE, we first transform it into an equiv-
alent first order ODE using x as independent variable

dω̄

dx
=

ω̄1

x
(71)

dω̄1

dx
=

(
2πxρhe2λ − 3

2

)
ω̄1

x
+ 4πρhe2λω̄ (72)

Another variable transform leads to a form that can be inte-
grated simultaneously with the TOV equations

dω̄

dµ
=

(
dx

dµ

)
dω̄

dx
,

dω̄1

dµ
=

(
dx

dµ

)
dω̄1

dx
(73)

where dx/dµ is given by Eq. (39).
The coefficients of ODE Eq. (70) are degenerate at the cen-

ter, and the solution has just one degree of freedom given by
ω̄(0). Using a Taylor expansion, one can show that the solu-
tion for ω̄1 in the limit r → 0 is

ω̄1 → 0,
ω̄1

x
→ 8

5
πρhω̄ (74)

As shown in [4], the function ω̄ outside the star is related to
the angular momentum J of the NS and its angular velocity
as seen from infinity, Ω, by

ω̄(r) = Ω− 2J

r3
r ≥ R (75)

As a consequence,

J =
r4

6

dω̄

dr

∣∣∣∣
r=R

(76)

which is unambiguous since ω̄ is twice differentiable also
across the NS surface. Combining the equations above, we
compute the moment of inertia using the expression

I ≡ J

Ω
=

r3

3 ω̄
ω̄1

+ 2

∣∣∣∣∣
r=R

(77)

Compared to [4], this avoids another integration step.
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F. Baryonic Mass, Binding Energy, Volume

The baryonic mass within a radius r is given by the integral

Mb(r) =

∫ r

0

4πr′
2√

grr(r′)ρ(r
′)dr′ (78)

=

∫ r

0

4πr′
2
eλ(r

′)ρ(r′)dr′ (79)

where we use the coordinates Eq. (29).
The total baryonic mass of a NS, Mb = Mb(R), is impor-

tant in the context of binary neutron star mergers. The law
of baryon number conservation implies that the total baryonic
mass of the system after merger is given by the sum of the
baryonic mass of original coalescing NS. This can be used to
relate the stability of the remnant to the EOS.

The binding energy of a NS is usually defined as Eb =
Mb − M . We note that this definition is a slight misnomer
since Eb is not exactly the energy difference between the
ADM energy of a NS and a spacetime where the same amount
of matter is infinitely dispersed. That would only be the case
if each baryon contributes an energy given by the arbitrary
constant mb for the dispersed state, whereas the actual value
would depend on the nuclear composition of the matter.

Another quantity we compute is the proper volume V (r)
enclosed within spherical surfaces of radius r, which is given
by

V (r) =

∫ r

0

4πr′
2
eλ(r

′)dr′ (80)

The proper volume of the NS is then given by V (R). We are
unaware of existing results providing V (r) outside the star,
and derived the analytic expression below using straightfor-
ward integration.

V (r) = V (R) +
4

6
π

[
15M3 ln

(
r′
√
1− 2M

r′
+ r′ −M

)

+r′
√
1− 2M

r′

(
M (15M + 5r′) + 2r′

2
)]r

R

(81)

It is convenient to compute Eb(r) = Mb(r) − M(r) and
V (r) while solving the TOV ODE instead of using a separate
integration step. For this purpose, we can cast Eq. (78) and
Eq. (80) into the differential equations

d

dx

(
V (r)

r

)
= 2πeλ − V (r)

2r3
(82)

d

dx

(
Eb(r)

r

)
= 2πρ

(
eλ − 1− ϵ

)
− Eb(r)

2r3
(83)

For r → 0, we find

V (r) → 4

3
πr3, Eb(r) → −4

3
πρϵr3 (84)

The advantage of this form is that the quantities V/r and Eb/r
grow linearly with x near the origin and the RHS of Eq. (82)
and Eq. (83) remains finite.

G. Bulk measures

The proper volume is rarely used, which is surprising since
it is a fundamental geometric property of any body, not re-
stricted to spherical symmetry. This was utilized in the context
of BNS merger remnants in [35]. To define measures applica-
ble to any spacetime, one can use proper volume V (Sρ) and
baryonic mass Mb(Sρ) enclosed within isodensity surfaces
Sρ. One can also define an volumetric radius RV (S) as the
radius of the Euclidean sphere with equal volume. This allows
to define a compactness measure CV (S) = Mb(S)/RV (S).
Although merger remnants lack a clearly defined surface,
there is always one surface Sblk of maximum compactness
CV , denoted as the bulk surface in [35]. This gives rise to
definitions of bulk proper volume Vblk = V (Sblk) and bulk
baryonic mass Mblk = Mb(Sblk).

The same measures can easily be applied to a TOV solu-
tion, where the isodensity surfaces Sρ are just spheres Sr. For
a static NS, the formula given in [35] to determine the bulk
surface simplifies to

ρ(rblk) =
Mb(rblk)

3V (ρblk)
(85)

The bulk measures above are used in [35] to compare the
cores of TOV and merger remnants in a well-defined way. In
detail, one can search for the intersection between the proper
mass-volume relation of the remnants isodensity surfaces and
the bulk mass-volume relation for the sequence of TOV solu-
tions. If it exists, the corresponding TOV solution is called
TOV core equivalent, because its bulk has a similar radial
mass distribution than the merger remnant core.

H. Stable Circular Orbits

It is a well known fact that circular orbits of massive test
particles in the Schwarzschild metric are unstable at radii
smaller than the innermost stable circular orbit (ISCO) located
at RISCO = 6M . Since the metric outside a spherical NS is
the Schwarzschild metric, all orbits outside the NS surface
are given by the latter. Therefore, all NS with compactness
M/R > 1/6 have an ISCO. Realistic NS models do indeed
have an ISCO above some mass that depends on the EOS.

We could not find any reference regarding the stability of
geodesics inside NS. This seems a somewhat academic ques-
tion, but might be relevant when studying accumulation of
particle dark matter inside NS. Below, we provide a short dis-
cussion of subsurface orbits. Interestingly, it turns out that NS
with an ISCO also have an outermost stable internal circular
orbit (OSICO in the following).

We start by setting up the usual geodesic invariants. For the
line element Eq. (29), both ∂t and ∂ϕ are Killing vectors. For
a geodesic curve xµ(τ), we find the invariants

L = ẋϕ = r2ẋϕ (86)

E = −ẋt = ẋte2ν (87)
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where we have assumed that the curve is parametrized such
that ẋµẋνgµν = −1. From the above, it immediately follows
that

1

2
E2 = V (r) +

1

2
e2(λ+ν) (ẋr)

2 (88)

V (r) ≡ 1

2
e2ν
(
1 +

L2

r2

)
(89)

For a given angular momentum L, the minima of the effective
potential V (r) correspond to stable circular orbits, and the
maxima to unstable circular orbits. It is trivial to compute

V ′(r) =
e2ν

r

(
rν′ − L2

r2
(1− rν′)

)
, (90)

The condition V ′ = 0 yields the angular momentum Lc(r)
for circular orbits at radius r

Lc(r) = r

√
rν′

1− rν′
(91)

Note that there is no circular orbit if rν′ > 1. This happens
for the Schwarzschild metric below r < 3M (the location of
the photonsphere). For simplicity, we will ignore the potential
corner case of NS with R ≤ 3M or NS that violate rν′ < 1
anywhere within the interior. We can thus assume the exis-
tence of circular orbits at any radius inside a NS.

Next, we discuss the stability of the internal circular orbits.
For a given L, the roots of Lc(r)−L are the extrema of V (r).
Starting from the origin, the first root must correspond to a
minimum since V (r) → ∞ for r → 0. If there is a second
root, it corresponds to a maximum (for the latter case, there
must be a third root since Lc → ∞ for r → ∞). Therefore,
circular orbits in the interval (0, rO) are stable, where rO is the
location of the first maximum of Lc within the star. Further,
Lc cannot have a maximum at the surface, where dLc/dr < 0
(still assuming R > 3M ). The behavior of Lc is illustrated in
Fig. 2 for one EOS and different masses. To conclude, we find
that NS with 3M < R < 6M feature an ISCO outside the star
and an OSICO located strictly below the surface.

We now turn to the orbital angular velocity of test particles
on circular orbits. A general expression valid for axisymmet-
ric stationary spacetimes can be found, e.g., in [36]. Using
Eq. (29) and Eq. (31), we can specialize to the spherical NS
case to obtain

Ω(r) =

√
−gtt,r
gϕϕ,r

= eν+λ

√
4πP +

m

r3
(92)

Outside the star, this simplifies to

Ω(r) =

√
M

r3
(93)

Curiously, the orbital velocity assumes a nonzero value at the
center. We are unaware of a corresponding formula in the lit-
erature, but it is trivial to derive. Using Eq. (46) and Eq. (92),
we obtain

Ω(0) =
1

Hc

√
4

3
π (Ec + 3Pc)

√
1− 2M

R
(94)

FIG. 2. Angular momentum of circular orbits for radii outside and
inside NS employing the APR4 EOS. The masses shown range from
the lowest mass for which there is an ISCO to the maximum mass.
The circles mark the surface location. The solid curves correspond to
the stable orbits, the dotted curves to unstable ones, and the OSICOs
are marked by crosses. For comparison, we show the angular mo-
mentum for orbits around Schwarzschild BH (red), and the location
of the ISCO (plus symbol).
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This provides a rough scale for the rotational velocity at which
one should expect strong deformation of the core. For ex-
ample, numerical merger simulations have found differential
rotation profiles where the core is rotating much slower than
the central orbital velocity, and radial mass distributions very
similar to a nonrotating NS [35, 37, 38].

III. IMPLEMENTATION

In the following, we provide important technical details for
the numerical implementation of the equations given in the
previous section.

A. Avoiding numerical problems

The use of finite precision arithmetic can lead to severe ac-
curacy problems. There are several places in our implemen-
tation where cancellation errors would lead to a catastrophic
loss of accuracy with a naive implementation of our analytic
formulas.

To avoid such a problem, we generally represent the
pseudo-enthalpy H in terms of H1 ≡ H − 1. We recall that
H(ρ) → 1 for ρ → 0. At low density, computing ρ(H) or
P (H) would be inaccurate when using H directly. Further,
when evaluating the function ea − 1 for small arguments, we
use a numerical implementation, denoted here as EXPM1(a),
that is accurate for a → 0, such that EXPM1(a) ≈ a. Eval-
uating ea − 1 directly with finite precision arithmetic would
result in catastrophic loss of accuracy.

Another type of problem is the correct treatment of ODE
coefficients at boundaries. The coefficients of the TOV ODE
in our formulation are finite and continuous when evaluated
along a solution of the ODE. At r = 0 the expressions
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Eq. (39), Eq. (40) are, however, only defined as a mathemati-
cal limit and cannot be evaluated numerically. Instead one has
to use the expression for the limit. Further, the partial deriva-
tives of the coefficients with respect to λ and x diverge at the
origin. This leads to a reduction of the convergence order for
the first ODE integration step at the origin. When using an
RK4/5 integration scheme with adaptive step size control, the
impact on the global accuracy that can be achieved with given
costs is small. However, we find that the maximum conver-
gence order that can be reached with a fixed step size is limited
to second order.

In our implementation, we evaluate the problematic term
m/r3 as follows

m

r3
=

{
− 1

2xEXPM1 (−2λ) µ > ∆

κ1(E0, E(µ), x)σ(−2λ) µ ≤ ∆
(95)

Above, ∆ denotes the stepsize when using fixed-step integra-
tor, and ∆ = 0 when using an adaptive step size control. The
error caused by using the approximation κ1 defined in Eq. (47)
is of order O(∆2). This limits the maximum convergence or-
der for the ODE solution with fixed step size to 3rd order (one
order higher than the error of the local RHS coefficient be-
cause it is integrated over the first step only). Compared to
the order reduction present when using the exact formula, us-
ing the approximation thus increases the possible convergence
order by one.

The integration of the moment of inertia ODE is mostly
unproblematic, except for the term ω̄1/x in Eq. (71). For x =
0, we use the analytic limit given by Eq. (74). Small x on the
other hand are not a problem because ω̄1 grows linearly from
ω̄1(0) = 0.

When integrating Eq. (62), there is one term which needs
special care when evaluated numerically in the limit r → 0,
although analytically it is finite

lim
x→0

c2s
ρ

y − 2

x
=

− 4

7
π

(
h+

(
11h− 32

3
(1 + ϵ)

)
c2s

) (96)

First, we use y − 2 as dependent ODE variable instead of y.
Otherwise the term y − 2 would suffer catastrophic loss of
accuracy for x → 0 (where y → 2) due to cancellation errors.
Second, when evaluating the term above at x = 0, we use the
analytic limit.

To compute proper volume and baryonic mass of a NS, we
use the ODEs given by Eq. (82) and Eq. (83), using Eq. (84)
when x = 0. The choice of dependent variables is more suit-
able for adaptive ODE solvers since they grow linearly with x,
in contrast to the straightforward ODEs for V (x) and Mb(x).
Using the binding energy instead Mb avoids cancellation er-
rors in the Newtonian limit (which is not a problem for NSs,
but might be useful as a test case).

A third type of potential problems is the behavior of EOS
and ODEs for NS properties at phase transitions. The prob-
lems with degenerate ODE coefficients are already taken care
of by our analytical formulation, which also largely alleviates

problems caused by inaccurate numerical representations of
an EOS across a phase transition. Below, we provide the tech-
nical details of the corresponding implementation.

In order to compute the function d(ρ) defined in Eq. (65),
we first perform a numerical integration based on the sam-
ple points obtained during the numerical solution of the TOV
ODE. This step is not problematic since the integrand is fi-
nite and continuous everywhere, including the origin, the sur-
face, and phase transitions. However, we found it necessary
to use a 3rd-order accurate integration method (based on lo-
cal quadratic interpolation) in order to not restrict the overall
convergence order. The result of the integration is then used to
construct a monotonic interpolation spline for d(ρ). We also
construct interpolation splines for λ and m/r3 as functions of
ρ. It is important to interpolate m/r3 instead of m and r, in
order to avoid amplification of interpolation errors for r → 0.
Using those splines and the EOS allow to evaluate Eq. (62)
and Eq. (63).

To compute the tidal deformability, we use Eq. (62) to in-
tegrate y − 2 from the central density to some lower den-
sity, compute ŷ using Eq. (64), and then use Eq. (67) to in-
tegrate ŷ to the surface. The exact matching point is not im-
portant, as we shall see. By default, our implementation uses
log(Hmatch) = 0.1 log(Hcenter).

We remark that Eq. (62) requires that the EOS implemen-
tation can accurately compute cs(ρ) across a phase transition,
whereas Eq. (67) does not even use cs. As long as the phase
transition is below the matching density used for a given NS
model, one can compute the tidal deformability accurately
even if the EOS implementation does not resolve the sound
speed across the phase transition.

It is also worth pointing out that it is much more difficult
to numerically represent cs as function of H than to repre-
sent it as function of ρ, in particular when using interpolation
of tabulated data. The reason is that cs(ρ) merely stays zero
over an interval, while for cs(H) the entire phase transition is
represented by a single point. Integrating the standard formu-
lation Eq. (51) of the ODE across a phase transition would not
just require some specialized ODE solver, but also require a
special EOS implementation able to represent extremely sharp
features in the soundspeed cs(H).

Another formula affected by large cancellation errors is
Eq. (50), as was pointed out in [9]. When applied to stars
with compactness much lower than typical NS, such as white
dwarfs, several orders of the terms polynomial in β cancel
with the logarithmic term, as can be seen by Taylor-expanding
it. The problem becomes manifest when testing our initial im-
plementation on unrealistic polytropic EOS that result in stel-
lar models with compactness β < 0.01.

In [9], one can find an approximation based on Taylor-
expansion that solves the cancellation problem. However,
by numerical comparison to the exact formula in the regime
where both approximation and exact formula are accurate, we
find that the expansion contains several faults. We therefore
re-derived the expansion in β. For this, we approximate the
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love number as a polynomial as follows

k̂2(β, y) = (1− 2β)
2

5∑
l=0

βlpl(y) (97)

Expanding the master equation Eq. (50) in powers of β, we
obtain the coefficients

p0(y) = − y − 2

2 (y + 3)
(98)

p1(y) =
y2 + 6y − 6

2 (y + 3)
2 (99)

p2(y) =
y3 + 34y2 − 8y + 12

14 (y + 3)
3 (100)

p3(y) =
y4 + 62y3 + 84y2 + 48y + 36

14 (y + 3)
4 (101)

p4(y) =
5

294

(
5 y5 + 490 y4 + 1472 y3 + 1884 y2 (102)

+1476 y + 648) (y + 3)
−5 (103)

p5(y) =
1

294

(
33y6 + 4694 y5 + 22100 y4 (104)

+ 46440 y3 + 57240 y2 + 42984 y (105)

+15552) (y + 3)
−6 (106)

We verified numerically that this expansion converges to the
exact formula with error ∼β6 until the numerical cancellation
errors start to dominate. For the final numerical implementa-
tion, we use

k2 =

k2(β, y) β > βthr

k̂2(β, y) +
(

β
βthr

)6 (
k2 − k̂2

)∣∣∣
(βthr,y)

β ≤ βthr

(107)

Here βthr = 0.05 is a threshold value chosen based on plots
of k2 comparing exact expression and approximation formula.
Further, k2(β, y) and k̂2(β, y) are the exact and approximate
expressions given by Eq. (50) and Eq. (97). The addition of
the sixth-order term proportional to the difference between the
two at the threshold value reduces the error further, although
it remains of order β6.

B. Interpolating EOS

For EOS provided only at sample points, some form of in-
terpolation is required. The interpolation method needs to be
monotonic in order to prevent overshoots that violate Eq. (7).
It is also desirable that the interpolated functions are differen-
tiable because otherwise the convergence order of any ODE
solver drops as soon as the ODE step becomes comparable
to the EOS sampling resolution. The sample points should
cover many orders of magnitude in density and therefore is
is best to perform the interpolation in logarithmic space. Fi-
nally, the numerical costs of interpolation should ideally not

increase with number of sample points. To satisfy all those re-
quirements, we use a monotonic cubic spline interpolation of
lnP (lnH1), ϵ(lnH1), ln ρ(lnH1), lnH1(ln ρ), and cs(ln ρ).
The samples are spaced regularly in ln(ρ) or ln(H1). We in-
terpolate cs in terms of ρ instead of H1 because it is impos-
sible to resolve a phase transition for the latter case since it
corresponds to a single point in H but a range in ρ. From
the above interpolating functions, we consistently compute
P (ρ) = P (lnH1(ln ρ)) and cs(H1) = cs(ln ρ(lnH1)).

EOS samples are typically not provided with the particular
spacing described above. We therefore perform another inter-
polation step to create the required regularly spaced samples
from the available ones. This is done as described above, only
that we use a slower variant of the monotonic spline interpo-
lation that allows non-regular spacing.

Often, EOS samples are only provided above some low
density cutoff. Further, it is generally wasteful to use a large
number of sample points for densities too low to have any im-
pact on NS properties. Therefore, we restrict the range for in-
terpolation above a suitably chosen cutoff density, which may
be equal or larger than the lowest available sample point. Be-
low the interpolated range, we attach a polytropic EOS using
the matching conditions Eq. (21).

When solving TOV equations, the EOS is required down
to zero density in order to reach the NS surface. Ideally, the
sampled region extends to low enough densities such that the
exact choice for the extrapolation to low densities does not
matter. We will investigate this in Sec. III D. In any case, the
prescription provides a clearly defined EOS.

We note that it is much easier and more consistent to first
extend an incomplete EOS to zero density than to add various
technical workarounds during the computation of NS proper-
ties. Using workarounds in the TOV solver is either inconsis-
tent or equivalent to some extrapolation of the EOS, with the
disadvantage of not being made explicitly.

C. Testing ODE Solutions

In order to assess the accuracy of the numerical ODE solu-
tions, we first study the convergence behavior for the simple
case of integrating the ODEs using fixed step size, employing
a RK4/5 integrator. We use twice as many points for the tidal
ODE than for the TOV ODE. We recall that TOV and tidal
ODEs use different independent variables and therefore the
integrations steps for each ODE are not constant in terms of
the independent variable of the other ODE. The factor of two
was determined by roughly optimizing computational costs at
a given accuracy.

We are varying the step size for the TOV solution from 10
to 10000 points within the NS. As an estimate for the ODE
integration error, we compute the residuals of NS properties
with respect to an even higher resolution of 100000 points.

We perform this test for many different EOS, each time for
a NS model with Mg = 1.4M⊙ and for the maximum mass
model. We use EOS from three different categories. The
first group consists of 24 nuclear physics EOS represented
as monotonic spline interpolation of tabulated data. Those
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EOS are described in Sec. IV A. The second group consists of
piecewise polytropic approximations of the MPA1 and MS1
EOS. The last group contains polytropic EOS with polytropic
indices in the range 1 . . . 2.5. The polytropic constant is cho-
sen such that the maximum mass is 2.2M⊙.

Fig. 3 shows the residuals for gravitational mass, bary-
onic mass, circumferential radius, proper volume, moment
of inertia, and the tidal deformability. We find that the so-
lutions converge with increasing resolution, but the conver-
gence rate varies between the EOS, and the absolute error dif-
fers strongly. Not surprising, the errors are, on average, low-
est for the analytic polytropic EOS. The piecewise polytropic
EOS show slower convergence, which we attribute to the fact
that they are not differentiable across the segment boundaries.
For the spline-based EOS, we observe a somewhat more noisy
convergence behavior. This might be caused by the interplay
between the locations of ODE integration steps and EOS in-
terpolation sample points. Further, some of those EOS exhibit
relatively sharp features in the sound speed (see Fig. 1). Al-
though those are not problematic, thanks to our choices of
analytic formulations, they can still cause a non-constant con-
vergence rate.

We note that for some of the polytropic models, the tidal de-
formability fails to converge in this test unless the love number
k2 is computed using our improved implementation Eq. (107)
instead of Eq. (50). The reason is that the compactness of
those models decreases rapidly with polytropic index, lead-
ing to models more similar to white dwarfs than neutron stars,
thus triggering the cancellation errors present for low com-
pactness in the naive implementation.

For practical purposes, it is important that users can specify
the desired accuracy instead of technical details such as step
size. For this, our implementation uses power laws for the
residuals of each NS property as function of step size. Those
power laws are chosen based on our test results, and are shown
in Fig. 3. The exponents are 1.6 for the deformability and 1.8
for all other quantities. Those bounds are intended as heuristic
estimates of the required resolution. We emphasize that one
still needs to perform a convergence test for a given model if
reliable error bounds are required.

Our results show that the accuracy for fixed step size can
vary by orders of magnitude between different EOS. This sug-
gests that an adaptive step size might be more efficient. More
importantly, adaptive step size methods might reach the pre-
scribed accuracy also for corner cases not covered in our se-
lection of test cases. However, adaptive methods have one
shortcoming for our use-case. We recall that we first solve
the TOV equations, while the ODE for the tidal deformability
is solved in a subsequent step. Using an adaptive step size for
the TOV equations will only reduce the step size as needed for
those equations. The tidal ODE might require finer resolution
of the TOV solution in very different locations, in particular
at densities where the sound speed has sharp features.

For our main general-purpose implementation, we use a hy-
brid approach for the step size selection. Both for TOV and
tidal ODE, we employ a RK4/5 ODE integrator with adaptive
step size control. However, if the computation of the deforma-
bility is requested, we also enforce a minimum resolution for

the integration of the TOV ODE. This resolution is based on
the heuristic power law error model found for the fixed step
size tests above. Since ODE integration errors become less
predictable in the low-accuracy regime, our implementation
also employs a lower resolution limit.

In order to measure the accuracy and to calibrate the adap-
tive step size control, we solve the same models as for the
previous test, but using different values for the local toler-
ance used in the step size control. We then use simple con-
stant scale factors to chose the local tolerance based on the
desired global errors for the different NS properties. This al-
lows to specify the desired accuracy for each quantity sepa-
rately. Fig. 4 shows the prescribed accuracy for each property
in comparison to the measured residual (again with respect to
a much higher resolution). As one can see, almost all mod-
els achieve the prescribed accuracy. As a trade-off between
reliability and efficiency, we deliberately did not chose the
calibration factors large enough to cover the few outliers. The
error model is intended as a heuristic guideline valid for typi-
cal EOS covered by our test cases. If more exact error bars are
required, one should always perform a dedicated convergence
test for the model at hand.

D. Testing the Impact of EOS Approximation

Our next test concerns the inaccuracies introduced by ap-
proximating a given EOS using monotonic spline interpola-
tion. For this, we interpolate several analytic EOS with in-
creasing number of sample points and compute the residuals
of NS properties with respect to the original EOS. The EOS
used for this test are two piecewise polytropic EOS and one
simple polytropic EOS.

The residuals for mass, radius, and deformability are shown
in Fig. 5. We find that the polytropic EOS is approximated
much more accurate by the interpolation spline, and converges
faster. This is not surprising since the piecewise polytropic
EOS is not differentiable at the segment boundaries, while the
polytropic one is differentiable everywhere.

However, for the polytropic case we also find that the resid-
ual of the radius does not decrease with resolution below a
value of 10−9. As it turns out, the reason for this behavior
is that our implementation of the interpolating EOS uses a
matching polytropic EOS below a given low density thresh-
old ρm, in our example at ρm = 108 kgm−3. The polytropic
index of this polytrope is chosen as n ∼ 1.7116 for this test.
This is the same value as the lowest segment of the piecewise
polytropic examples, whereas the purely polytropic EOS has
a different index of n = 1. At low densities, the polytropic
example EOS is misrepresented, while the other two EOS are
represented exactly.

We can easily obtain an estimate for the error introduced
by the low-density approximation. Near the surface, we can
assume P < E ≪ m/r3. Equations Eq. (39), Eq. (32), and
Eq. (35) then yield the approximation

d ln(x)

d ln(H)
≈ −2

1− 2β

β
(108)
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FIG. 3. Accuracy of solution versus resolution when using ODE solvers with fixed stepsize. The panels show the errors of different quantities:
gravitational mass Mg , baryonic mass MB, proper volume V , circumferential radius R, moment of inertia I , and tidal deformability Λ. The
different curves show results for many spline-based EOS examples, as well as a family of polytropic EOS, and several piecewise polytropic
ones. The solid lines show models with Mg = 1.4M⊙ and the dashed lines show the maximum mass models (where the maximum is
computed only once and the central density is kept fixed for all resolutions). The thick green straight lines show the resulting empirical
estimate for the resolution required to achieve given accuracies.
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where β = M/R. This allows to compute the thickness ∆R
of the shell with density below ρm. We find

∆R

R
≈ ln(Hm)

1− 2β

β
(109)

When using the polytropic approximation below ρm, and as-
suming that Hm ≡ H(ρm) ≪ 1, we obtain

∆R

R
≈ (n+ 1)

(
ρm
ρp

) 1
n 1− 2β

β
(110)

The error in the NS radius caused by approximating the low
density regime is given by the difference of ∆R obtained from
Eq. (109) for original and approximating EOS. Computing
∆R from Eq. (110) already provides a useful estimate for the
magnitude of the potential error, even though it is not a strict
upper bound. The results from the above error estimates are
shown in Fig. 5 as well. We find that the estimate for the poly-
tropic case roughly agrees with the observed limitation of the
NS radius accuracy.

It is worth pointing out that the error estimate for the other
examples is many orders of magnitude larger, even though the

matching density was the same in all cases. The actual error
for this example is small compared to the estimate, but only
because the low-density polytropic approximation happens to
agree exactly with the original EOS. In general, however, this
source of error needs to be taken into account.

The reason for the larger potential error is that the low-
density behavior of the polytropic example is very different
from the other examples. The polytropic constants ρp was
chosen such that the maximum NS mass is 2.2M⊙. As it turns
out, the resulting ρp differs by orders of magnitude from the
polytropic constant of the lowest segment for the two piece-
wise polytropic EOS. The latter are representative for realistic
nuclear matter EOS, for which the low-density behavior is rel-
atively well constrained.

When processing many EOS from different sources, it is de-
sirable to automate the conversion into a spline representation.
For this, one may decide to always use the same low-density
polytropic approximation mimicking realistic nuclear physics
EOS, and to use the same matching density ρm. We can find
an appropriate universal matching density using Eq. (110)

ρm = ρp

(
βmin

n+ 1

∆R

R

)n

(111)
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FIG. 4. Accuracy of solution versus prescribed tolerance when using the default method. The panels show the errors of different quantities:
gravitational mass Mg , baryonic mass MB, proper volume V , circumferential radius R, moment of inertia I , and tidal deformability Λ. The
tolerances not pertinent to the quantities shown in a given panel have no impact because they are set to a large value. Note R and 3

√
V share

the same tolerance prescription, as do Mg and MB. The examples show results for many spline-based EOS, as well as a family of polytropic
EOS, and several piecewise polytropic ones. Our tests also specified a minimum resolution limit of 20 points, which causes the plateaus visible
at low accuracy.
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where ∆R/R is the desired accuracy of the radius, and βmin
is the lowest compactness that will be considered. When
using a low density polytrope with n = 1.7115961 and
ρp = 9.535 10 × 1016 kgm−3, we obtain a matching den-
sity ρm = 2 × 107 kgm−3 appropriate for βmin = 0.06 and
∆R/R = 10−4.

In contrast to the radius, the mass is not significantly af-
fected by the low-density behavior of the EOS. Approximat-
ing the TOV equations near the surface, we obtain an estimate
for the mass in the low density shell as

∆M

M
≈ 4πR2 1− 2β

β2
P (ρm) (112)

The result for our examples is shown in Fig. 5. As one can
see, the impact on the mass is negligible.

Finally, we note that the use of interpolation splines to ap-
proximate EOS does not just introduce an error, but an ambi-
guity. The reason is that ρ(H) is not exactly the inverse func-
tion of H(ρ), and thus one obtains slightly different results
depending on which is used. One such ambiguity is manifest
in our implementation of the deformability. We recall that we
use two different formulations, one based on ρ and one based

on H , switching between the two at some point inside the star.
To measure the above ambiguity, we use the standard devia-
tion of Λ computed for 25 different choices (regularly spaced
in log(H)) for the location of the transition point. Fig. 5 shows
the ambiguity versus the EOS sampling resolution. Again, we
find much lower values for the polytrope. We also find that
the ambiguity varies strongly within the piecewise polytropic
examples, for unknown reasons.

IV. APPLICATION

A. Example EOS collection

As part of our EOS handling framework, we provide a small
collection of EOS files. The aim of this collection is twofold.
First, we use it for our tests of the library. Second, it provides
a convenient starting point for exploring various NS related
questions for a variety of EOS. The chosen set constitutes a
representative selection of nuclear physics EOS models. For a
more extensive collection of EOS data, we refer to [22]. The
full list of available EOS is given in Table I together with the
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FIG. 5. Errors of NS properties introduced by sampling a given EOS
using monotonic splines. The curves show the residual with respect
to the original EOS. Additionally, we show a measure specific to the
ambiguity caused by the fact that the sampling error is not the same
when evaluating the EOS as function of density or pseudo-enthalpy
(see main text for details). The horizontal lines denote estimates for
the impact of the low-density approximation via polytropic EOS. The
figure contains results for several piecewise polytropic EOS and a
polytropic EOS with polytropic index n = 1.

10 12

10 10

10 8

10 6

10 4

10 2

Re
la

tiv
e 

Er
ro

r

101 102 103

EOS points per decade

10 17

10 15

10 13

10 11

10 9

10 7

10 5

10 3

Re
la

tiv
e 

Er
ro

r

MS1_PP
MPA1_PP
APR4_EPP

MS1B_PP
Polytrope

Residual 
Ambiguity 

Residual Mg

Residual R

maximum mass TOV solutions (see next section). The EOS
files are available in [39].

In detail, our selection includes the EOS considered in [40].
Those EOS are based on tables available in the literature on
nuclear physics EOS modeling, but have been sanitized by
removing clearly faulty samples, limiting the validity range
to respect causality, resampling coarsely sampled tables, and
supplementing missing low-density data. Some EOS have
also been replaced by analytic piecewise polytropic approx-
imations from [31] because the original tables were sampled
too coarsely for unambiguous interpolation. For details, we
refer to [40].

Our EOS framework supports piecewise polytropic EOS
natively. However, we also sampled some piecewise poly-
tropic EOS to obtain representations based on spline interpo-
lation. This was done only for testing purposes and the sam-
pled variants are not used in the following sections.

The EOS used here are as close to the ones from [40] as
possible, but have been resampled to the regularly spaced val-
ues employed by our EOS implementation. Note that the EOS
data used in [40] was already resampled from the original
sources to a suitable common resolution. Our example set
is therefore not the closest possible representation of the orig-
inal data, in particular with regard to sharp features, such as
weak phase transitions.

B. Properties of NS for Common EOS Models

As a first application of our code infrastructure, we compute
the sequences of TOV solutions for our collection of EOS.
Fig. 6 shows the properties of stable NS as function of gravi-
tational mass (up to the maximum).

As one can see from the mass-radius relations, none of the
sequences have a photonsphere, i.e. allow circular photon or-
bits outside the star. Further, all of the TOV sequences in
our selection develop an ISCO before reaching the maximum
mass. This can also be seen from the panel showing the angu-
lar velocity of circular orbits at the NS surface in comparison
to the one at the ISCO radius. In general, the surface orbital
angular velocity increases with mass for our selection. Once
it crosses the ISCO angular velocity, which decreases with
mass, the surface orbits are unstable.

The panel showing the central density is useful to interpret
EOS constraints from GW observations, since the signal can-
not be influenced by the EOS at densities above the central
ones for given range of involved NS masses. Of course, it is
still possible to infer constraints on the pressure beyond those
densities, using the causality constraint on the speed of sound.
The mass-density plot also shows that the maximum NS mass
and the central density of the corresponding NS are anticorre-
lated for our selection.

The mass-central soundspeed relation plot exhibits non-
monotonic behavior as well as sharp features. The reason
is simply that EOS can have a non-monotonic soundspeed-
density relation and sharp features. For the same reason, the
maximum sound speed inside a NS is not always the central
value.

Fig. 6 also shows the moment of inertia. For any search for
GW from single rotating NS, the moment of inertia I is an im-
portant quantity as it relates GW amplitude, GW frequency,
and spindown rate (for GW-dominated spindown). The plot
can be used to assess the error made when using ballpark fig-
ures for typical NS. It also shows that maximum mass and
maximum moment of inertia are strongly correlated.

The mass-deformability plot shows that the maximum mass
models for our selection generally have a low tidal deforma-
bility of order 10. For current ground-based detectors, those
maximum mass NS models are therefore near undistinguish-
able from BH. This seems to be mainly related to the high
compactness of the maximum mass models for our EOS se-
lection. As we will see in Sec. IV E, one can easily con-
struct EOS that have mass maxima with lower compactness
and much higher tidal deformability.

For each EOS, the NS model of maximum mass is of par-
ticular interest. Table I provides gravitational mass Mg , bary-
onic mass Mb, proper circumferential radius Rc, moment of
inertia I , central baryonic mass density ρc, and central sound
speed cs. In addition, we compute novel measures introduced
in [35], dubbed “bulk mass” and “bulk compactness” (see
Sec. II G). The bulk measures of the maximum mass TOV
solution may be useful because they appear in a recently pro-
posed empirical criterion for post-merger BH formation [41–
43]. We checked that our results on the maximum masses are
consistent with the ones reported in [40].
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Next, we compute NS properties at a fiducial mass Mfid
g =

1.4M⊙. Table II provides baryonic mass Mb, proper circum-
ferential radius Rc, central baryonic mass density ρc, moment
of inertia I , the angular velocity of internal circular orbits near
the center according to Eq. (94), and dimensionless tidal de-
formability Λ. In addition, we provide the first derivative

S(Mg) ≡
d ln(Λ)

d ln(Mg)
(Mg) (113)

evaluated at Mg = Mfid
g .

Expanding the logarithmic tidal deformability ln(Λ(Mg))
around the fiducial mass to first order might be sufficient for
many applications. For example, [44] analyzed the GW data
for the single event GW170817 assuming a constant slope of
S = −6 for all EOS and kept only the deformability at some
fiducial mass as a free parameter. This approximation thus re-
duces the infinite-dimensional space of EOS to a single degree
of freedom. Once there are further constraints on Λ at differ-
ent masses from future observations, it will become possible
to constrain two degrees of freedom, which can be expressed
in terms of Λ and S at some fixed fiducial mass. We caution
that Taylor expansion (to any order) ceases to be a viable ap-
proach when considering EOS that lead to multiple stable NS
branches. This case will be discussed in Sec. IV E.

C. Multimessenger Applications

As another simple application of our code, we consider the
case of a multi-messenger BNS merger detection where EM
counterparts point to the formation of a BH. We will discuss
some simple consequences of the assumption that a BH was
formed, which would need to be considered in Bayesian pa-
rameter estimation and model selection studies of the GW
data.

For a given EOS, we can easily compute the total baryonic
mass of the system from the gravitational masses of the con-
stituents, as parameterized by chirp mass Mc and mass ratio
q = M2/M1. For simplicity, we assume that spin effects can
be neglected. It is also straightforward to compute the total
baryonic mass that can be contained in a single nonrotating
NS. It is a safe assumption that the remnant is a stable NS if
the total baryonic mass is below the above value. We note that
although a priori the merger could still produce a BH by some
dynamical effect, we are not aware of any such example from
numerical relativity simulations. It should also be noted that
BNS merger remnants have considerable angular momentum
and can therefore support masses larger than the maximum for
nonrotating NS, forming a long-lived supramassive remnant.

In Fig. 7, we show the resulting lower chirp mass limit for
BH formation as function of mass ratio. For comparison, we
show the estimate for the chirp mass in GW event GW170817
[16]. For this and similar events, the chirp mass can be con-
strained so well that for our discussion we can assume it to
be known exactly. From the figure, we can read off immedi-
ately that the knowledge of the chirp mass can place strong
constraints on the mass ratio, if the EOS is given. Under

the assumption that a BH has formed the possible mass ra-
tio drops rapidly once the chirp mass drops below a critical
(EOS-dependent) value. The BNS mass ratio is an important
nuisance parameter in GW parameter estimation studies aim-
ing to constrain the EOS. Hence it might be beneficial to in-
clude the assumption of BH formation in the prior, by exclud-
ing at least the region below the aforementioned chirp mass
limit. Of course, the correct approach is to use estimates for
BH formation thresholds instead of simple lower limits, which
could be obtained from numerical relativity simulations.

Computing the excluded region in the mass prior requires
knowledge of the EOS. For Bayesian model selection studies,
the EOS is given. For parameter estimation studies employ-
ing parametrized EOS, one needs to consider a different mass
prior for each EOS. In other words, the assumption of BH for-
mation introduces an additional correlation between priors for
masses and EOS parameters, besides the existence of a maxi-
mum NS mass.

D. Universal Relations for GW

There are several observational avenues for constraining the
EOS of NS matter. A detection of GW from a BNS coales-
cence mainly provides constraints in the (M,Λ) plane (setting
aside complications when allowing for rapid spins or unequal
masses) but no direct information on the radius (this might
change once a signal from the merger itself can be observed).
Electromagnetic observations such as NICER [65, 66] provide
constraints in (M,R), but no direct measurement of Λ.

Both Λ and R depend on the EOS, so it is —in principle—
possible to obtain combined EOS constraints in a fully con-
sistent Bayesian manner. The difficulty lies in the nontrivial
parametrization of the EOS uncertainties and the requirement
for fully self-consistent prior assumptions.

The situation would be much simpler if radius and deforma-
bilty would depend on the EOS in the same way. In detail: for
a given mass, each possible EOS corresponds to a point in the
(R,Λ) plane. Let us assume that the set of those points does
not constitute a two-dimensional region, but is constrained to
some one-dimensional curve (or at least a sufficiently narrow
band). Further, assume that this curve can be described as
a monotonic function R(Λ). One can then convert measure-
ments of Λ into measurements of R, and vice versa, without
considering the EOS.

There are several proposals for such EOS-independent re-
lations (universal relations) [44, 67] given as a functional rela-
tion β(Λ), where β = Mg/R is the compactness. We note that
this relation is more restrictive than required. For the purpose
of simplifying combined data analysis, it would be sufficient
to have a relation βM (Λ) for each mass M , whereas the above
universal relation β(Λ) is the same for all masses.

Both universal relations from [44, 67] are derived as fits to
a small selection of EOS models predicted by nuclear physics.
Even for those EOS models considered, the relations have
considerable residuals and can be called quasi-universal re-
lations at best. This can be seen in Fig. 8 showing the relation
computed with our code for many nuclear physics EOS. In-
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TABLE I. Properties of the maximum mass nonrotating NS model for various EOS. For each EOS, we provide gravitational mass Mg , baryonic
mass Mb, proper circumferential radius Rc, the “bulk mass” M blk

b and “bulk compactness” Cblk defined in [35], moment of inertia I , central
baryonic mass density ρc, and central sound speed ccnt

s . EOS marked by a star become physically invalid (violating causality by superluminal
sound speed) at a density exceeded within NSs before reaching the mass maximum. The values then refer to the model with the maximal
central density that is still physically valid.

EOS Mg [M⊙] Mb [M⊙] Rc [km] M blk
b [M⊙] Cblk I [M3

⊙] ρc [10
18 kgm−3] ccntcsnd [c]

BHF BBB2 [45] 1.9214 2.2683 9.5222 2.2132 0.3212 36.764 2.2406 0.9139
*WFF1 [46] 1.9235 2.3059 10.196 2.2671 0.3131 42.523 1.4458 0.9902
KDE0V [47–49] 1.9600 2.3130 9.6577 2.2473 0.3229 38.658 2.1671 0.9843
KDE0V1 [47–49] 1.9693 2.3175 9.7924 2.2474 0.3199 39.526 2.1241 0.9648
SKOP [47, 49, 50] 1.9727 2.3042 10.125 2.2185 0.3089 41.062 2.0325 0.9059
H4 [51] 2.0314 2.3413 11.735 2.2637 0.2751 52.518 1.5886 0.6545
HQC18 [52] 2.0450 2.4265 10.387 2.3488 0.3181 46.473 1.8823 0.8035
SLY [53] 2.0490 2.4286 9.9927 2.3660 0.3265 43.919 2.0030 0.9836
SLY2 [47, 49] 2.0535 2.4334 10.045 2.3694 0.3256 44.352 1.9874 0.9770
SLY230A [47, 49, 54] 2.0988 2.4966 10.251 2.4412 0.3272 47.571 1.9013 0.9477
SKMP [47, 49, 55] 2.1069 2.4829 10.527 2.3997 0.3171 48.947 1.8378 0.9465
RS [47, 49, 56] 2.1164 2.4807 10.763 2.3855 0.3108 50.404 1.7832 0.9223
SK255 [47, 49, 57] 2.1439 2.5097 10.849 2.4150 0.3132 51.847 1.7541 0.9371
SLY9 [47, 49] 2.1558 2.5518 10.634 2.4842 0.3228 51.858 1.7825 0.9523
APR4 EPP [58–60] 2.1589 2.6105 10.171 2.5575 0.3433 50.467 1.8897 0.8360
SKI2 [47, 49, 61] 2.1627 2.5262 11.114 2.4245 0.3070 54.284 1.6857 0.9139
SKI4 [47, 49, 61] 2.1693 2.5770 10.670 2.5126 0.3235 52.971 1.7619 0.9493
SKI6 [47, 49, 62] 2.1897 2.6011 10.762 2.5365 0.3239 54.408 1.7315 0.9513
SK272 [47, 49, 57] 2.2314 2.6275 11.086 2.5393 0.3195 57.532 1.6548 0.9645
SKI3 [47, 49, 61] 2.2397 2.6307 11.309 2.5424 0.3134 59.348 1.6056 0.9373
SKI5 [47, 49, 61] 2.2399 2.6152 11.467 2.5041 0.3077 59.901 1.5822 0.9317
MPA1 [63] 2.4619 3.0117 11.325 2.9683 0.3527 73.305 1.4880 0.9899
MS1B PP [58, 64] 2.7463 3.3080 13.224 3.2569 0.3349 106.79 1.1431 0.6795
MS1 PP [58, 64] 2.7528 3.3029 13.312 3.2386 0.3324 107.47 1.1375 0.6555

TABLE II. Properties of NS models with a fiducial gravitational mass Mg = 1.4M⊙, for various EOS. For each EOS, we provide baryonic
mass Mb, proper circumferential radius Rc, central baryonic mass density ρc, moment of inertia I , angular velocity of internal circular orbits
near the center, dimensionless tidal deformability Λ, and the derivative S ≡ d ln(Λ)/d ln(Mg) evaluated at the above fiducial mass.

EOS Mb [M⊙] R [km] ρc [10
18 kgm−3] I [M3

⊙] ΩK
c [radms−1] Λ/100 S

BHF BBB2 1.5545 11.175 1.0519 29.085 13.51 2.1598 −7.324
WFF1 1.5787 10.407 1.0997 26.731 13.64 1.5103 −6.451
KDE0V 1.5501 11.425 0.989 55 29.901 13.20 2.4161 −7.056
KDE0V1 1.5461 11.634 0.955 01 30.627 13.03 2.6626 −7.045
SKOP 1.5401 12.137 0.863 40 33.074 12.53 3.6127 −7.108
H4 1.5313 13.686 0.571 59 42.239 10.53 8.9915 −6.182
HQC18 1.5504 11.492 0.900 63 30.367 12.70 2.5684 −6.369
SLY 1.5461 11.724 0.893 84 31.499 12.68 2.9719 −6.719
SLY2 1.5460 11.792 0.880 55 31.829 12.61 3.0969 −6.707
SLY230A 1.5467 11.841 0.843 14 32.345 12.38 3.2942 −6.476
SKMP 1.5382 12.507 0.752 20 35.588 11.84 4.7761 −6.677
RS 1.5329 12.942 0.698 53 37.648 11.50 5.9064 −6.732
SK255 1.5264 13.157 0.694 90 37.547 11.49 5.8518 −6.697
SLY9 1.5370 12.478 0.748 22 35.034 11.81 4.4902 −6.419
APR4 EPP 1.5542 11.320 0.917 78 30.112 12.78 2.4761 −6.359
SKI2 1.5265 13.496 0.625 32 40.446 10.99 7.6885 −6.624
SKI4 1.5419 12.383 0.733 72 35.434 11.70 4.6848 −6.342
SKI6 1.5398 12.500 0.717 63 35.856 11.60 4.8993 −6.298
SK272 1.5250 13.326 0.654 44 38.495 11.20 6.4090 −6.443
SKI3 1.5256 13.567 0.602 09 40.678 10.81 7.8355 −6.335
SKI5 1.5205 14.096 0.557 26 43.601 10.47 10.077 −6.528
MPA1 1.5450 12.455 0.672 92 35.831 11.27 4.8760 −5.766
MS1B PP 1.5161 14.528 0.445 05 46.143 9.497 12.243 −5.412
MS1 PP 1.5112 14.926 0.431 10 47.726 9.377 13.793 −5.524
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FIG. 6. NS properties along sequences of TOV solutions for the EOS models listed in Table I, as function of the gravitational mass. The curves
for the different EOS are colored and sorted in the legend by the maximum NS mass. Upper left: Circumferential radius. The dashed blue
line divides models that possess an ISCO (to the right) from those without (left). Also shown is the Schwarzschild radius and radius of a BH
photonsphere. Upper right: Central baryonic mass density. Middle left: Moment of inertia. Middle right: Central speed of sound (note that
the central value does not always coincide with the maximum). Bottom left: Tidal deformability. Bottom right: Angular velocity of circular
orbits at the NS surface. Such orbits are unstable in the region shaded red, which is bounded by the angular velocity at the ISCO for a BH.
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FIG. 7. Maximum chirp mass at which the total baryonic mass within
a BNS system of two nonrotating NS is below the maximum baryonic
mass admissible for a single nonrotating NS, as function of mass
ratio. The relation is computed for many EOS, which are sorted in the
legend by maximum NS mass. The chirp masses provide a reliable
(but not very tight) lower limit for the formation of a BH any time
after the merger. The horizontal line marks the chirp-mass estimate
inferred for GW170817 [16].
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stead of β(Λ), we show the equivalent relation k2(β). As one
can see, neither universal relation fits the band spanned by the
EOS particularly well. The plot highlights that the “universal-
ity” of β(Λ) is simply owed to the factor β5 in Eq. (49), i.e.,
the strong dependency on the compactness dominates other
factors.

Using the universal relation to constrain the EOS from
given observational data implies the assumption that the re-
lation is respected by all EOS not yet ruled out by previous
data, and not just by the selected examples used to establish
the relation. In other words, any constraints on the EOS would
already be based on assumptions about the EOS. We note that
universal relations have already been used to convert deforma-
bility constraints into radius constraints in the context of grav-
itational wave event GW170817 [44, 68].

Showing that the universal relations are truly universal in
that sense is difficult. However, it is easy to answer the ques-
tion whether the universal relations are a good approxima-
tion for all EOS, realistic or not. The set of polytropic EOS
used for our tests provides counterexamples, as can be seen
in Fig. 8. We stress that those polytropic EOS differ from the
nuclear physics models already at low density, where the EOS
is well constrained.

To get a more systematic measure for the universality of
universal relations, we used our library to perform a numerical
search for larger violations of said relations over a family of
parametrized EOS. Our motivation is to get the universal rela-
tion violations under the simplistic assumption that the EOS at
low densities is constrained by the spread of available nuclear
physics models, while at high densities the EOS is completely
unconstrained. The parametrized EOS we use to this end are
based on modifying tabulated nuclear physics EOS only above

FIG. 8. Relation between compactness and love number k2 for vari-
ous EOS, together with the “universal” relations from [44, 67]. In
addition to a large selection of nuclear physics EOS models (see
Sec. IV A) we plot results for the unrealistic polytropic EOS used
for testing (see Sec. III D).
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a density threshold. For densities above 5× 1016 kgm−3, we
replace the original speed of sound by a smooth monotonic in-
terpolation between a small number of sample points at fixed
energy densities. The parameter space of the EOS is simply
given by the sound speeds at those points. From the speed of
sound, the full EOS is constructed using Eq. (5) and Eq. (6)
valid for isentropic (cold) EOS.

We then use a simple optimization scheme to look for the
parameters with largest deviations from the universal rela-
tions. For this, we maximize a scalar function that com-
putes the L2-norm of the compactness deviation as function
of mass, weighted by a Gaussian mass “prior”. Doing so, we
found that this can lead to parameters for which the maximum
NS mass is well below 2M⊙. To suppress this region of pa-
rameter space, we multiply the scalar function by a penalty
factor that is a smoothed-out step function in terms of the
maximum NS mass. Another complication which emerged
is the splitting of the stable NS branch into two, separated by
an unstable branch. To account for this, we use the larger
of the two mass maxima in the penalty factor for the maxi-
mum mass. Further, for a mass within the overlap of the mass
ranges spanned by two branches, there are also two different
values for the violation of the universal relation. We simply
use the mean of the squares in the L2-norm of the scalar func-
tion we maximize.

We note that our maximization scheme is not designed to
reliably find global maxima inside the multi-dimensional pa-
rameter space. Also note that we optimize the average vio-
lations and one could probably find larger violations for any
given particular mass. Further, our EOS parametrization is
not well suited to model phase transitions. As shown in [29],
strong phase transitions can also have a significant effect on
the deformability. The results of our search should therefore
be regarded as examples that provide lower limits for the pos-
sible violations.

The results for parametrized EOS based on each of our nu-
clear physics EOS examples are shown in Fig. 9. For each
EOS, it displays tidal deformabilty versus compactness for
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three selected masses, both for the original EOS and the corre-
sponding parametrized EOS with the largest overall violation
found by our search. As one can see, the deviations from the
universal relations can be substantially larger than the spread
of the original nuclear physics EOS. Our findings show that
the compactness-deformability universal relations cannot be
used in any study aiming to constrain the high-density part of
the EOS, since obviously one already needs to assume EOS
constraints to satisfy those relations.

It is instructive to compare the parametrized EOS members
that violate the universal relations to the original EOS. This is
shown in the bottom panel of Fig. 10. Apparently, decreasing
the soundspeed at high density while increasing it at medium
densities leads to the largest deviations found in our search.
It should be noted that the spread surely depends on the den-
sity ρfix below which the EOS is kept constant. Our choice is
pretty low, around one quarter of the nuclear saturation den-
sity. Hence, our results are not valid counterexamples against
the use of universal relations for applications where the EOS
is already assumed to be constrained by other means up to
higher densities.

We remark that Fig. 9 highlights another problem with us-
ing the universal relations. As we already pointed out in [69],
the range of compactness at a given mass is limited, at least
when considering only the EOS used to calibrate the univer-
sal relations. It is therefore not self-consistent to simply use
universal relations of the form β(Λ) to convert a posterior
probability density for Λ,M that was obtained from some
generic prior into a posterior for R,M . For example, apply-
ing the universal relation from [44] to a parameter sample with
M = M⊙ and Λ = 0.01 is not meaningful because this re-
gion of parameter space is clearly excluded for all EOS mod-
els used to derive the universal relation (moreover, the result-
ing compactness exceeds that of a BH). Somewhere, one has
to consider the limited range of β for a given mass as well, ide-
ally by incorporating the constraint into the multivariate prior
probability density used for Λ, β,M .

E. Branch Splitting for Parametrized EOS

Our results for parametrized EOS indicate that the possibil-
ity of multiple stable branches needs to be taken seriously in
parameter estimation studies using parametrized EOS. To em-
phasize this point, we visualized the branch structure along
a one-parametric family of EOS connecting one of the nu-
clear physics EOS to the modified version with the largest
deviation from universality, as shown in Fig. 10. The upper
panel shows how, moving along this family, the single stable
branch present for the original EOS first develops a plateau
and then a second local maximum, thus splitting into two sta-
ble branches connected by an unstable one. To determine the
stable and unstable branches, we use the mass-radius criteria
from [3] valid for cold NS EOS. As shown in the plot, the
M -R curve bends counter-clockwise at the first local mass
maximum, which means that one stable radial mode becomes
unstable. At the subsequent local mass minimum, the curve
bends clockwise, meaning that the single unstable mode be-

FIG. 9. Tidal deformability versus compactness for example set of
EOS, for three selected masses. The filled markers denote results for
nuclear physics EOS, while the plus markers denote results for the
same EOS modified in the high-density region. Those were found by
a numeric search for large violations of the universal relations while
allowing a NS mass of 2M⊙ (see main text). For comparison, we
show universal relations from [68] (labeled “Univ.”) and [44] (“Univ
(De)”.
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comes stable again. Finally, the second stable branch termi-
nates at the second mass maximum, where the bend is counter-
clockwise and a mode becomes unstable again.

We point out that the splitting of branches leads to a con-
ceptual complication in parameter estimation studies using
parametrized EOS. As shown in the middle panel of Fig. 10,
the tidal deformability as function of mass becomes multi-
valued where the mass ranges of the two branches overlap. To
set up the multivariate prior for mass and deformability, even
when just assuming a fixed EOS together with some mass
prior, one now has to chose a branch for certain masses. This
implies a physical assumption of how NS form. For example,
one could assume that for a given mass, a NS is always lo-
cated on the branch with lower central density. Or one could
introduce a discrete “branch selection” prior instead. When
assuming that both branches are allowed in some mass range,
a further complication arises from the question which combi-
nations are realized in a neutron star binary. The correspond-
ing prior could just assume that each NS is randomly assigned
a branch based on the single-NS branch prior, or it could in-
troduce correlations incorporating models of binary formation
channels. When using priors for mass and EOS parameters
(which are not independent because of the maximum mass for
each EOS) the prior for the tidal deformability is only fully
determined after incorporating another prior for the selection
of branches. The resulting full prior for mass, EOS, and de-
formability might become quite complex.

Fig. 10 also shows that the tidal deformability for a given
mass can differ quite strongly between two branches. When
assuming that a NS is always on the the lowest-density branch
available for a given mass, it implies a discontinuity in Λ(M).
For an unequal mass binary, one cannot model the effective
deformability anymore by approximating Λ(M) by a low-
order Taylor-expansion. For the EOS in Table II however,
there is just one stable branch, and the slope parameter S re-
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FIG. 10. Neutron star TOV sequences for a 1-parameter family of
parametrized EOS that gradually modifies the MPA1 EOS, keeping
the low-density part fixed (see main text). If there is only one stable
branch for a given member of the EOS family, it is shown with black
solid curves, while red and green solid curves show multiple stable
branches. The yellow dashed curve marks unstable branches, and
the solid blue curve shows the full TOV sequence for the original
MPA1 EOS. Top: Gravitational mass versus radius. Middle: Tidal
deformability versus gravitational mass. Bottom: Soundspeed versus
density for the original EOS and members of the parametrized EOS
family. The vertical lines mark the central densities for NS with the
original EOS and masses 1.0, 1.4, 1.8M⊙ as well as the maximum
mass NS.
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mains useful.
Finally, we discuss how well GW observations from BNS

coalescences can distinguish between the two stable branches.
To estimate the order of magnitude of waveform differences,
we use the post-Newtonian “TaylorF2” model [70–72] as im-
plemented in LALSimulation [73]. The agreement between
signals is quantified by a noise-weighted inner product, or
overlap [74]. We assume Advanced LIGO’s design sensitivity
[75, 76] with lower cutoff frequency at 20Hz.

Fig. 11 shows the mismatch (i.e., 1− the overlap) between
waveforms for an equal mass BNS coalescence that only differ
in the tidal deformability parameter. For each BNS waveform,
we assume that both NS follow the same EOS and are also on
the same branch. We compare the two stable branches of the
modified EOS shown in Fig. 10 that deviates most from the
original one. In addition, we compare each of those branches
to the single stable branch of the original MPA1 EOS.

Branch 1 (lower mass branch) of the modified EOS is char-
acterized by very large tidal deformabilities, Λ > 104. These
large values lead to a significant dephasing between signals
assuming the original EOS and Branch 1, respectively, and
also between the two branches of the modified EOS. This cor-
responds to mismatches > 0.2 that are significant for any SNR
above the detection threshold. For example, 0.5 SNR−2 is
commonly used in the literature as a conservative mismatch
threshold for indistinguishable signals [77, 78]. Conversely,
a mismatch ∼ 0.2 would start to become distinguishable al-
ready for SNRs > 1.6. Therefore, if the EOS were known and
similar to our example, ground-based detectors would be able
to distinguish the two branches of the modified EOS exam-
ple, and also between branch 1 of the modified EOS and the
original EOS.

For masses M > M⊙ in Fig. 11, Branch 2 (higher mass
branch) of the modified EOS yields lower tidal deformabilities
than the original EOS. The GW signals in this case are more
similar and mismatches significantly lower (between 10−2

and 10−4). The signal differences in this regime only become
distinguishable for SNRs between O(10) and O(100).

We also considered the possibility of a BNS where the two
NS are on different stable branch of the same EOS. Fig. 11
also shows the mismatch between the case where both NS
are on the same branch and the case where each NS is on
a different branch (still for equal masses). Not surprising, the
mismatches are somewhere in-between the mismatch between
branches when both NS are on the same branch.

These are order-of-magnitude estimates for an extreme ex-
ample that do not take other parameter variations into ac-
count. Nevertheless, our considerations show that signal dif-
ferences between the different branches may become obser-
vationally relevant in parameter estimation studies based on
parametrized EOS. Any such study that aims to constrain the
EOS therefore needs to incorporate the branch structure.

V. SUMMARY AND OUTLOOK

In this article, we collect everything required to compute the
properties of nonrotating NS in GR. We provide novel analytic
formulations of the tidal deformability differential equations
that are robust when employing EOS with phase transitions.
We also point out pifalls that occur in numerical implementa-
tions and how to avoid those.

The equations have been implemented in a publicly avail-
able library RePrimAnd. We demonstrate the accuracy of
the solution and the robustness of the code using a wide range
of example models. In addition, we used the convergence tests
to set up a model of the error budget that was incorporated into
the library, allowing users to specify the desired accuracy di-
rectly.

Our library makes it easy to compute NS models within
C++ or Python code, or in an interactive Python environment
such as Jupyter notebooks. Besides the NS functionality, the
library also provides a consistent and generic interface to the
use and exchange of various EOS models in a transparent
manner. The aim of this library is to be useful for applica-
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FIG. 11. Mismatch between gravitational waveforms of equal-mass
BNS mergers computed for the case that both NS are located on the
high-density stable branch of TOV solutions and for the case that
both are on the low-density stable branch, for an EOS that leads
to two stable branches. Further, we show the mismatch between
both NS being on the same branch and each NS being on a differ-
ent branch. The EOS used here is the one from Fig. 10 with the
largest deviation from the original one. The mismatch is shown in
the mass range covered by both branches. In addition, we show the
mismatches between each branch and the single stable branch of the
original, unmodified EOS. The mismatch has been computed using
the noise PSD for Advanced LIGO’s design sensitivity [75, 76]. It is
plotted as function of the mass of the constituent NSs.
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tions in GW data analysis involving NS, the testing of novel
phenomenological relations between NS properties, for map-
ping novel EOS models to NS properties, and for initial data
generation in numerical relativity.

As a first application, we compute properties of a typical
NS with fiducial gravitational mass of 1.4M⊙ for various
EOS, including baryonic mass, radius, moment of inertia, and
tidal deformability. We also provide the first derivative of the
tidal deformability with respect to mass. This might be useful
in BNS GW data analysis studies that reduce the EOS uncer-
tainty to the values of tidal deformability and its derivate at
some fiducial mass. Further, we compute the maximum mass
models and their properties for each EOS. We also provide the
corresponding EOS files for reference, as well as files with the
TOV sequences. Those EOS and sequences are easily acces-

sible through the Python interface of our library.
As a second application, we explore the reliability of uni-

versal relations between compactness and tidal deformability.
We construct EOS for which those relations are violated much
more than for nuclear physics EOS models. Those examples
are based on nuclear physics EOS but modified above 1/4 of
the nuclear saturation density. They show that the universal
relations can only be employed in situations where the EOS
is already constrained to higher densities, but not for studies
aiming to constrain the EOS without prior constraints.

As a third application, we demonstrate how the stable
branch of a NS sequence splits into two branches when tran-
sitioning the EOS within a parametrized EOS family. We
point out that this possibility needs to be taken into account
on the technical level, but also requires addressing the physi-
cal model which branch NS with a given mass would occupy
in nature. Further, we show that in such situations, it becomes
infeasible to approximate the mass dependency of the tidal
deformability using a Taylor expansion.

We show that branch splitting can cause significant differ-
ences in GW signals of BNS coalescence and demonstrate that
those differences are relevant for current and future ground-
based GW detectors. We note that our examples assume EOS
constrains only at low densities. For studies that already as-
sume EOS constraints at higher densities, branch splitting
might not be an issue.

There are some NS properties not implemented in our li-
brary, which we leave for future versions. Most notable ex-
amples are the oscillation frequencies and the spin-induced
quadrupole moment. Further, it may be useful to support more
EOS types directly, such as spectral representations (although
anything can be represented by tabulated EOS). In general, we
hope that our library will become useful for the neutron star
community as a common infrastructure.
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[10] J. Takátsy and P. Kovács, Phys. Rev. D 102, 028501 (2020).
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