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The response of black holes to small perturbations is known to be partially described by a
superposition of quasinormal modes. Despite their importance to enable strong-field tests of gravity,
little to nothing is known about what overtones and quasinormal-mode amplitudes are like for
black holes in extensions to general relativity. We take a first step in this direction and study what
is arguably the simplest model that allows first-principle calculations to be made: a nonrotating
black hole in an effective-field-theory extension of general relativity with cubic-in-curvature terms.
Using a phase-amplitude scheme that uses analytical continuation and the Prüfer transformation, we
compute, for the first time, the quasinormal overtone frequencies (in this theory) and quasinormal-
mode excitation factors (in any theory beyond general relativity). We find that the overtone
quasinormal frequencies and their excitation factors are more sensitive than the fundamental mode
to the lengthscale l introduced by the higher-derivative terms in the effective field theory. We argue
that a description of all overtones cannot be made within the regime of validity of the effective
field theory, and we conjecture that this is a general feature of any extension to general relativity
that introduces a new lengthscale. We also find that a parametrization of the modifications to the
general-relativistic quasinormal frequencies in terms of the ratio between l and the black hole’s mass
is somewhat inadequate, and we propose a better alternative. As an application, we perform a
preliminary study of the implications of the breakdown, in the effective field theory, of the equivalence
between the quasinormal mode spectra associated to metric perturbations of polar and axial parity
of the Schwarzschild black hole in general relativity. We also present a simple justification for the
loss of isospectrality.

I. INTRODUCTION

The study of the response of black holes to external
perturbations has a long history that dates back to the
seminal work of Regge and Wheeler on the stability of the
“Schwarzschild singularity” against linear perturbations
in the 1950s [1]. Numerical scattering experiments per-
formed by Vishveshwara [2] showed that the response in
time of the black hole to incident Gaussian wavepackets
exhibits, after an initial prompt response, a character-
istic damped oscillation, i.e., a “ringdown.” The ring-
down was also observed in the gravitational-waves signals
produced by test particles plunging radially into black
holes by Davis et al. [3–5] and in stellar collapse by Cun-
ningham, Price and Moncrief [6, 7]. The latter showed
that the ringdown has oscillation frequency and damping
time in conformity with the quasinormal frequencies of
a Schwarzschild black hole calculated by Chandrasekhar
and Detweiler [8]. Chandrasekhar and Detweiler also
proved a remarkable result: the spectrum of quasinormal
modes associated to metric perturbations of axial parity
(described by Regge-Wheeler equation [1]) and polar par-
ity (described by the Zerilli equation [9, 10]) are the same
despite the different forms of these equations.

It was not until the work of Leaver [11] in the 1980s,
that the relation between the source of disturbance and
resulting gravitational-wave signal was studied analyti-
cally as an initial-value problem using Green’s functions;
see also, e.g., Refs. [12–18]. It became understood that

the ringdown dominates the black hole’s response, except
at very early (the “prompt response”) and very late times
(the “tail” [19]), and that it consists of a superposition
of quasinormal modes. The amplitude with which each
mode contributes to the ringdown is determined by its
excitation coefficient, which can be factorized into per-
turbation independent (termed the “quasinormal-mode
excitation factor”) and dependent parts. Together, quasi-
normal modes and their excitation coefficients can be used
to construct the quasinormal-mode contribution to the
Green’s function which, in turn, can be used to evolve an
initial data in time. This approach has been used to repro-
duce the ringdown in the aforementioned cases [11, 14].

The quasinormal frequencies of the astrophysically-
relevant Kerr solution are uniquely determined by the
black hole’s mass and spin [20]. The identification of two
or more quasinormal frequencies from gravitational waves
produced, e.g., in the coalescence of binary black holes [21–
24], would enable “direct evidence of black holes with the
same certainty as, say, the 21 cm line identifies interstel-
lar hydrogen,” as suggested by Detweiler [25]. If black
hole spectroscopy ever reveals a tension between general
relativistic predictions and observations, it would be sug-
gestive of new physics beyond general relativity [26, 27].

With the advent of gravitational-wave astronomy [28–
30], it becomes sensible to attempt to understand the
quasinormal mode spectra (and respective excitation)
in theories beyond general relativity. In general rela-
tivity, an ab initio description of the ringdown for the
astrophysically-relevant case of comparable mass binary-
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black hole coalescence remains an outstanding open prob-
lem. However, as exemplified in the foregoing discussion,
progress is possible within black hole perturbation theory.

Here we take an initial step in this direction. We study
the quasinormal mode spectrum and the excitation fac-
tors of a nonrotating black hole in an effective field theory
(EFT) of general relativity [31]. The motivations behind
this choice are manifold. First, the EFT has only two
degrees of freedom, and we avoid unnecessary technical
complications introduced by couplings between the met-
ric and extra fields, such as scalars. Second, the EFT
admits an exact analytical nonrotating black hole solu-
tion to which perturbation theory can be applied [32–36].
Third, previous analysis, that focused only on the lowest
damped quasinormal frequencies, showed that isospectral-
ity of perturbations of the Schwarzchild solution [8] is
broken due to the higher-dimension EFT terms [32–34].
For these reasons, the EFT of general relativity is ideal
to address from first principles the following questions,
representative of what may be asked in any extension to
general relativity,

• What is the consequence of the breakdown of isospec-
trality in realistic sources of gravitational radiation?

• How sensitive are quasinormal overtone frequencies
to corrections to general relativity?

We give preliminary answers to these questions here.
This work is organized as follows. In Sec. II, we review

the EFT of general relativity and the black hole solution
we will study. In Sec. III, we present the equations that
describe the linear perturbations of this black hole. We
compare our formulation of the equations with previous
literature, and present a simple explanation for the ab-
sence of isospectrality in the EFT. In Sec. IV, we review
a phase-amplitude method, developed by one of us [37],
that we use to compute the quasinormal frequencies (in-
cluding overtones) and their respective excitation factors.
In Sec. V, we present our numerical results and discuss
their regime of validity. In Sec. VI, we summarize and
discuss our main results. We use the mostly plus metric
signature and use geometrical units c = G = 1. Paren-
thesis are used to indicate index symmetrization, as in
T(µν) = (Tµν + Tνµ)/2.

II. EFFECTIVE-FIELD-THEORY OF GENERAL
RELATIVITY

A. Action and field equations

The general structure of the action is

S =
1

16π

∫
d4x

√
−g R+

1

16π

∑
n⩾2

l2n−2 S(2n), (1)

where l is a lengthscale assumed to be small compared
to the lengthscale associated with a black hole of mass

M , i.e., M ≫ l, and S(2n) is the action of the n-th order
curvature term which has 2n derivatives of the metric.
For this reason we will use the terminology “dimension-2n
operator.” Notice that only even powers in l are allowed
from dimensional analysis.

One can show that, upon field redefinitions and as long
as the EFT construction is built around vacuum GR, that
no dimension-four operators exist. The first nontrivial
contribution occurs at dimension six and, at this order,
there are only two operators [38]. The resulting action is

S =
1

16π

∫
d4x

√
−g [R+ l4L ], (2)

where

L = λe Rµν
ρσRρσ

δγRδγ
µν + λo Rµν

ρσRρσ
δγR̃δγ

µν , (3)

and R̃µνρσ = (1/2)ϵµν
αβRαβρσ, where ϵµνρσ is the totally

antisymmetric Levi-Civita tensor, λe, o are dimensionless
constants associated to the even- (“e”) and odd-parity
(“o”) curvature terms, and ℓ is a lengthscale.

The field equations of the theory, obtained by varying
the action (2) with respect to gµν , are:

Eαβ = Gαβ + l4Sαβ = 0, (4)

where

Sαβ = P(α
ρσγRβ)ρσγ − 1

2gαβL + 2∇σ∇ρP(α|σ|β)ρ,

(5a)
Pαβµν = 3λeRαβ

ρσ Rρσµν

+ 3
2λo(Rαβ

ρσR̃ρσµν +Rαβ
ρσR̃µνρσ). (5b)

We will only consider the even-parity operator hereafter,
i.e., we set λo = 0. For brevity, we will write λe = λ,
and assume λ to be positive. A priori, however, λ can
have either sign; see, e.g., Refs. [39–41]. We will work
to leading order in λ, that is, to O(l4). Other aspects of
the EFT in the context of gravitational-wave physics are
discussed, e.g., in Refs. [42–47] and references therein.

B. Nonrotating black hole solution

A nonrotating spherically symmetric black-hole solution
of the theory (2) was found in Refs. [33, 34, 38]. The line
element is

ds2 = −N2f dt2 + f−1 dr2 + r2 dθ2 + r2 sin2 θ dφ2, (6)

where the metric functions N and f are, respectively,

N = 1− 108 ε
M6

r6
, (7a)

f = 1− 2M

r
+ 216 ε

(
1− 49

27

M

r

)
M6

r6
, (7b)

and we introduced the dimensionless parameter,

ε = λ l4/M4 , (8)
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and M is the Arnowitt-Deser-Misner (ADM) mass of the
black hole. The event horizon rh is located at the largest
positive root of f ,

rh = 2M(1− 5 ε/16). (9)

The black-hole solution reduces to that of Schwarzschild
in the limit λ → 0, i.e., ε → 0. We note that rh can
vanish if ε = 16/5 which, however, is outside the validity
of the EFT, ε ≪ 1. For the sake of completeness, we
derive Eq. (6) in Appendix A. Further, in Appendix B,
we show that the spacetime is of Petrov-type D.

The spacetime as written in Eq. (6) demands some care
when r is approximately 2M . To see this, take the grr
metric component,

f−1 = [1− 2M/r + ε δf(r)]
−1

, (10)

where we defined

δf = 216
M6

r6

(
1− 49

27

M

r

)
. (11)

As r → 2M , we see that the EFT correction starts domi-
nating over the general-relativistic term. This means that
the expansion in ε ceases to hold in this limit. The same
happens for gtt = −N2f .

To resolve this issue we perform a “resummation.” The
idea is to factor out a multiplicative term 1−rh/r, thereby
recasting either N2f or f in the schematic form:

z(r) = (1− rh/r) [1 + ε δz(r)], z arbitrary. (12)

In this way, we guarantee that O(ε) terms are small for any
value of r ⩾ rh. We leave the details of this calculation
to Appendix C and quote our final result:

N2f =
(
1− rh

r

)[
1− ε

(
5M

8r
+

5M2

4r2
+

5M3

2r3
+

5M4

r4

+
10M5

r5
+

20M6

r6

)]
, (13a)

f−1 =
(
1− rh

r

)−1
[
1 + ε

(
5M

8r
+

5M2

4r2
+

5M3

2r3
+

5M4

r4

+
10M5

r5
− 196M6

r6

)]
. (13b)

Equations (13a) and (13b) are the expressions we will use
for the gtt and grr metric components, respectively. By
construction, both equations have the expected behavior
at the event horizon rh. In addition, since to O(ε),

N2f = f ≃ 1− 2M/r + O(r−2), r/M ≫ 1, (14)

we have retained the interpretation of M being the ADM
black-hole mass and that the spacetime is asymptotically
Minkowski.

III. BLACK HOLE PERTURBATIONS

The linear gravitational perturbations of the black-
hole solution (6) were analyzed in Refs. [33, 34], in the
Regge-Wheeler-Zerilli formalism (“metric-perturbation
approach”) [1, 9, 10], and in Refs. [35, 36] in the
Newman-Penrose [48] and Geroch-Held-Penrose [49] for-
malisms (“curvature-perturbation approach”). See also
Refs. [50, 51] for related work in the latter approach.

In the metric-perturbation approach, the problem re-
duces to studying two equations in the frequency domain[

d2

dx2
+

ω2

c2s (r)
− V

(±)
ℓ (r)

]
X

(±)
ℓω (r) = 0, (15)

that we now describe in detail. The superscript (±) is used
to denote variables associated to metric perturbations of
polar (+) or axial (−) parity, which we assume to have
harmonic time-dependence exp(−iωt), and are labeled by
the multipole index ℓ ⩾ 2. Metric perturbations of polar
and axial parities are fully described by a single master
function known as the Zerilli X(+) and Regge-Wheeler
X(−) functions, respectively.1 We also introduced the
tortoise coordinate x, defined as

dx/dr = 1/(Nf), (16)

and that maps the domain rh ⩽ r < ∞ to −∞ < x < ∞.
This is not guaranteed to happen for all values of ε. As
we detail in Appendix D, the desired mapping holds for
ε ≲ 0.59. Finally, V (±)

ℓ and c2s are the black-hole effective
potential and propagation velocity of the perturbations,
respectively. Let us consider both in turn.

First, the effective potential can be decomposed in a
resummed form as

V
(±)

ℓ =
(
1− rh

r

) [
V̄

(±)
ℓ + ε δV

(±)
ℓ

]
. (17)

The bare general-relativity contributions to the potential
are the Zerilli [9] and Regge-Wheeler [1] potentials, given
respectively by

V̄
(+)

ℓ =
1

(rΛℓ)2

[
2λ2

ℓ (Λℓ + 1) +
18M2

r2

(
λℓ +

M

r

)]
,

(18a)

V̄
(−)

ℓ =
1

r2

[
ℓ(ℓ+ 1)− 6M

r

]
, (18b)

where we defined

λℓ = (ℓ+ 2)(ℓ− 1)/2, and Λℓ = λℓ + 3M/r. (19)

1 We verified that in the EFT, as in general relativity, the Zerilli [9]
and Zerilli-Moncrief [52] functions and the Regge-Wheeler [1]
and Cunningham-Price-Moncrief [6] functions satisfy the same
homogeneous differential equations.
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FIG. 1. The effective potentials V (±)
2 for perturbations of polar (left panel) and axial (right panel) parity. We vary the parameter

ε = λ l4/M4 from zero (general relativity) to 0.05 in increments of ∆ε = 0.01. The value of the potential’s peak decreases
(increases) for the polar- (axial-) parity potentials with respect to general relativity. The location of the peak shifts in opposite
directions, with respect to the case of general relativity: outwardly for polar-parity and inwardly for the axial-parity potential.
These changes are bound to the region between the event horizon and the location of the potential peak.

The modifications to these potentials originating from the
dimension-six operators can be written schematically as

δV
(+)

ℓ =
1

(rΛℓ)2

10∑
i=1

v
(+)
iℓ (r) (M/r)i, (20a)

δV
(−)

ℓ =
1

r2

7∑
i=1

v
(−)
iℓ (M/r)i. (20b)

The coefficients v
(+)
iℓ contain Λℓ for n > 4; hence the

explicitly stated dependence on r. In contrast, v (−)
iℓ is

independent of r for all n. All coefficients have powers of
ℓ. We show the explicit forms of v (±)

iℓ in Appendix E.
In Fig. 1 we show both potentials, Eqs. (18a) and (18b),

for ℓ = 2 as functions of the tortoise coordinate x. The
curves correspond to increasing values of ε, from zero
(general relativity) to 0.05 in steps of ∆ε = 0.01. The
EFT corrections are most salient in the region between
the event horizon and the location of the potential peak;
past the latter the curves become identical to one another.

It is important to note that the potentials are short
ranged, i.e., their integral on the domain x ∈ (−∞, +∞)
is finite. Indeed, one can verify that∫ +∞

−∞
V

(±)
ℓ dx =

1

2M

[
2λℓ +

1

2
+ ε ι

(±)
ℓ

]
, (21)

where ι
(+)
ℓ ̸= ι

(−)
ℓ are parity-dependent functions of ℓ. In

the limit of general relativity, the integrals of the Regge-
Wheeler and Zerilli potentials are the same. This equality,
first noticed by Chandrasekhar and Detweiler [8] (see also
Refs. [53, 54]), is a necessary condition to establish the
isospectrality of the Regge-Wheeler and Zerilli potentials.
More precisely, the equality of Eq. (21) is the first of
an infinite hierarchy of integral equalities that must be
satisfied by a pair of potentials if they are to have the

same reflection and transmission coefficients.2 That this
equality is broken by the EFT corrections already at
“zeroth order” in this hierarchy implies the breakdown of
isospectrality.

Finally, perturbations of polar and axial parity propa-
gate with a position-dependent velocity

c2s = 1− 288 ε f
M5

r5
,

≃ 1− 288 ε
(
1− rh

r

) M5

r5
, (22)

where in the second line we used the resummed form of
f [cf. Eq. (13b)] and kept the O(ε) term only. We may
note that c2s is unity at spatial infinity and at the event
horizon rh, while it can be sub- or superluminal outside rh
depending on the sign of ε. Reference [58] argues that this
speed cannot be used to predict time delay (or advance)
with respect to general relativity as long as one stays
within the regime of validity of the EFT.

Before proceeding, let us compare our Eq. (15) with
those found in the literature, particularly in the works by
de Rham et al. [33] and Cano et al. [34] who, like ourselves,
worked in metric perturbation approach. In comparison
to Ref. [33], our perturbation equations are similar to
their Eqs. (2.23) except that we did a resummation of the
effective potentials. Likewise, we use the same definition
of the tortoise coordinate, though, again, we perform a
resummation. To compute the quasinormal mode frequen-
cies, Ref. [33] recasts their equations in a form that can be
mapped into the quasinormal frequency parametrization
of Ref. [59]. In comparison to Ref. [34], our perturbation

2 These integrals are formally related to conserved quantities al-
lowed by the Korteweg-de Vries equation [55]. See Ref. [53], Sec. 4
and its Appendix, for a discussion, and Refs. [56, 57] for recent
literature.
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equations are different both in the choice of the tortoise
coordinate [they use a “pseudotortoise coordinate”; see
Eq. (41) therein] and in the effective potentials (they do
a field redefinition to trade the position-dependent prop-
agation speed c2s for a frequency-dependent potential).
To compute the quasinormal frequencies, Ref. [34] did a
direct integration of the perturbation equations.3

Cano et al. [34] reports an agreement of approximately
1% to 5% of their results with those of de Rham et al. [33].
In another work, Cano et al. [36] also computed the
quasinormal frequencies for rotating black holes using the
curvature-perturbation approach and using a small spin
expansion [35]. They followed the approach of Ref. [50]
to compute the quasinormal frequencies, and the results
were cross-checked against the direct integration of the
modified Teukolsky equation. In the nonrotating limit,
their results agree with those of Refs. [33, 34]. Our results
will be presented in Sec. V. However, first, let us motivate
and explain the phase-amplitude method we will adopt
to compute the quasinormal modes and their excitation.

IV. QUASINORMAL MODES AND THEIR
EXCITATION

In this section, we review the “quick and dirty” phase-
amplitude method developed by Glampedakis and Ander-
sson [37] for studying black-hole resonances. We will first
review some technical difficulties in numerically comput-
ing quasinormal modes and how they are overcome in the
phase-amplitude approach. We will then explain how the
quasinormal-mode excitation factors can be determined.

A. Quasinormal modes

We are interested in computing the quasinormal modes
associated to Eq. (15). Because the effective potentials
are short ranged and vanish both at the horizon and at
spatial infinity, whereat the propagation speed c2s becomes
unity, the general physical solution of Eq. (15) has the
form

X
(±)
ℓω ≃

{
e−iωx x → −∞
A

(±), in
ℓω e−iωx +A

(±), out
ℓω e+iωx x → +∞

,

(23)

consisting of purely ingoing waves at the event horizon
and a mixture of ingoing and outgoing waves at spatial
infinity. From the ratio between the amplitudes of the

3 Implicitly, Ref. [33] also does a direct integration of the perturba-
tions equations. The reason is that the theory-agnostic coefficients
in Ref. [59] are found by direct integration of their parametrized
perturbation equation; see Eq. (10) and Sec. III therein.

ingoing and outgoing waves at spatial infinity, we can
define the scattering matrix

S
(±)
ℓω = (−1)ℓ+1A

(±), out
ℓω /A

(±), in
ℓω = exp[2iδ

(±)
ℓω ], (24)

where δ(±)
ℓω is the phase-shift function. Quasinormal modes

are solutions defined by having A
(±), in
ℓω = 0, i.e., they are

the poles of the scattering matrix [2]. The problem of
computing the quasinormal-mode frequencies ωℓn hence
reduces to a boundary-value problem in which one has
to find ωℓn such that A

(±), in
ℓω vanishes. Root-finding

algorithms can be used to perform this task. In black-hole
physics, for each multipole ℓ, there is an infinite number n
of quasinormal frequencies that we sort according to their
damping time. The index n = 0 is used for quasinormal-
mode frequency with longest decay time (the “fundamental
mode”) and modes with n > 0 are called “overtones.”

A numerical challenge immediately presents itself if
one attempts to carry such procedure by numerically
integrating the differential equation (15). Since ωℓn is
complex-valued, we find

X
(±)
ℓω ≃ exp(∓x Imωℓn), x → ±∞. (25)

and because Imωℓn is negative for stable perturbations,
the quasinormal-mode solution diverges as x → ±∞.
Consequently, in the root-finding process, we must resolve
an exponentially decaying from an exponentially growing
part of the solution, at large values of x. This is even
more challenging for overtones which, by definition, have
shorter damping times.

B. The phase-amplitude method

Reference [37] proposed a “quick-and-dirty” method
for the calculation of the quasinormal-mode frequencies
that combines two ideas. First, instead of working with
the (possibly rapidly-varying) function X

(±)
ℓω , one works

with slowly-varying phase functions. Second, instead of
working on the real axis, one performs an analytical con-
tinuation of X(±)

ℓω to complex values of x and a suitable
integration path is chosen in order to balance the ex-
ponentially decaying and growing waves of the general
solution Eq. (15). Let us see how this works in practice.
To lighten the notation, we will omit the parity “(±)” and
mode “ℓω” scripts for now.

We start by rewriting Eq. (15) as[
d2

dx2
+Q

]
X = 0, Q = ω2/c2s − V, (26)

where Q → ω2 as x → ±∞, and the boundary condi-
tions (23) as follows:

X ≃

{
e−iωx x → −∞
B sin(ωx+ ζ) x → +∞

, (27)
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where B and ζ are complex-valued constants. Equation
(26) admits an exact solution in the form

X = exp

[∫
P (x′) dx′

]
, (28)

where P is the phase function,

P = d logX/dx, (29)

which, from Eq. (26), satisfies the Riccati equation4

dP/dx+ P 2 +Q = 0, (30)

and the quasinormal-mode boundary conditions translate
into P → −iω as x → −∞.

Instead of working with P as x → ∞ as well, it is useful
to introduce a second phase function, P̃ , by means of the
Prüfer transformation defined as:

X = B sin[ωx+ P̃ (x)], (31a)

dX/dx = Bω cos[ωx+ P̃ (x)]. (31b)

We can calculate d logX/dx with the foregoing equations
and find that the phase functions P and P̃ are related by

P = ω cot(ωx+ P̃ ), (32)

with inverse

P̃ = −ωx+
1

2i
log

[
iP − ω

iP + ω

]
. (33)

Note that Eq. (32) explains the absence of a dP̃ /dx term
in Eq. (31b). A short calculation shows that the Prüfer
phase function satisfies

dP̃ /dx+ (ω −Q/ω) sin2(ωx+ P̃ ) = 0. (34)

From the asymptotic properties of Q and P , we find
from Eqs. (30) and (34) that for real ω and ℓ,

dP/dx ≃ 0, x → −∞ (35a)

dP̃ /dx ≃ 0, x → +∞ (35b)

That is, P and P̃ are slowly varying functions as x → −∞
and x → ∞, respectively.5 It is then suggestive that we
should work with P in the domain x ∈ (−∞, xm] and with
P̃ in the domain x ∈ (xm,∞), where xm is a matching
point. Experience has shown that the computation of the

4 We may, parenthetically here, remark that the advantage of
working with the Riccati equation had already been appreciated
by Chandrasekhar and Detweiler [8]; cf. pp. 451 therein.

5 Equations (30) and (34) can be used to compute Regge poles [37].
Like quasinormal modes, they are poles of the scattering ma-
trix (24), but correspond instead to complex values of ℓ for a
given real-valued ω. Regge poles are important in scattering the-
ory; see, e.g., Refs. [60–62] for applications in black-hole physics.

x

β1

β2

xm

C

FIG. 2. The integration path C in the complex x-plane used
for the calculation of the quasinormal modes. The value of
β1,2 is the chosen based on the asymptotic behavior of Q as
x → ±∞. In our problem, β1,2 = − argω. However, the
method can be applied to other situations where this is not
the case, such as of perturbations of the Kerr black hole [37].

quasinormal frequencies does not depend on the precise
value of xm, as long as we chose it to be near the peak of
the effective potential V [37]. Here we chose rm = 3M , the
location of the light ring in the Schwarzschild spacetime,
which translates to xm ≃ 1.61M .

Finally, we can compare Eqs. (31a) and (27) to conclude
that P̃ → ζ as x → ∞ and, by comparing Eqs. (23)
and (27), that

Ain/Aout = − exp(−2iζ). (36)

The second step in the scheme of Ref. [37] consists in
promoting the tortoise coordinate x to become complex
valued as in, e.g., in the closely related phase-integral
approach [63]. Consider the curve C illustrated in Fig. 2,

x = xm + ρ exp(iβ), (37)

parametrized by the real parameter ρ ∈ (−∞, ∞) and
where β is a real constant. Note that the matching point
is at ρ = 0. In terms of Eq. (37), the Prüfer equation (34)
becomes

dP̃ /dx+(ω−Q/ω) sin2[ωxm+ωρ exp(iβ)+ P̃ ] = 0. (38)

The crucial step is to now observe that, with a suitable
choice of β, we can make the ingoing and outgoing waves
as x → ∞ to be of comparable asymptotic amplitudes.
This is achieved by choosing,

β = − argω, (39)

such that the integration path is parallel to the anti-Stokes
lines when x → ±∞ [37]. Equation (38) becomes

dP̃ /dx+ (ω −Q/ω) sin2(ωxm + |ω|ρ+ P̃ ) = 0. (40)

Note that now the argument term proportional to ρ is
real and hence we eliminated the asymptotic exponential
behavior of the amplitude.

We can then rewrite the differential equations (30)
and (40) for the phase functions with ρ as an independent
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variable, and trade x in favor of r by means of Eq. (37).
We obtain:

dP

dρ
+ eiβ(P 2 +Q) = 0, (41a)

dP̃

dρ
+ eiβ

(
ω − Q

ω

)
sin2(ωxm + |ω|ρ+ P̃ ) = 0, (41b)

dr

dρ
− eiβ

dr

dx
= 0, (41c)

where dr/dx and β are given by Eqs. (16) and (39), re-
spectively.

Equation (41) constitutes the system of differential
equations we need to integrate to compute the quasi-
normal frequencies. The integration procedure can be
summarized as follows:

1. Choose the values of ε, ℓ, and ω, and with the latter
compute β = − argω.

2. Determine the initial condition for r as ρ → −∞.
We found it useful, particularly in the context
of the integrations in the next section, to inte-
grate Eq. (41c) from ρm = 0 (at which r = 3M)
backwards to, say, ρmin = −50M . This fixes
rmin = r(ρmin).

3. Set the initial condition for P at ρmin using the
leading-order Wentzel-Kramers-Brillouin (WKB)
formula, that is, Pmin = −iQ(rmin)

1/2.

4. Integrate Eqs. (41a) and (41c) from ρmin to ρm,
using rmin and Pmin as initial conditions.

5. Calculate P̃ (ρm) from P (ρm), the result of the pre-
vious step, using Eq. (33).

6. Switch to Prüfer phase function, that is, integrate
Eqs. (41b) and (41c) from ρ = ρm up to ρ = ρmax.
In practice, we often used ρmax ≈ 104M . This gives
us ζ ≃ P̃ (ρmax).

7. Calculate Ain/Aout using Eq. (36).

8. Repeat steps 1 to 7, updating the value of ω until
the quasinormal-mode boundary condition Ain = 0
is satisfied. This is a root-finding problem that we
solve using Muller’s method [64].

We implemented the foregoing steps in C++. The inte-
gration of the differential equations was performed with
the Runge-Kutta-Fehlberg (7,8) method, as implemented
in Odeint [65], part of the Boost library [66]. Our im-
plementation of Muller’s method follows the pseudocode
found in the “Numerical Recipes,” Chapter 9.2 [67]. We
will present the numerical results of our quick-and-dirty
quasinormal mode frequency computations in Sec. VA.

C. The excitation factors

Having explained how we compute the quasinormal-
mode frequencies, we now present how we obtain their
excitation factors. The excitation factors are complex-
valued constants that are characteristic of a black-hole
spacetime and partially determine the amplitude with
which different quasinormal modes are excited given an
initial source of disturbance [11, 14].

In this context, we are interested in the inhomogeneous
version of Eq. (26) [

d2

dx2
+Q

]
X = s. (42)

The source s can represent, in the Fourier domain, ei-
ther the initial data of the function X in a spacelike
hypersurface t = constant, or an external source driving
the perturbations X, for instance, a particle plunging
into the black hole [10]. The Cauchy problem associated
to Eq. (42) can be studied using Green’s functions [68].
Leaver [11], showed that the contribution from the quasi-
normal modes to the response in time of X is given by

X(t, r) = −Re
∑
n

[
Cn e

−iωn(t−x)
]
, (43)

where the sum is over all quasinormal frequencies ωn and
Cn are the respective quasinormal excitation coefficients.
The latter can be factorized as

Cn = Bn In, (44)

where In is an integral over the source s and the solution
of the homogeneous equation (15) at the quasinormal
frequency ωn,

In =

∫ ∞

−∞
dx′ s(x′)Xn(x

′)/Aout, (45)

and Bn are the source-independent excitation factors

Bn =
Aout

2ωn

[
dAin

dω

]−1

ω=ωn

=
1

2ωn

Aout

αn
, (46)

where we approximated Ain ≃ αn(ω − ωn) in the vicinity
of the quasinormal-mode frequency ωn. Hence, the excita-
tion factors are related to the ingoing- and outgoing-wave
amplitudes at spatial infinity at frequencies near ωn.

Equation (46) is our main quantity of interest. To
calculate it, we follow Ref. [37] again, which proposed a
phase-amplitude based scheme to compute Bn; see also
Ref. [14]. This means we must derive a relation between
the wave-amplitudes in Eq. (46) and the phase-functions
P and P̃ . We begin by recalling that the general physical
solution of Eq. (26) is an ingoing wave at the event horizon
and a mixture of ingoing and outgoing waves at spatial
infinity. If we were to integrate this solution first from
a near-horizon location x−∞ up to a matching point xm
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and from a far-field location x∞ down to the same xm,
we would express the result of these two integrations as

XL(xm) = exp(φL,−), (47a)
XR(xm) = A exp(φR,+) +B exp(φR,−), (47b)

where A and B are complex amplitudes and the various
φ are integrals over the phases, more precisely,

φL,− =

∫ xm

x−∞

PL,− dx′, φR,± =

∫ xm

x∞

PR,± dx′. (48)

In these expressions, we introduced the subscripts L (R)
to indicate a function to the left (right) of the matching
point xm, and + (−) to indicate the ingoing (outgoing)
wave phase. The condition for Eq. (47) to be a solution
of Eq. (26) is that the logarithmic derivatives of XL and
XR are continuous at xm:

PL,− =
PR,+ + (B/A)PR,− exp(φR,− − φR,+)

1 + (B/A) exp(φR,− − φR,+)
, (49)

which we solve for B/A,

B

A
=

PR,+ − PL,−

PL,− − PR,−
exp(φR,− − φR,+). (50)

This is the first step of the derivation. The next step
consists of finding a relation between A and B with the
amplitudes Ain and Aout; cf. Eq. (23). By doing so, as
detailed in Ref. [37], we can rewrite Eq. (50) as

Ain

Aout
=

PR,+ − PL,−

PL,− − PR,−
eΦ, (51)

where we defined

Φ = 2iωx∞ + φR,+ − φR,− − 2i

∫ ∞

x∞

Q− ω2

Q1/2 − ω
dx′. (52)

The final step is to take a derivative of Eq. (51) with
respect to the frequency ω and evaluate the result at the
quasinormal mode frequency ωn using that (i) PR,+ is
equal to PL,− at ω = ωn (this is nothing but the “resonant
condition” for the quasinormal mode [8]) and (ii) the linear
approximation Ain ≃ αn(ω−ωn). By doing so, we obtain

αn

Aout
=

ΩR,+ − ΩL,−

PL,− − PR,−
eΦn , ΩR/L,± =

dPR/L,±

dω
, (53)

which is our final result [37]. We reiterate that all quanti-
ties in Eq. (53) are evaluated at x = xm [i.e., ρ = ρm; see
Eq. (37)] and ω = ωn. Once we have determined the value
of αn/Aout, we use Eq. (46) to calculate the excitation
factor Bn of the quasinormal mode frequency ωn.

How do we calculate the various terms entering Eqs. (53)
and (52)? From these equations we identify two terms
that are independent on the phase functions, namely

2iωnx∞, and I = −2i

∫ ∞

x∞

Q− ω2
n

Q1/2 − ωn
dx′. (54)

The former is a constant, while the latter can be integrated
analytically by first expanding the integrand in powers of
1/x ≈ 1/r (since |x/rh| ≫ 1) and then integrating term
by term. The integral is convergent in our case, for which
Q ≃ ω2 and dQ/dx ≃ 0 as x → ∞. We find:

I = − i

2Q1/2

[
1

x

d2Q

dx2
+

1

6x2

d3Q

dx3
+ . . .

]
x=x∞

. (55)

For the remaining terms, it is convenient to separate our
discussion into quantities that are determined between
x ∈ [x−∞, xm] and x ∈ (xm, x∞]. Because we must
evaluate the phase functions at a quasinormal frequency, it
is useful to use the analytical continuation and the Prüfer
transformation introduced in Sec. IV B. By doing so, we
can write down two systems of first-order differential
equations. Specifically, for x ∈ [x−∞, xm], we need to
integrate three equations:

dPL,−

dρ
+ eiβ(P 2

L,− +Q) = 0, (56a)

dΩL,−

dρ
+ eiβ

[
2PL,− ΩL,− +

dQ

dω

]
= 0, (56b)

dr

dρ
− eiβ

dr

dx
= 0, (56c)

with initial conditions at ρ = ρmin given by

PL,− = iQ1/2, and ΩL,− = − 1

2PL,−

dQ

dω
. (57)

For x ∈ (xm, x∞], we need to integrate six equations:

dP̃R,±

dρ
+ eiβ

(
ω − Q

ω

)
sin2(P̃R,± + |ω|ρ+ ωxm) = 0,

(58a)
dφR,±

dρ
− eiβω cot(ωx+ P̃R,±) = 0, (58b)

dΩR,+

dρ
+ eiβ

[
2ΩR,+ ω cot(ωx+ P̃R,+) +

dQ

dω

]
= 0,

(58c)
dr

dρ
− eiβ

dr

dx
= 0. (58d)

The initial conditions for φR,± and ΩR,+ at ρ = ρmax are

φR,± = 0, and ΩR,+ = − 1

2PR,+

dQ

dω
, (59)

and to determine the initial condition for P̃R,±, we first
use the WKB formula PR,± = ±iQ1/2 and then substitute
the result in Eq. (33). In our case dQ/dω = 2ωc−2

s .
Equations (56) and (58) constitute the two systems of

differential equations we need to integrate to compute
the quasinormal-mode excitation factors. The integration
procedure can be summarized as follows:

1. Choose the values of ε, ℓ, and quasinormal mode
frequency ωn, and with the latter compute β =
− argωn.
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2. Determine the initial conditions for r as ρ → ±∞.
We integrate Eq. (41c) from ρm = 0 backwards
(forwards) to, say, ρmin = −40M (ρmax = 2×104M).
This fixes rmin = r(ρmin) and rmax = r(ρmax).

3. Determine the other initial conditions for the de-
pendent variables in the two integration domains,
that is, at ρmin and ρmax.

4. Integrate the system of equations (56) and (58) from
ρmin to ρm and from ρmax to ρm, respectively.

5. Calculate PR,±(ρm) from P̃R,±(ρm) using Eq. (32).

6. Compute αn/Aout using Eqs. (52) and (53), and,
finally, the excitation factor Bn using Eq. (46).

We implemented the foregoing steps in C++, adopting
the same integration library as in our calculation of the
quasinormal mode frequencies. We will present our results
for the quasinormal-mode excitation factors in Sec. VB.

V. NUMERICAL RESULTS

A. The quasinormal mode spectrum

1. Comparison with the literature

Our calculation of the quasinormal-mode frequencies
was validated in two ways. First, in the limit of general
relativity, we compared our results against the well-known
values for a Schwarzschild black hole, finding excellent
agreement. Computation wise, we found that it was nec-
essary to shift the matching point closer to the event
horizon to accurately calculate the overtone frequencies.
Above a certain overtone number, typically n ≳ 4, it be-
comes increasingly challenging to locate the quasinormal
mode in the root-finding process. The reason is that the
simple integration path (37) fails to approximate the more
complex integration path necessary for determining high
overtone quasinormal frequencies; see Refs. [63, 69]. For
this reason, we quote results up to n = 3.

As an example, for the fundamental and third overtone
quadrupole quasinormal frequencies we obtain

Mω
(+)
20 = 0.37367170− 0.088962295i, (60a)

Mω
(−)
20 = 0.37367171− 0.088962298i, (60b)

and

Mω
(+)
23 = 0.25150494− 0.70514797i, (61a)

Mω
(−)
23 = 0.25150552− 0.70514848i, (61b)

respectively. By isospectrality, we expect ω
(+)
ℓn = ω

(−)
ℓn ,

and, indeed, the phase-amplitude method yields quasinor-
mal frequencies that differ from one another by O(10−6) or
better. In addition, we compared our results against those

0.96

0.98

1.00

1.02

1.04

δ
R

e
ω

(±
)

20

(+) (−) Fit

0.00 0.01 0.02 0.03 0.04 0.05

λ l 4/M 4

0.88

0.94

1.00

1.06

1.12

δ
Im

ω
(±

)
20

FIG. 3. The fundamental polar and axial quasinormal mode
frequencies, normalized with respect to their Schwarzschild
values, as functions of ε = λ l4/M4. The top panel shows the
real part of frequencies, while the bottom panel their imagi-
nary part. The markers distinguish curves corresponding to
modes of polar (+) and axial (−) parities. The dashed lines
are the linear fits by Cano et al. [36]. Both calculations agree
remarkably well despite using two different forms of the per-
turbations equations to which different numerical techniques
were applied to compute the quasinormal mode frequencies.

of the qnm package [70] that uses the continued-fraction
method of Refs. [20, 71], and gives:

Mω
(±)
20 = 0.37367168− 0.088962316i, (62a)

Mω
(±)
23 = 0.25150496− 0.70514820i. (62b)

We find relative errors of O(10−6) that are largest for
the highest overtone, n = 3, for the reason explained
earlier. After having computed the general-relativistic
quasinormal frequencies to good accuracy, we varied the
EFT parameter ε in constant steps of ∆ε = 0.001 and
scanned the domain ε ∈ [0, 0.05].

In Fig. 3 we show the real and imaginary parts of
the fundamental quadrupolar quasinormal frequency as a
function of ε and normalized with respect to its value in
general relativity, i.e.,

δReω(±)
ℓn (ε) =

Reω(±)
ℓn (ε)

Reω(±)
ℓn (0)

, δImω
(±)
ℓn (ε) =

Imω
(±)
ℓn (ε)

Imω
(±)
ℓn (0)

.

The top and bottom panels show our results for these two
quantities, respectively. The solid curves are the results
of our phase-amplitude calculation. We use the markers
to distinguish the curves corresponding to quasinormal
modes of polar (+) and axial (−) parities, which are no
longer the same. We also show, with the dashed curves,
the fits obtained in Ref. [36]; cf. Table III therein. These
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FIG. 4. The quadrupolar polar- and axial-parity quasinormal frequencies, normalized with respect to their Schwarzschild
values, as functions of ε = λ l4/M4. The left and right columns correspond to quasinormal modes of polar and axial parities,
respectively, whereas the top and bottom panels show the real and imaginary parts. The line styles indicate different overtone
numbers n. We see that the deviations from the general-relativistic values can become nonmonotonic as we increase the value of
ε. We also find that the curves become nonlinear for smaller values of ε the higher the overtone number n.

fits are a linear approximation to the behavior of ω(±)
20 with

respect to ε, which does become nonlinear as ε growth;
cf. Ref. [34], Fig. 1. The same behavior can be seen here.
In addition, our results are in excellent agreement with the
linear fits of Ref. [36] for ε ≲ 0.03 and across the whole ε

range for δReω(+)
20 and δImω

(−)
20 . The agreement is quite

remarkable considering that we do not integrate the same
set of perturbations equations and that we use different
numerical techniques to compute the quasinormal modes;
recall Sec. III. We find a similar level of agreement for
the fundamental ℓ = 3 quasinormal mode frequency. As a
consequence, our numerical results are also in agreement
with those of de Rham et al. [33].

We also briefly studied the case where ε is negative. For
sufficiently small values of |ε|, we would expect that the
deviations from the quasinormal frequencies in general
relativity to be equal in magnitude, but with an opposite
sign relative to the case where ε is positive. We found
that this was indeed the case for ω

(±)
20 .

2. Overtones and the limits of the effective field theory

With confidence built on the applicability of the phase-
amplitude approach to our problem and on our numerical
code, we now investigate, for the first time, the depen-
dence of the overtones as a function of ε.

In Fig. 4 we show ω
(±)
2n as a function of ε. Panels on

the left and right columns show the polar (+) and ax-
ial (−) quasinormal frequencies, respectively. We show
their real and imaginary parts (normalized with respect

to their values in general relativity) in the top and bottom
rows, respectively. Different line styles represent different
overtone numbers n as indicated in the legend in the
top-left panel. We observe that as the overtone number n
increases, the smaller the range of ε at which the scaling
is linear. Moreover the curves do not necessarily behave
monotonically with respect to ε. This can best be seen
for the n = 3 axial-parity quasinormal-mode frequency.
These conclusions are shared among the overtones as-
sociated to ℓ = 2, 3 and 4. The emerging picture has
two facets: (i) overtones are more sensitive to the EFT
corrections than the fundamental mode, and (ii) the max-
imum value of ε above which the linear approximation
breaksdown depends on ℓ and n.

In order to discuss the behavior of the quasinormal-
mode frequencies, we first describe the regime of applica-
bility of the EFT of gravity. As already mentioned, the
EFT corrections can be computed in powers of ε, with the
EFT breaking down once ε ≃ εth where εth is a threshold
value of order 1. This is the statement that the black-
hole curvature radius has to be larger than the scale l.
Moreover, one also needs the frequency of perturbations
not too large. At fixed ℓ, increasing n corresponds in
increasing the proper frequency fℓn of the quasinormal
modes. The quantity fℓn can be identified with the real
part of ωℓn/(2π) only if Reωℓn ≫ Imωℓn. Typically this
is not the case for the Schwarzschild quasinormal modes
and, following Ref. [72], one has to make the following
identification in order to have a monotonically increasing
spectrum of proper frequencies

fℓn = (2π)−1 [Reω2
ℓn + Imω2

ℓn ]
1/2. (63)
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FIG. 5. The spectrum of quasinormal modes ω
(±)
ℓn in the complex plane in the range ε ∈ [0, 0.05]. The circles mark the location

of the general-relativity (“GR”) quasinormal mode frequencies, that are coincident for axial and polar modes. A nonzero value of
the EFT parameter ε breaks this symmetry, and axial- and polar-parity frequencies flow along the blue and orange colored
lines, respectively, as we increase ε. The larger the overtone number n, the farther away the quasinormal frequencies, at fixed
multipole number ℓ, with respect to the fundamental mode, n = 0.

Then, at fixed ε, an overtone with proper frequency fℓn
can be described within the EFT provided that [73]

εf = λ (lfℓn)
4 = ε (Mfℓn)

4 ≪ ε−1. (64)

The condition above is the statement that the covariant
contraction kµκµ ≪ l−2, where kµ and κµ are respectively
the typical four-momenta of the gravitational perturba-
tions and of the black hole background. The latter can
be defined as the normalized covariant derivative of the
Kretschmann scalar [73].

After these considerations, let us discuss the behavior
we find for the quasinormal modes. Our results show
a growing impact of the EFT corrections on ωℓn as n
increases at a fixed multipole ℓ; see the “bird’s-eye view”
shown in Fig. 5. Reasoning in terms of Eq. (63) offers
a qualitative explanation for this behavior. Overtones
correspond to high-frequency waves and consequently
probe deeper the effective potential which is fixed by ε
and ℓ. As a consequence, overtones are more sensitive
to changes to the effective potential that occur near the
black-hole horizon, which is the case in our problem –
recall Fig. 1. Complementary, let us also remark that
this behavior is a general feature of perturbation theory
when the correction to the potential comes from regions
far from the potential peak, or the potential minimum
in the bound-problem case. An example in quantum
mechanics is given by a harmonic oscillator potential
V (x) ∝ x2 in the presence of a small anharmonicity
(going as, e.g. δV (x) ∝ x4). At first order in perturbation
theory, the corrections to the n-th eigenenergy grow as n
to some given power (see for example Ref. [74]). In our
case, the EFT corrections grow towards the horizon while
the peak of the unperturbed potential is approximately at
the light ring and we therefore expect a similar behaviour.

The nonlinear behavior above a certain εmax of the
quasinormal frequencies sets an upper limit on the linear

description of our problem, and indicates that higher pow-
ers of ε are necessary to describe the regime for ε ≳ εmax.
This means that we either need to go to second order in
perturbation theory (our perturbations equations are lin-
ear in the metric perturbations and in ε) or that we need
to include higher-order operators in our starting action (1).
At second order in perturbation theory the second-order
quasinormal frequencies are a sum of first-order quasinor-
mal frequencies [75, 76]; see, e.g., Refs. [77–83] for further
details. As a consequence, we expect the second-order
quasinormal frequencies to also scale with ε in the EFT.
Assuming that all the dimensionless factors entering in
the higher-dimension operators of the EFT are numbers
of order one, which is technically natural [31], then the
effects from dimension-eight operators would be of order
ε3/2. Hence, they would be the dominant contribution to
the quasinormal frequencies in the nonlinear regime of ε.

From these results and considerations, we find that the
onset of the nonlinear behaviour in the quasinormal-mode
frequencies is best characterized in terms of the parameter
εf , rather than ε. In Fig. 6 we show, for each ℓ and n,
the value of ε

1/4
f at which nonlinear corrections start

appearing. More specifically, we first evaluate the value
of ε at which ω

(±)
ℓn deviates from its linear fit by more

than 20%. This gives us values of εmax and ω
(±)
ℓn,max =

ω
(±)
ℓn (εmax) associated to this mode and threshold value.

For instance, for ω
(±)
20 we find εmax > 0.05, hence all

values of ε considered by us are interpreted to be within
the linearized regime according to this criteria. In this
case, we take for ω

(±)
ℓn,max the value of ω(±)

ℓn at ε = 0.05.
However, in general, this is not what happens for other
values of ℓ and n. Then, with the values of εmax and
ω
(±)
ℓn,max in hand, we can compute the respective value of

εf using Eq. (64). The values obtained are below one,
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FIG. 6. Values of ε1/4f at which a given quasinormal frequency
deviates by more than 20% from its linear fit in ε. Polar (+)
and axial (−) quasinormal modes are shown on the left and
right panels, respectively. Notice that the values of ε1/4f in the
tables vary only by a factor of two between different modes.

meaning that the onset of nonlinearities appears below
the breaking of the EFT, as one would expect.

As mentioned above, for values of both ε and εf close
to unity the EFT description inevitably breaks down: it
is not enough to include higher-order operators and any
prediction can only be made with an ultraviolet (UV) com-
pletion of the EFT. As explained in Ref. [31], assuming a
soft UV completion, the corrections to the quasinormal-
mode frequencies (and other observable quantities) are
expected to saturate after the breaking of the EFT. In
Fig. 7 we give a schematic representation of the behavior
of fℓn in this scenario; see also Fig. 1 of Ref. [42] and
related discussion therein.

At this point it is clear that the condition in Eq. (64) is
necessarily violated for sufficiently large n, given a value
of ε. In other words the EFT cannot describe all over-
tones. Using the asymptotic behavior of the Schwarzschild
quasinormal frequencies in general relativity we can get a
good estimate for this maximum value of n, that we call
nmax. The spectrum at large n is independent on ℓ and
is given by

Mωℓn ≃ (8π)−1 log 3− i (n+1/2)/4, as n → ∞. (65)

See Refs. [69, 84] for numerical studies in this limit and
Refs. [85–88] for the posterior analytical derivations of
this result. Using this expression, Eqs. (63) and (64), and
imposing the latter as an equality, we readily obtain

nmax ≃ (8π)/
√
ε− 1/2 + O(

√
ε). (66)

The value we obtained is quite large even for ε close to
unity, nmax ∼ O(25). Corrections not captured by the
EFT are bound to appear below, or at most at, nmax.

"th

" = ̧  l4=M4

n = 0

n = 1

n = 2

n = 3

f 2
n

"f > "f th " > "th(+)

({)

NL

FIG. 7. Schematic representation of the quadrupolar quasi-
normal proper frequencies f2n for even (blue) and odd (orange)
parities, as functions of ε and the regions of validity of the
EFT calculation. For small ε, deviations from the GR values
are approximately linear. The onset of nonlinearities in the
corrections is represented by the gray dashed line (NL): above
this line one needs to include higher-order contributions in ε.
When ε ≳ εth ∼ O(1) (green-shaded area) or εf ≳ εf th ∼ ε−1

(purple-shaded area) the EFT description breaks down and
one has to resort to its UV completion to make predictions;
see the discussion around Eq. (64). Under the assumption
of a soft UV completion, the corrections to the quasinormal
frequencies are expected to saturate, as illustrated with the
dashed lines.

B. The quasinormal-mode excitation factors

1. Code validation and comparison with the literature in the
limit of general relativity

To our knowledge this is the first time that quasinormal-
mode excitation factors have been computed for black-
hole solutions in a theory that is not general relativity.
To validate our numerical results in the limit of general
relativity we performed two tests.

First, in general relativity, the excitation factors of
polar and axial quasinormal modes are related as

B
(+)
ℓn =

2λℓ(λℓ + 1) + 6iMωℓn

2λℓ(λℓ + 1)− 6iMωℓn
B

(−)
ℓn , (67)

as shown by Leaver [11]. This relation follows from two
identities relating the transmission and reflection coeffi-
cients of the Zerilli and Regge-Wheeler functions found
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by Chandrasekhar and Detweiler [8]. We note that de-
spite sharing the same quasinormal mode spectra, the
Zerilli and Regge-Wheeler modes have different excitation
factors. As a consistency check of our code, we verified
that our numerical calculations of B(±)

ℓn satisfy Eq. (67)
with a mean error of approximately O(10−5) across the
ℓn-parameter space we studied. This error decreases by
one order of magnitude if we exclude the n = 3 overtones.

As a second test, we compared our values of B(±)
ℓn with

those obtained by Zhang, Berti and Cardoso [18] (see
Table II therein), who employed the formalism of Mano,
Suzuki and Takasugi [89–91]. This scheme is based on a
matched asymptotic expansion between a Coulomb-series
expansion near spatial infinity and a series expansion
involving hypergeometric functions near the event horizon.
Reassuringly, we find excellent agreement between our
phase-amplitude-based calculation and those of Ref. [18].
For example, for the excitation factors of the fundamental
quadrupole quasinormal frequencies we have

B
(+)
20 = 0.12092762 + 0.070665623i, (68a)

B
(+)
20 = 0.120923 + 0.0706696i, (68b)

for the polar-parity mode and

B
(−)
20 = 0.12690233 + 0.02031517i, (69a)

B
(−)
20 = 0.126902 + 0.0203152i, (69b)

for the axial-parity mode. In each of the two foregoing
equations the second line is taken from Ref. [18], Table
II.

2. Effective-field-theory corrections to the excitation
coefficients

As we observed for the quasinormal-modes frequencies,
we also find that the associated excitation factors vary
more with respect to their values in general relativity,
as functions of ε, for the overtones. As an example,
we show in Fig. 8 the trajectories in the complex plane
of the quadrupolar quasinormal mode excitation factors
as we increase ε from zero (circles) to 0.05. Solid and
dashed lines correspond to the excitation factors of the
quasinormal modes of polar and axial parities, respectively.
Pairs of curves belonging to the same overtone number n
are indicated by the labels. We found the same qualitative
behavior for higher multipoles ℓ. We present some sample
values of the excitation factors in Table I.

3. The effective quasinormal mode amplitude

As an application of the calculations presented in this
section, we perform a preliminary analysis of the gravita-
tional wave amplitude associated with the polar and axial
quasinormal modes. In practice this is done by introduc-
ing an “effective” amplitude related to the magnitude of
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2n
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n= 1

(+)

(−)
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FIG. 8. Quadrupolar quasinormal mode excitation factors
B

(±)
2n in the range ε ∈ [0, 0.05]. The circles mark the limit

of general relativity. Solid and dashed lines correspond to
the excitation factors of the quasinormal modes of polar and
axial parities, respectively. The labels indicate the pairs of
curves that are associated to each overtone number n. We
see that the excitation factors move farther away from their
general-relativistic values the larger the overtone number. The
same behavior occurs for the higher multipoles ℓ we studied.

the Green’s function used in the solution of the radial
perturbation equations for a given set of initial data; see,
e.g., Ref. [16]. The relevant part of the Green’s function
is the one describing the quasinormal mode ringdown sig-
nal and is given by h = Aout(ωn)/αn for each individual
mode ωn. The effective amplitude is then heff =

√
N h,

where N =
√

Reωn/Imωn is the number of cycles in the
ringdown signal; this obviously assumes a weakly damped
mode. Therefore, the effective signal amplitude of each

0.00 0.01 0.02 0.03 0.04 0.05

λ l 4/M 4

0.18

0.20

0.22

0.24

|h
ef
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|
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FIG. 9. The effective quasinormal mode amplitude for the
fundamental quadrupolar quasinormal modes of axial (−) and
polar (+) parities as a functions of ε = λ l4/M4. For ε ≲ 0.012,
the amplitude is largest for the for polar quasinormal mode. A
crossover occurs around ε ≈ 0.012, above which the amplitude
of the axial quasinormal mode becomes larger.
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B
(+)
ℓn ε (×10−2) ℓ = 2 ℓ = 3 ℓ = 4

0 0.120928 + 0.0706656i −0.0889688− 0.0611773i 0.0621245 + 0.069099i

n = 0 1 0.117708 + 0.0672479i −0.087801− 0.0568295i 0.0628948 + 0.0644908i

2 0.11423 + 0.0639308i −0.0863858− 0.0524485i 0.0634276 + 0.0597633i

0 0.158645− 0.253326i −0.191931 + 0.264798i 0.279719− 0.24183i

n = 1 1 0.164761− 0.235166i −0.183767 + 0.246503i 0.259492− 0.229202i

2 0.171749− 0.217066i −0.176498 + 0.227387i 0.239777− 0.215239i

0 −0.298938− 0.0711347i 0.43677 + 0.20459i −0.543165− 0.478076i

n = 2 1 −0.298122− 0.115973i 0.394863 + 0.230675i −0.478737− 0.464905i

2 −0.297456− 0.16154i 0.353727 + 0.258993i −0.413139− 0.455012i

0 0.11382 + 0.204126i −0.000943727− 0.476399i −0.374548 + 0.859556i

n = 3 1 0.0959368 + 0.280675i 0.0877733− 0.47838i −0.456807 + 0.756742i

2 0.076331 + 0.367397i 0.177021− 0.481373i −0.542232 + 0.6564i

B
(−)
ℓn ε (×10−2) ℓ = 2 ℓ = 3 ℓ = 4

0 0.126902 + 0.0203152i −0.0938897− 0.0491928i 0.0653479 + 0.0652391i

n = 0 1 0.130491 + 0.0231047i −0.095299− 0.0525478i 0.0651914 + 0.0685976i

2 0.134143 + 0.02618i −0.0966165− 0.0560134i 0.0649306 + 0.0719477i

0 0.0476826− 0.223755i −0.151136 + 0.269749i 0.261489− 0.251524i

n = 1 1 0.0404401− 0.242573i −0.156895 + 0.288843i 0.27769− 0.266034i

2 0.035561− 0.262834i −0.164286 + 0.308201i 0.295196− 0.280032i

0 −0.190283 + 0.0157516i 0.415029 + 0.141039i −0.549217− 0.435328i

n = 2 1 −0.200613 + 0.0585822i 0.459169 + 0.114378i −0.616452− 0.443709i

2 −0.221067 + 0.0912412i 0.50728 + 0.0926607i −0.685627− 0.457493i

0 0.0808584 + 0.0796017i −0.0434035− 0.412749i −0.316921 + 0.837906i

n = 3 1 0.129894 + 0.0376043i −0.131238− 0.423928i −0.234765 + 0.94726i

2 0.17197 + 0.026809i −0.209984− 0.451892i −0.162397 + 1.06606i

TABLE I. Quasinormal-mode excitation factors of the Zerilli and Regge-Wheeler functions for a selection of multipoles ℓ
overtones n numbers and ε = λ l4/M4 = 0, 0.01 and 0.02. Our results in the limit of general relativity, ε = 0, are in excellent
agreement with the calculations of Ref. [18].

polar and axial quasinormal mode ωℓn is given by

h
(±), eff
ℓn = 2

[
Reω (±)

ℓn

Imω
(±)
ℓn

] 1
2

ω
(±)
ℓn B

(±)
ℓn , (70)

that we can compute with the numerical data obtained
in the previous section.

In Fig. 9 we show the effective amplitudes of the fun-
damental quasinormal modes of polar (solid line) and
axial (dashed line) parities as functions of ε. We see
that the “polar-wave amplitude” dominates over its axial
counterpart for ε ≲ 0.012, above which the axial mode
dominates. This suggests that at least for some initial
data (see the “asymptotic approximation” of Ref. [92])

that the dominant contribution to the gravitational-wave
ringdown amplitude comes from the polar perturbations
conditional, naturally, also on the cutoff εmax for the onset
on nonlinearities.

The dependence on this statement on the initial data
(or source of perturbation) can be seen from source-
dependent term in the quasinormal-mode excitation am-
plitude (45). As an extreme example, it suffices to recall
that I

(−)
n vanishes for a test particle radially infalling

into a Schwarzschild black hole even if B(−)
n is nonzero.

Therefore, quasinormal modes of axial parity are not ex-
cited in this situation. Nonetheless, we note that previous
works in general relativity for plunging test particles [93]
and in the close-limit approximation [94] do find that the
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amplitude associated to perturbations of polar parity to
be larger than those of axial parity. We conjecture that
this will also be the case in the EFT studied here.

VI. CONCLUSIONS AND OUTLOOK

Motivated by a dearth of understanding about the
quasinormal spectrum and about how these quasinormal
modes are excited in extensions to general relativity, we
reexamined and extended previous literature on pertur-
bations of nonrotating black holes in an EFT of general
relativity. Using a “quick and dirty” phase-amplitude
method [37], we computed both the first quasinormal-
frequency overtones and the quasinormal-mode excitation
factors. We found that the overtone frequencies (and their
respective excitation factors) are more sensitive than the
fundamental quasinormal modes to the lengthscale l in-
troduced by the higher-derivative operators in the EFT.
We interpreted these results from an EFT perspective,
and identified the domain of validity of the EFT descrip-
tion; see Fig. 7. We also suggested the existence of an
upper bound on the overtone number n, above which a
UV completion of the EFT becomes necessary to fully
characterize the black hole’s quasinormal mode spectrum.
In addition, we presented a simple explanation for the
inequivalence between the spectra of quasinormal modes
of polar and axial parities in the EFT.

Let us put our findings in perspective. In Sec. V we
argued that the overtones can be interpreted as high-
frequency perturbations [72], and hence they probe the
structure of the black-hole effective potential region near
the horizon. This is the region of spacetime where the
EFT corrections are most significant; this is unsurpris-
ing given that the EFT introduces higher powers of the
curvature that become relevant near the horizon. Follow-
ing this reasoning, it is not unreasonable to conjecture
that this sensitivity of the overtones to new lengthscales
would also be seen in other theories that involve higher-
curvature corrections to general relativity, including those
that introduce couplings to extra degrees of freedom.6

It is also tempting to interpret our results in terms of
an instability of the quasinormal-mode spectrum induced
by the higher-derivative operators in the EFT. In the lan-
guage of Jaramillo et al. [96], this would correspond to an
instability of the overtones; see e.g., Refs. [15, 97, 98] for
earlier related works. Confirmation of this interpretation
would require an analysis of the quasinormal pseudospec-
trum associated to Eq. (15) following, e.g., Ref. [96]. If
confirmed, it would suggest that the instability of the
overtones is a general expectation from an EFT perspec-
tive. It would then be interesting to understand how
this ties with our conclusion that one cannot describe

6 While this paper was being completed, a preprint presented the
same reasoning [95].

the quasinormal-mode spectrum past a certain overtone
number without invoking the UV completion of the EFT.

Our calculation of the quasinormal-mode excitation
factors and the observation that those associated to over-
tone are also sensitive to the near-horizon modifications
induced by the EFT has implications to the signatures
of these corrections in gravitational-wave observations.
We presented a first, but limited, analysis focusing on
the implications of isospectrality breaking in Sec. V (see
Fig. 9), but more work is evidently needed [99].
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Appendix A: Derivation of the black hole solution

To obtain the black-hole spacetime described by the line
element (6), we solve the field equations (4) perturbatively
in ε. To do so, we take N and f to be deformations away
from their Schwarzschild expressions:

f = 1− 2M̄/r + ε δf, (A1a)
N = 1 + ε δN, (A1b)

where M̄ is a positive constant, ε = λ l4/M̄4, and δf and
δN are functions of r. From the tt and rr components of
field equations, we find that δN and δf obey the decoupled
first-order differential equations:(

d

dr
+

1

r

)
δf =

1080

r

M̄6

r6
− 2352

r

M̄7

r7
, (A2a)

d(δN)

dr
=

648

r

M̄6

r6
. (A2b)

The solutions of these equations are

δf =
c1
r

+
216M̄6

r6
− 392M̄7

r7
, (A3a)

δN = c2 −
108M̄6

r6
, (A3b)

where c1 and c2 are integration constants. They can be
fixed by examining the far-field expansion of gtt = −N2f ,

−gtt ≃ 1 + 2εc2 − [ 2M̄ − ε (c1 − 4M̄c2) ]/r. (A4)
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We can then set c2 = 0, as it amounts to a shift in the
time coordinate t. From the r−1 term, we identify the
ADM mass of the spacetime to be

M = M̄ − ε c1/2. (A5)

Hence, the bare mass M̄ is renormalized by the dimension-
six operators in the action. We now solve Eq. (A5) for
M̄ , noticing that ε = λ l4/M̄4 = λ l4/M4 to O(ε). The
result is M̄ = M+ε c1/2, which substituted together with
c2 = 0 in Eqs. (A3) and (A1), results in Eq. (7) to O(ε).

Appendix B: The Petrov classification of the black
hole solution

The Petrov type of a spacetime can be identified by con-
structing a null tetrad lµ, nµ, mµ and its complex conju-
gate m̄µ and computing the Newman-Penrose scalars. The
tetrad satisfies the normalization lµnµ = −1, mµm̄µ = 1
with all the other contractions set to vanish. In this Ap-
pendix, we follow Refs. [106, 107] to determine the Petrov
type of the black hole solution given by Eqs. (6) and (13).

When the spacetime is algebraically special (having at
least one degenerate principal null direction), the following
condition is satisfied:

I3 = 27J2, (B1)

where

I =
1

2
C̃αβγδ C̃

αβγδ,

= 3Ψ2
2 − 4Ψ1Ψ3 +Ψ4Ψ0, (B2)

J = −1

6
C̃αβγδ C̃

γδ
µν C̃

µναβ ,

= −Ψ3
2 + 2Ψ1Ψ3Ψ2 +Ψ0Ψ4Ψ2 −Ψ4Ψ

2
1 −Ψ0Ψ

2
3,
(B3)

where we defined

C̃αβγδ =
1

4

(
Cαβγδ +

i

2
ϵαβµνC

µν
γδ

)
, (B4)

for a Weyl tensor Cαβγδ, Levi-Civita tensor ϵαβµν , and
where Ψi are the Newman-Penrose Weyl scalars with the
only restriction of Ψ4 ̸= 0:

Ψ0 = Cαβγδ l
αmβlγmδ, (B5a)

Ψ1 = Cαβγδ l
αnβlγmδ, (B5b)

Ψ2 = Cαβγδ l
αmβm̄γnδ, (B5c)

Ψ3 = Cαβγδ l
αnβm̄γnδ, (B5d)

Ψ4 = Cαβγδ n
αm̄βnγm̄δ. (B5e)

In particular, I and J are nonvanishing for Petrov type
D (and II).

To further determine the Petrov type, we study the fol-
lowing relations that are invariant under a tetrad rotation
and hold for type D (and III):

K = 0, N − 9L2 = 0, (B6)

where

K = Ψ1Ψ
2
4 − 3Ψ4Ψ3Ψ2 + 2Ψ3

3, (B7a)

L = Ψ2Ψ4 −Ψ2
3, (B7b)

N = Ψ3
4Ψ0 − 4Ψ2

4Ψ1Ψ3 + 6Ψ4Ψ2Ψ
2
3 − 3Ψ4

3. (B7c)

To summarize, the spacetime is type D if Eqs. (B1)
and (B6) are satisfied for nonvanishing I and J .

Let us now apply the above formulation to the black
hole solution described by Eqs. (6) and (13). One of the
simplest null tetrad is found as

lµ =

[
r

r − rh
, 1− 5

8

M

r
ε

(
1 +

2M

r
+

4M2

r2
+

8M3

r3
+

16M4

r4
− 704

5

M5

r5

)
, 0, 0

]
+ O(ε2), (B8a)

nµ =

[
3 r − rh
2(r − rh)

+
5

16

M

r
ε

(
1 +

2M

r
+

4M2

r2
+

8M3

r3
+

16M4

r4
+

32M5

r5

)
,

r + rh
2r

− 5

8

M

r
ε

(
1 +

2M

r
+

4M2

r2
+

8M3

r3
+

16M4

r4
− 272

5

M5

r5
− 864

5

M6

r6

)
,

√
2

r
, 0

]
+ O(ε2), (B8b)

mµ =

[
r

r − rh
, 1− 5

8

M

r
ε

(
1 +

2M

r
+

4M2

r2
+

8M3

r3
+

16M4

r4
− 704

5

M5

r5

)
,

1√
2r

,
i√

2r sin θ

]
+ O(ε2). (B8c)

Here, at O(ϵ), we substituted rh = 2M to simplify the
expressions. We checked that the Petrov type of the black

hole does not change even if we leave rh arbitrary. Then,
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using Eqs. (B5) and (B8), we find that Ψi are given by

Ψ0 = Ψ1 = O(ε2), (B9a)

Ψ2 =
rh
2r3

+
5M

16r3
ε

(
1− 2304M5

5r5
+

960M6

r6

)
+ O(ε2),

(B9b)
Ψ3 = 3Ψ2 , Ψ4 = 6Ψ2. (B9c)

We can now obtain the Petrov type of the black hole.
First, the Weyl scalar invariants I and J are given by

I =
3rh

2

4r6
+

15M2

8r6
ε

(
1− 2304M5

5r5
+

960M6

r6

)
+ O(ε2),

(B10a)

J = − rh
3

8r9
− 15M3

16r9
ε

(
1− 2304M5

5r5
+

960M6

r6

)
+ O(ε2),

(B10b)

which leads to

I3 − 27J2 = O(ε2). (B11)

Second, K, L and N are given by

K = O(ε2), (B12a)

L = −3rh
2

4r6
− 15M2

8r6
ε

(
1− 2304M5

5r5
+

960M6

r6

)
+ O(ε2),

(B12b)

N =
81rh

4

16r12
+

405M4

4r12
ε

(
1− 2304M5

5r5
+

960M6

r6

)
+ O(ε2),

(B12c)

which leads to

N − 9L2 = O(ε2). (B13)

Thus, to the order we worked on, I and J are nonvanishing
and Eqs. (B1) and (B6) are satisfied, so the spacetime is
of Petrov type D.

Appendix C: Derivation of Eq. (13)

Let us derive Eq. (13b) first. We start by adding and
subtracting rh/r to Eq. (10) and collect the terms as,

f−1 =

[
1− rh

r
+

(
rh − 2M

r
+ ε δf

)]−1

. (C1)

From Eq. (9) we see that rh − 2M is of order ε

rh − 2M = ε δrh = − 5
8 εM. (C2)

We can then rewrite Eq. (C1), by factoring out 1− rh/r:

f−1 =
(
1− rh

r

)−1
[
1 + ε

δrh/r + δf

1− rh/r

]−1

,

≃
(
1− rh

r

)−1
[
1− ε

δrh/r + δf

1− 2M/r

]
, (C3)

where we replaced rh/r by its O(ε0) value in the second
line. We now use the explicit forms of δrh and δf , given
in Eqs. (11) and (C2), to find

f−1 =
(
1− rh

r

)−1
[
1− ε

(
1− 2M

r

)−1 (
−5

8

M

r

+
216M6

r6
− 392M7

r7

)]
. (C4)

Although not evident, the term proportional to ε inside
the square brackets is regular at r = 2M , with value −3/2.
To see this explicitly, we use the factorization:

− 5

8

M

r
+

216M6

r6
− 392M7

r7
= −

(
1− 2M

r

)(
5

8

M

r

+
5

4

M2

r2
+

5

2

M3

r3
+

5M4

r4
+

10M5

r5
− 196M6

r6

)
. (C5)

Using this result, we obtain Eq. (13b). Equation (13a) is
derived in the same manner. We find

N2f =
(
1− rh

r

) [
1 + 2ε δN + ε

δrh/r + δf

1− 2M/r

]
,

=
(
1− rh

r

)[
1− ε

(
5

8

M

r
+

5

4

M2

r2
+

5

2

M3

r3
+

5M4

r4

+
10M5

r5
+

20M6

r6

)]
, (C6)

where we used δN = −108M6/r6.

Appendix D: The tortoise coordinate

In this appendix, we analyze in detail the properties of
the tortoise coordinate x, defined in Eq. (16),

dx/dr = 1/(Nf).

We use the resummation recipe introduced in Sec. II B
and detailed in Appendix C to rewrite Eq. (16) as

dx

dr
=

(
1− rh

r

)−1
[
1 + ε

(
5

8

M

r
+

5

4

M2

r2
+

5

52

M3

r3

+
5M4

r4
+

10M5

r5
− 88M6

r6

)]
. (D1)

This differential equation can be solved analytically, and
the solution can be schematically written as

x = r + rh log(r/rh − 1) + ε δx(r), (D2)

where we set the integration constant to be −rh log rh.
The expression for δx is somewhat lengthy and we omit
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it for brevity. In the limit of general relativity (ε = 0),
we recover the usual Schwarzschild formula

x = r + 2M log[r/(2M)− 1]. (D3)

For x to be a bona fide tortoise coordinate, we expect
that x → −∞ as r → rh and that x → ∞ as r →
∞. Whether this is the case for all values of ε is not
immediately evident. Let us first consider the limit of
spatial infinity. In this limit, an expansion of Eq. (D2)
yields:

x ≃ r + rh

(
1 + ε

5

8

M

rh

)
log r, for r/rh ≫ 1. (D4)

Because the term in parentheses is O(1), and because r
grows faster than log r, we conclude that x → ∞ when
r → ∞, as desired.

We now consider the near-horizon limit. In this limit,
an expansion of Eq. (D2) yields:

x ≃ rh + rh log(r − rh) + ε rh [ p0 + p1 log rh

+ p2 log(r − rh) ], for r/rh ∼ 1, (D5)

where pi (i = 1, 2, 3) are sextic polynomials in M/r.
The coefficients in the polynomials are not all positive,
and, consequently, we need to look whether x → −∞ as
r → rh in more detail. We first note that the dominant
terms in Eq. (D5) for r ≈ rh are those proportional to
log(r − rh), i.e.,

x ≃ rh(1 + ε p2) log(r − rh), (D6)

where p2 is:

p2 =
5

8

M

rh
+
5

4

M2

r2h
+
5

2

M3

r3h
+
5M4

r4h
+
10M5

r5h
− 88M6

r6h
. (D7)

In units in which M = 1 and for rh ≈ 2 [cf. Eq. (9)], p2
has a magnitude of O(10−1). Hence, depending on the
value of ε, x can approach either ±∞ in the limit r → rh.
Numerically, we found that 1 + ε p2 becomes negative for

ε ≳ 0.59. This value of ε is one order of magnitude larger
than the values we considered in the main text. Hence,
x, as given by Eq. (D2), has the desired properties of a
tortoise coordinate for all practical purposes.

Appendix E: Coefficients in the effective potential

In this appendix, we present the coefficients v
(±)
iℓ that

appear in the EFT corrections δV
(±)

ℓ to the Zerilli and
Regge-Wheeler potentials (20). The coefficients v

(+)
iℓ in

the polar-parity potential are:

v
(+)
1ℓ = −5λ2

ℓ (λℓ + 1),

v
(+)
2ℓ = −5λ2

ℓ (2λℓ + 5),

v
(+)
3ℓ = −5λℓ (4λ

2
ℓ + 10λℓ + 9),

v
(+)
4ℓ = −5 (8λ3

ℓ + 20λ2
ℓ + 18λℓ + 9),

v
(+)
5ℓ = 10 [−8λ3

ℓ − 20λ2
ℓ − 18λℓ

− 288λ3
ℓ (ℓ

2 + ℓ− 6)/Λℓ − 9],

v
(+)
6ℓ = 4 {176λ3

ℓ + 116λ2
ℓ − 90λℓ

+ 54λ2
ℓ [15ℓ

2(ℓ+ 1)2 − 336ℓ(ℓ+ 1) + 836]/Λℓ − 45},

v
(+)
7ℓ = 24 {88λ2

ℓ − 30λℓ + 15λℓ [147 ℓ
2(ℓ+ 1)2

− 1304 ℓ(ℓ+ 1) + 2164]/Λℓ − 15},

v
(+)
8ℓ = 144 {−5 + 44λℓ + 3λℓ [1073 ℓ(ℓ+ 1)− 3988]/Λℓ},

v
(+)
9ℓ = 6336 + [778608 ℓ(ℓ+ 1)− 1938240]/Λℓ,

v
(+)
10ℓ = 879552/Λℓ. (E1)

The coefficients v
(−)
iℓ in the axial-parity potential are:

v
(−)
1ℓ = − 5

8 ℓ(ℓ+ 1),

v
(−)
2ℓ = − 5

4 (ℓ
2 + ℓ− 3),

v
(−)
3ℓ = − 5

2 (ℓ
2 + ℓ− 3),

v
(−)
4ℓ = −5 (ℓ2 + ℓ− 3),

v
(−)
5ℓ = 1430 ℓ(ℓ+ 1)− 8610,

v
(−)
6ℓ = 41460− 3224 ℓ(ℓ+ 1),

v
(−)
7 = −48840. (E2)

We recall that λℓ and Λℓ, appearing in Eqs. (E1) and (E2),
are defined in Eq. (19).
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