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Wave equations with energy-dependent potentials appear in many areas of physics, ranging from
nuclear physics to black hole perturbation theory. In this work, we use the semi-classical WKB
method to first revisit the computation of bound states of potential wells and reflection/transmission
coefficients in terms of the Bohr-Sommerfeld rule and the Gamow formula. We then discuss the
inverse problem, in which the latter observables are used as a starting point to reconstruct the prop-
erties of the potentials. By extending known inversion techniques to energy-dependent potentials,
we demonstrate that so-called width-equivalent or WKB-equivalent potentials are not isospectral
anymore. Instead, we explicitly demonstrate that constructing quasi-isospectral potentials with the
inverse techniques is still possible. Those reconstructed, energy-independent potentials share key
properties with the width-equivalent potentials. We report that including energy-dependent terms
allows for a rich phenomenology, particularly for the energy-independent equivalent potentials.

I. INTRODUCTION

Energy-dependent potentials in wave equations play an
important role in many different areas of physics. They
appear naturally in nuclear physics [1–14], when study-
ing perturbations of black holes and neutron stars [15–
18], and in analog gravity [19]. One popular approach to
solving the wave equations is to use the Wentzel-Kramer-
Brillouin (WKB) method. Among its most iconic tools
are the classical Bohr-Sommerfeld rule [20] for the com-
putation of bound states in potential wells, and the
Gamow formula [21] for the computation of transmission
and reflection coefficients.

Due to their simplicity, it is known how they can be
used to infer relevant information of the underlying po-
tential in the inverse problem, i.e., when bound states or
transmission coefficients can be provided [22–25]. Such
an inversion is also possible for one, three or four turn-
ing point potentials with quasi-stationary states [26–28].
One of the key results is that the inversion is, in general,
not unique. Instead, one can reconstruct a family of po-
tentials with similar properties for their classical turning
points. The universal property is that the separation of
turning points must be unchanged. Thus, these poten-
tials may also be called width equivalent potentials. In
the literature, some authors have also coined such poten-
tials as WKB-equivalent potentials; see Ref. [29].

To our knowledge, existing studies on the inverse prob-
lem using the Bohr-Sommerfeld rule or Gamow for-
mula have only considered energy-independent poten-
tials. However, many physical scenarios require one to
work with energy-dependent potentials. Although WKB
methods to solve the direct problem of bound states or
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transmission function are relatively straightforward to
use, e.g., see Refs. [30–32], the energy dependence may
introduce additional degeneracy for the inverse problem.

In this work, we first revisit how the WKB method
can be used for the direct and inverse problem for the
energy-independent case. We then demonstrate how the
standard methods for the inverse problem can be used to
construct WKB-equivalent, energy-independent poten-
tials from the bound states and transmission coefficients
of energy-dependent potentials. As examples, we study
extensions of the quadratic potential (harmonic oscilla-
tor), and the Pöschl-Teller potential [33]. Using numer-
ical methods, we also quantify how accurately these po-
tentials can represent their energy-dependent pendants.
One of our main findings is that energy-dependent, WKB-
equivalent potentials are not width-equivalent anymore.
Another important finding is that those reconstructed,
energy-independent, effective potentials capture some
key properties of their associated energy-dependent ones,
such as their asymptotic behavior and local behavior
around their minimum or maximum.

The rest of the paper is organized as follows. In Sec. II,
we review the semi-classical methods and our numerical
scheme. Those are applied to two energy-dependent po-
tentials in Sec. III. We discuss our findings in Sec. IV,
and our conclusions can be found in Sec. V.

II. METHODS

In the following, we first review some basics of the
WKB method in Sec. II A, its application to potential
wells in Sec. II B, and potential barriers in Sec. II C.
Next, we discuss the important role played by the turn-
ing points within this framework in Sec. IID, and finally,
we introduce related numerical methods in Sec. II E.
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A. WKB method

The WKB method, also known as semi-classical ap-
proximation, is a widely used approximation to study
linear differential equations. A very common example in
physics is the one-dimensional wave equation

d2

dx2
ψ(x) +Q(x,E)ψ(x) = 0, (1)

where

Q(x,E) ≡ E − V (x). (2)

Here, V (x) is an energy-independent potential, e.g.,
the harmonic oscillator. The WKB method is valid un-
der several assumptions (see Refs. [34, 35] as standard
references for more details), and it breaks down close
to classical turning points (defined by Q(x,E) = 0, or
equivalently, E = V (x)). To construct solutions, one
can connect exact, local solutions, e.g., described by the
Airy functions, with the WKB solutions using asymp-
totic matching. One convenient application of that ap-
proach is to derive so-called quantization conditions to
compute eigenvalues E = En for given boundary condi-
tions of a potential well or reflection/transmission coef-
ficients through potential barriers. Although the WKB
method is not exact, it can be an excellent approxima-
tion. Moreover, due to the integral equations, it is also
possible to study the inverse problem, in which one is in-
terested in reconstructing properties of the potential for
given eigenvalues or transmission/reflection coefficients.
We review two of the most commonly used applications
in the subsequent sections.

B. Classical Bohr-Sommerfeld rule

The classical Bohr-Sommerfeld rule is given by∫ x1

x0

√
Q(x,En)dx = π

(
n+

1

2

)
, (3)

where the classical turning points x0, x1 are defined via
Q(x,En) = 0 and n ∈ N0. It can be derived by
matching the WKB solutions of the classically allowed
region (E > V (x)) and forbidden region (E < V (x))
with Kramer’s matching relations close to the turning
points. Thus, it applies to potential wells with two turn-
ing points, schematically shown in Fig. 1.

The Bohr-Sommerfeld rule can be inverted to study
the inverse problem, in which one is provided with some
spectrum En and is interested in reconstructing the po-
tential [22, 23]. Solutions to the inverse problem are, in
general, not unique, and the problem itself may even be
ill-posed. By inverting the Bohr-Sommerfeld rule, the
non-uniqueness is imprinted in the observation that one
can only reconstruct the width of the potential defined

x

V
(x

)

x0(E) x1(E)

E

V (x)

FIG. 1. Potential well V (x) with the pair of turning points
x0(E), x1(E) associated with the energy E denoted as points
at the intersection E = V (x).

by the separation of turning points

L1(E) = x1(E)− x0(E) =
∂

∂E
I(E), (4)

where I(E) is the so-called inclusion

I(E) = 2

∫ E

Emin

n(E′) + 1/2√
E − E′

dE′. (5)

The minimum of the potential Emin is not a part of the
spectrum and has to be extrapolated from n(Emin) =
−1/2. Infinitely many potentials admit the same spec-
trum En and have the same width but can be “tilted”
and “shifted” by the necessary freedom of providing one
of the two turning point functions.

C. Gamow formula

The Gamow formula approximates the transmission
T (E) through a two turning point potential barrier V (x)
via

T (E) = exp

(
2i

∫ x1

x0

√
Q(x,E)dx

)
. (6)

In this form, it is valid for energies below the peak of the
barrier E < Vmax, and becomes less accurate close to it.
Although more accurate WKB-based results exist, the
advantage of Eq. (6) is that it can be inverted similarly
to the Bohr-Sommerfeld rule (3). In Refs. [24, 25], it was
shown that it is again the separation of turning points,

L2(E) = x1(E)− x0(E) (7)

=
1

π

∫ Emax

E

(
∂T (E′)/∂E′)
T (E′)

√
E′ − E

dE′, (8)

which is the universal feature defining a family of po-
tentials with the same transmission T (E). Here Emax
is the value of the potential at its maximum. One can
approximate it by solving T (Emax) = 1/2.
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1. Parabolic approximation of the potential maximum

Because the Gamow formula and its inversion for-
mula become less accurate around the potential peak,
we approximate this region of the reconstructed, energy-
independent, potential barriers with a parabolic approx-
imation

Vparabolic(x) = Vmax + α(x− xmax)
2, (9)

with xmax = 0. The two other free parameters (Vmax

and α) are then obtained by fitting the analytic form of
the transmission to the numerical transmission obtained
from the energy-dependent potentials; see Ref. [36], and
appendix of Ref. [37] for more details. In general, we
note that the value of Vmax obtained by this fitting
procedure agrees well with Emax obtained by solving
T (Emax) = 1/2. Once we have estimated the two
parabolic parameters, we match our inverse potential
barrier constructed with the inverse Gamow formula with
the fitted parabola around the peak via a smooth ver-
sion of the Heaviside function, given by Θ±(E;E0, κ) =
1/2±(1/2) tanh[κ(E−E0)]. Here, κ controls the “smooth-
ness” of the transition between the two connected curves,
while E0 determines around where the transition takes
place. We choose E0 as the energy for which the two
curves intersect.

D. Remark on turning points

Turning points of a potential, as shown in Fig. 1, are a
concept that is well motivated beyond WKB theory. Be-
cause they play an important role in the expected validity
of the WKB method (via Q(x,E) ≡ E − V (x,E)), it is
natural to generalize the definition of turning points xi
for energy-dependent potentials to V (xi, E) = E, where
the argument in V (x,E) is the same E as used on the
right-hand side.

The minimum Vmin or maximum Vmax of an energy-
independent, two turning point potential can be de-
fined as the pair of values (xcritic, Ecritic) for which
Q(x,E) = 0 ⇔ V (x) = E and dQ(x,E)/dx = 0 ⇔
dV (x)/dx = 0. Similarly, for the more general case of
energy-dependent potentials V (x,E), we define the ver-
tex point as the pair of values (xvertex, Evertex) for which
Q(xvertex, Evertex) = 0, and dQ(xvertex, Evertex)/dx = 0.
Note that another way of defining Vmin or Vmax of a
two turning point, energy-independent potential is by re-
questing that the left and right turning points converge
x0(Evertex) = x1(Evertex). For energy-dependent poten-
tials, this holds as well.

Finally, the Bohr-Sommerfeld treatment of complex-
valued potentials, e.g., as they appear for perturbations
of the Kerr black hole, is also possible and has been in-
vestigated in Ref. [38]. In this case, the turning points
are, in general, also complex-valued, but both cases share
a non-trivial behavior of Q(x,E) with respect to E.

E. Numerical methods

To verify the accuracy of the WKB-based methods, we
use a straight-forward shooting method to compute the
bound states and numerical integration through the po-
tential barrier to obtain the transmission. Later, we also
present the approximate results obtained with the Bohr-
Sommerfeld rule and Gamow formula. Such a compari-
son allows us to determine where the methods are reliable
and where they lose accuracy.

1. Shooting method for bound states

The shooting method is based on numerically integrat-
ing the wave-equation for given boundary conditions from
both sides. For Eq. (1), we choose the asymptotic behav-
ior for the solution to be given by

ψ1 → e

(√
−Q(x,E)x

)
, x→ −∞, (10)

ψ2 → e

(
−
√

−Q(x,E)x
)
, x→ ∞. (11)

for the cases where V (x,E) asymptotically goes to con-
stant values, and for the cases where V (x,E) diverges
at the two limits. The eigenvalues are then obtained by
determining the roots of the Wronskian of the numerical
solutions at some intermediate point. The Wronskian of
the two solutions is defined as

W (x,E;ψ1, ψ2) ≡ ψ1(x)ψ
′
2(x)− ψ2(x)ψ

′
1(x). (12)

2. Numerical integration for transmission

Similar to the shooting method, the transmission is ob-
tained by numerical integration, but for different bound-
ary conditions. In this case, our ansatz for two indepen-
dent solutions satisfy the following boundary conditions

ψ1 →


e

(
−i
√

Q(x,E)x
)
, x→ −∞,

A−
∞e

(
−i
√

Q(x,E)x
)

+A+
∞e

(
+i
√

Q(x,E)x
)
, x→ +∞,

(13)

and

ψ2 →


B−

−∞e

(
−i
√

Q(x,E)x
)

+B+
−∞e

(
+i
√

Q(x,E)x
)
, x→ −∞,

e

(
i
√

Q(x,E)x
)
. x→ +∞.

(14)

From the computational point of view, the solutions
described by ψ1 and ψ2 describe monochromatic plane
waves numerically evolved from one end of the domain
to the other. Physically, ψ1 represents incoming plane
waves with an incident amplitude A+

∞ that are scattered
at the energy-dependent potential V (x,E). Those waves
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are partially reflected with reflection amplitude A−
∞/A

+
∞,

and partially transmitted with transmission amplitude
1/A−

∞. A similar interpretation can be made for ψ2. Ac-
cordingly, the transmission coefficient can be defined as

|T |2 =
1∣∣∣A−
∞

∣∣∣2 =
1∣∣∣B−

−∞

∣∣∣2 . (15)

III. APPLICATION AND RESULTS

In the following, we apply the WKB-based methods to
two types of energy-dependent potentials. In Sec. III A,
we study a modified quadratic potential, and in Sec. III B,
we consider a modified Pöschl-Teller potential. We first
consider parameters of the potentials that yield wells ad-
mitting bound states and then barriers for which we com-
pute the transmissions.

In all applications, our approach can be explained
in three main steps. First, for the given energy-
dependent potential, we provide the spectrum of
bound states/transmission either analytically or with
the numerical method. Second, we use the spec-
trum/transmission as input for the WKB-based in-
verse method to construct the width of a family of
WKB-equivalent, energy-independent potentials. Third,
we use the numerical method to compute the bound
states/transmission of one of the reconstructed poten-
tials Vinv(x) to quantify how accurately they match the
original ones. For comparison, we also use the nu-
merical method to compute the associated properties
of the energy-independent, width-equivalent potential
Vwidth(x).

Therefore, we associate with a certain energy-
dependent potential V (x,E), an energy-independent, in-
verse potential Vinv(x), which must match the property
used for its reconstruction, at least within the validity
of the WKB-approximation. This allows one to describe
properties of energy-dependent potentials more simply
by constructing energy-independent ones.

A. Energy-dependent quadratic potential

As first example, we study an energy-dependent
quadratic potential, given by

VHO(x,E) = (a+ bE)x2 + cE + V0, (16)

where a, b, c, V0 are real-valued constants. In the fol-
lowing, we consider two scenarios that either describe
potential wells in Sec. IIIA 1, or potential barriers in
Sec. III A 2. For each of the two scenarios, we study two
distinct cases for the variation of the concavity with the
variation of the energy. The cases are defined by a/b < 0,
which tends to increasingly open the parabola with in-
creasing E, and by a/b > 0, which tends to close it. To

make the main text more readable, but still cover com-
prehensive material, some of the results are reported in
the appendix A.

1. Potential wells

The spectrum of bound states En can be computed
analytically. For this we generalized results first reported
for the case c = V0 = 0 in Ref. [39]. The energy of the
normal modes are obtained by solving

En(1− c) + V0 = (2n+ 1)
√
a+ bEn. (17)

To test our numerical implementation of the shooting
method presented in Sec. II E 1, we have verified that it
agrees with the analytic results.

Varying E yields a family of curves for the potential,
whose qualitative properties depends non-trivially on the
chosen parameters. To illustrate that, we present the po-
tential and the results of the inverse method for a/b < 0
in Fig. 2, whose caption contains the numerical values
of all parameters. The top panel demonstrates that the
potential curves as function of E get increasingly more
open until Elimit = −a/b. At this energy, the potential
turns into a horizontal line at V0 − ca/b and the separa-
tion of turning points diverges. For even higher energies,
the curvature of the parabola becomes negative. Qual-
itatively, we therefore expect that by approaching the
energy limit of E → Elimit = −a/b, the system starts
behaving as a quasi-free particle in a constant potential,
with the energy spacing of the modes becoming increas-
ingly smaller.

Using the bound states as input for the inverse Bohr-
Sommerfeld rule (4) yields a family of inverse potentials
Vinv(x) sharing the same separation of turning-points. To
fix one of them, we assume that the potential is symmet-
ric around the origin (x0(E) = −x1(E)). From Fig. 2
it is evident that Vinv(x) is not the same as the width
equivalent potential Vwidth(x). On the other hand, they
are asymptotically converging to the same maximum en-
ergy for large values of x and are similar close to the
minimum.

In the bottom panel of Fig. 2, we compare the bound
states of the original potential Eq. (17) with the ones of
the inverse potential and the width-equivalent potential,
all computed using the numerical method. The inverse
potential Vinv(x) is quasi-isospectral with the original
energy-dependent potential. The asymptotic behavior of
the overtones marks the transition from an essentially
discrete spectrum to a quasi-continuum one, showing the
increasing opening tendency of the energy-dependent po-
tential. The bound states of the width-equivalent poten-
tial Vwidth(x) differ quantitatively but otherwise have a
similar behavior as a function of n.

The case a/b > 0 also provides interesting, but qual-
itatively different applications. Instead of opening with
higher energy values, the potential curves become pro-
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FIG. 2. Application of the inverse method to the energy-
dependent quadratic potential Eq. (16) for case a/b < 0,
with parameters a = 0.5, b = −0.25, c = 0.25, V0 = 0.
Top panel: The series of curves of varying colors indicate
the chosen value of E when computing the energy-dependent
potential Vorig(x,E) = VHO(x,E) starting from E = 0 to
E = E′ = 2Elimit. The inverse potential (green dashed) is la-
beled as Vinv(x) and the width-equivalent potential (red dot-
ted dashed) is labeled as Vwidth(x). Bottom panel: Here we
show the spectrum of bound states for the original potential
Eorig

n (black circles), the inverse potential Einv
n (green cross),

and the width-equivalent potential Ewidth
n (red squares).

gressively more closed. We refer the reader to appendix
A 1 for an illustration of this scenario.

2. Potential barriers

To represent a more standard barrier, we re-define the
original potential as follows

V̄HO(x,E) =

{
VHO(x,E), xi1 < x < xi2,
0, otherwise. (18)

The points xi1 and xi2 are defined by where the potential
is zero, by VHO(xi1,i2, E) = 0, and are thus given by

xi1,i2 = ±
√

−V0 + cE

a+ bE
. (19)

As previously, the energy dependence introduces a non-
trivial behavior for the family of potential curves. The
linear term cE is responsible for the vertical shift. For
c ∈ (0, 1), by increasing the energy, it will eventually
reach a vertex point Evertex = V0/(1−c) in which the two
turning points converge to a single point at the maximum
of its associated parabola V (xvertex, Evertex), just like a
global maximum in an energy-independent potential. For
c > 1, however, this scenario does not occur.

The maximum of an energy-independent potential bar-
rier with two turning points plays an important role in
the scattering of waves [40]. There the transmission
changes from exponentially small values to asymptoti-
cally one. Similarly, for energy-dependent potentials, the
vertex Evertex for the turning points is exactly where the
wave scattering of those potentials transits from almost
null absorption to full transmission. After this reference
value, the associated potential V (x,E) no longer pos-
sesses turning points, and the energy is above the bar-
rier. Thus Evertex characterizes a local maximum of an
effective, energy-independent potential barrier with sim-
ilar properties. The existence of Evertex, which plays the
role of Emax in the Gamow formula, is crucial for the
inverse method when applied to energy-dependent po-
tentials. For this reason, our discussions are limited to
c ∈ (0, 1).

In the following, we apply our method to a poten-
tial with a/b > 0, and report our results in Fig. 3. It
shows that the potential barrier curves tend to increas-
ingly close their concavity with increasing E, which is
shown in the top panel of Fig. 3. Here we also pro-
vide the results for the inverse potential Vinv(x) and the
width-equivalent potential Vwidth(x). They are both sim-
ilar close to their vertex at Evertex = V0/(1 − c), but
overall deviate. The corresponding transmissions pro-
vided in the bottom panel demonstrate that Vinv(x) bet-
ter reproduces the original transmission. The transmis-
sion of Vwidth(x) differs substantially for small energies,
but becomes very similar around the maximum. In the
appendix A 1, we provide complementary results for a
potential barrier with a/b < 0.

B. Energy-dependent Pöschl-Teller potential

As the second main example of energy-dependent po-
tentials, we introduce a modified Pöschl-Teller potential
given as follows

VPT(x,E) = (a+ bE)sech2[k(x− x0)] + cE + V0. (20)

The main reason for considering the Pöschl-Teller poten-
tials is that it is widely used in different areas of physics,
including nuclear physics [41, 42], and the perturbations
of black holes and exotic compact objects [43–45].

An important difference between the energy-
dependent, quadratic potential and the here presented
Pöschl-Teller potential is that the latter one converges
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FIG. 3. Application of the inverse method to the energy-
dependent quadratic potential barrier Eq. (16) for case a/b >
0, with parameters a = −0.1, b = −0.05, c = 0.15, and V0 = 8.
Top panel: The series of curves of varying colors indicate
the chosen value of E when computing the energy-dependent
potential Vorig(x,E) = V̄HO(x,E) starting from E = 0 to
E = E′ = 2Evertex. The inverse potential (green dashed)
is labeled as Vinv(x) and the width equivalent potential (red
dotted dashed) is labeled as Vwidth(x). Bottom panel: Here
we show the transmission for the original potential Torig(E)
(black solid line), the inverse potential Tinv(E) (green dashed
line) and the width-equivalent potential Twidth(E) (red dot-
dashed lines).

necessarily to finite asymptotic values for x→ ±∞ given
by V0 + cE.

1. Potential wells

In this subsection, we present the findings of the
Pöschl-Teller energy-dependent potential wells. Again,
we differentiate between a/b > 0 and a/b < 0. Both
cases provide distinct profiles for the energy-dependent
variation of the potential. We show the potentials for a
range of energy values for a/b < 0 in the top panel of
Fig. 4. Here, we also present the inverse potential and
the width-equivalent potential. In the bottom panel, we
report the associated bound states. The case a/b > 0 is
presented in the appendix A.
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Vwidth(x)
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E
n
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E inv
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Ewidth
n

FIG. 4. Application of the inverse method to the energy-
dependent Pöschl-Teller potential Eq. (20) for case a/b < 0,
with parameters a = −10, b = 0.2, c = 0.1, k = 0.3, and V0 =
10. Top panel: The series of curves of varying colors indicate
the chosen value of E when computing the energy-dependent
potential Vorig(x,E) = VPT(x,E) starting from E = 0 to
E = E′ = 2Elimit. The inverse potential (green dashed) is
labeled as Vinv(x) and the width equivalent potential (red
dotted dashed) is labeled as Vwidth(x). Bottom panel: Here we
show the spectrum of bound states for the original potential
Eorig

n (black circles), the inverse potential Einv
n (green cross),

and width-equivalent potential Ewidth
n (red squares).

We notice that Vinv(x) and Vwidth(x) agree in both
cases very well at the minimum, as well as for their
asymptotic value V0/(1− c) for large values of |x|. How-
ever, for intermediate energies, the two potentials differ.
The bound states of the original potential agree in both
cases very well with the ones of the inverse potential,
while they differ for the ones of the width-equivalent one.
As the energy approaches the asymptotic value of the po-
tential, the energy spacing between the modes decreases,
which indicates the transition to a quasi-continuum spec-
trum of a quasi-free particle, as in Sec. IIIA 1. Note that
the energy dependence lifts the potential minimum, and
thus decreases the space for bound states. The opposite
is observed in case a/b > 0, which is shown in appendix
A 2.
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FIG. 5. Application of the inverse method to the energy-
dependent, Pöschl-Teller potential Eq. (16) for case a/b < 0
with parameters a = 10, b = −0.4, c = 0.5, k = 0.5, and V0 =
0. Top panel: The series of curves of varying colors indicate
the chosen value of E when computing the energy-dependent
potential Vorig(x,E) = VPT(x,E) starting from E = 0 to
E = E′ = 2Evertex. The inverse potential (green dashed)
is labeled as Vinv(x) and the width equivalent potential (red
dotted dashed) is labeled as Vwidth(x). Bottom panel: Here
we show the transmission for the original potential Torig(E)
(black solid line), the inverse potential Tinv(E) (green dashed
line) and the width-equivalent potential Twidth(E) (red dot-
dashed lines).

2. Potential barriers

Finally, we investigate Pöschl-Teller potential barriers.
In the following, we consider a/b < 0, while a/b > 0
is reported in appendix A. The potentials can be found
in the top panel of Fig. 5, while the associated transmis-
sions are reported in the bottom panel. In both cases, we
find that Vinv(x) and Vwidth(x) agree well at their max-
imum value Evertex = (a + V0)/(1 − (c + b)) , but not
at intermediate energies. In the lower panel, we show
the transmissions associated with the potentials. As ex-
pected, the transmission reconstructed from the inverse
potential matches very well with the original transmis-
sion, while there are significant differences when com-
pared to the width-equivalent potential, at least for en-
ergies below the maximum.

IV. DISCUSSION

A. Width-equivalent is not WKB-equivalent

As stated previously, and demonstrated in our results,
one key finding of our work is that the spectra and trans-
missions of width-equivalent energy-dependent potentials
are, in general, not WKB-equivalent. By explicitly con-
structing the width-equivalent potentials and comput-
ing their spectral properties with an accurate numerical
method, it is evident that they no longer correspond to
those of the energy-dependent potential.

For the bound states En, we noticed that the devi-
ations were typically small around n = 0 and then in-
creased. One can explain this behavior by observing
that the width equivalent and inverse potentials agree
well around their minimum. For the transmission T (E),
one finds that the agreement between both potentials is
good around the maximum; also a consequence of the
local approximation of the peak, and then deviates for
smaller energies. In both cases, the spectral properties
can be well understood from the local character of the
Bohr-Sommerfeld rule and Gamow formula.

B. Accuracy of inverse methods

Because the WKB method is in general not exact, us-
ing the Bohr-Sommerfeld rule and Gamow formula for
the direct problem, or their inversions for the inverse
problem, can in general only provide approximate results.
This is well known for energy-independent potentials and
it also holds for the more general, energy-dependent ones.
To demonstrate this, we vary the potential properties of
some of the previous cases to further investigate the ac-
curacy of the WKB method. We compare the WKB pre-
dictions of the bound states En and transmission T (E)
of the original potential, with the ones of the WKB-
constructed inverse potential predicted using the accu-
rate numerical method. For the overall performance of
the WKB method for the inverse potential, as one would
expect from the direct problem, the spectral properties of
the inverse potentials should match the ones of the orig-
inal potential more accurately for higher bound states
and energies below the peak of the barrier.

In Fig. 6, we computed the relative errors of the bound
states via

δin ≡
∣∣∣∣∣ENum orig

n − Ei
n

ENum orig
n

∣∣∣∣∣ , (21)

where i is either using the direct WKB prediction for
the original potential or the numerical prediction for the
inverse potential. For increasing bound state number n,
we report that the relative errors decrease, and that the
performance of the inverse potential is clearly correlated
with the accuracy of the WKB method for the direct
problem. We also find that in most cases, the relative
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FIG. 6. Here we show the relative error defined by δin,
where the index i stands for either the WKB prediction for
the original potential (circles) or the numerical method of
the inverse potential (crosses). The different colors represent
different choices of k, which changes the width of the well, and
thus indirectly the expected accuracy of the WKB method.
All other parameters are those of Fig. 4.

errors of the direct WKB computation of the original
potential are smaller than those of the numerical method
of the inverse potential. Since the construction of the
inverse potential requires one to interpolate the spectrum
of bound states, an overall difference in accuracy should
be expected from this additional source of imprecision.

Next we investigate the performance when computing
the transmission T (E), which is shown in Fig. 7. As
previously, we vary k of one of the previous cases and
leave all other parameters to be the same. Our results
confirm what should be expected. For wider potential
barriers (smaller values of k), the different predictions
are more similar throughout all energies. Since the in-
verse method does not rely on an interpolation of the
transmission, both WKB related predictions should be
of similar accuracy with respect to the numerical result
of the original potential.

We conclude this part of the discussion by noting that
the good agreement between results of the numerical orig-
inal potential and the numerical inverse potential are also
an independent check of the numerical method itself.

C. Remarks on non-uniqueness

Even without energy-dependence, the inverse problem
is in general not uniquely solvable. The WKB-equivalent
potentials constructed from the inverse, semi-classical
methods provide an intuitively clear, but approximate
answer. They map a one-dimensional function of energy,
n(E) or T (E), into the width L(E) of all possible po-
tential wells or barriers. Note that it might be possible
to provide one turning point function from underlying
properties of the application, which would then uniquely
determine the underlying potential, e.g., Refs. [26, 27].

0 2 4 6 8 10
E

10−33

10−27

10−21

10−15

10−9

10−3

T
(E

)

k = 0.25: Num orig
k = 0.25: WKB orig
k = 0.25: Num inv
k = 0.50: Num orig
k = 0.50: WKB orig

k = 0.50: Num inv
k = 1.00: Num orig
k = 1.00: WKB orig
k = 1.00: Num inv

FIG. 7. Here we show the transmission T (E) using the
numerical method for the original potential (solid lines), the
WKB prediction for the original potential (dashed lines), and
the numerical method of the inverse potential (dotted lines).
The different colors represent different choices of k, which
changes the width of the barrier, and thus indirectly the ex-
pected accuracy of the WKB method. All other parameters
are those of Fig. 5.

Introducing energy dependence to V (x,E) does not
translate to a family of bound states or transmission func-
tions, but instead, only yields another one-dimensional
function of energy. This is fundamentally different from
introducing a free parameter, for which a family of bound
states or transmissions could be mapped to a family of
widths. A closer look into the Bohr-Sommerfeld and
Gamow integrals reveals that potentials defined by the
separation of turning points via E = V (x,E), are in gen-
eral not equivalent to the reconstructed potentials, which
are instead isospectral to the energy-dependent potential.
Future extensions of this work could study to what ex-
tend it may be possible to infer the energy-dependent
contributions to V (x,E), e.g., if it can be treated per-
turbatively.

Finally, the inverse problem could in general be ill
posed, and thus any inverse approach must fail. In-
dependent of the non-uniqueness, a typical situation in
which the construction of an inverse potential can fail
when using the WKB-based methods, is when the width
of the well/barrier is not strictly monotonically increas-
ing/decreasing as function of E. In such a case, there are
“overhanging cliffs” in the potential (see Wheeler [22]),
because there is no bijective mapping from the width to
a well-defined potential. For some explicit examples, we
refer the interested reader to Ref. [46].

V. CONCLUSIONS

In this work, we have studied the direct and inverse
problem of energy-dependent potentials using results
from WKB theory. From the inversion of the classi-
cal Bohr-Sommerfeld rule and the Gamow formula for
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energy-independent potentials, it is well known in the lit-
erature that the reconstructed potentials are not unique.
Instead, there is a family of infinitely many potentials
that share a common property, which is the separation
of their classical turnings points, also known as width.

Because results of the inverse method have been lim-
ited to energy-independent potentials, but many physi-
cal applications require energy dependency, we have ex-
tended it to the inversion of such potentials. Here we
have focused on introducing energy-dependent terms to
the quadratic potential (harmonic oscillator) and Pöschl-
Teller potentials, which serve as examples that offer a rich
phenomenology.

By applying the same inversion techniques to the
bound states or transmission coefficients of energy-
dependent potentials, we have explicitly demonstrated
that it is possible to construct a family of energy-
independent potentials. We note that the bound states
and transmission coefficients used for the inverse method
are either known analytically or have been computed
with full numerical methods, and are thus not limited
to the accuracy of the WKB method. We have also used
full numerical methods to verify the accuracy of the re-
constructed potentials by computing their bound states
and transmission coefficients, and find it is comparable

to the expected accuracy of the WKB method for the
direct problem.

The novelty of our findings is that the widths of the re-
constructed potentials are not equivalent to the original,
energy dependent ones. Thus, energy-dependent WKB
equivalent potentials are not width-equivalent anymore.
We plan to utilize these findings to extend recent work
on the inverse problem of analog gravity systems [36]
to make the inversion technique applicable to a broader
class of systems. Other possible extensions could include
the study of rotating, exotic compact objects, whose non-
rotating spectral properties have been used for the inverse
problem in Refs. [26, 27].
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Throughout this paper, we divided our study into two
main cases, the energy-dependent quadratic potential
and the energy-dependent Pöschl-Teller potential, with
two scenarios of applications for each one: the effective
inverse potential wells and the effective inverse potential
barriers. In this appendix, we present complementary
examples for each scenario.

1. Quadratic potential

Complementing the discussion made in Fig. 2, we
present here an extra example of an energy-dependent
quadratic well. This second scenario is defined by a/b >
0, for which the results and more details can be found
in Fig. 8. As can be seen in the top panel, the po-
tential curves get increasingly more closed with higher
values of E, until at some point, the turning points be-
come asymptotically fixed at a certain distance, xlimit =
±
√
(1− c)/b. For these energies, the system behaves

qualitatively like a particle in an infinite square well,
which can also be seen from the bound states in the bot-
tom panel.

As in the previous case, we use the bound states as
input for the inverse Bohr-Sommerfeld rule (4) to con-
struct Vinv(x). The width-equivalent potential Vwidth(x)
is included for comparison.

In the bottom panel of Fig. 8, we show the bound states
for the three potentials. As in all previous cases, the
bound states of the WKB-equivalent and original poten-
tials agree very well. The asymptotic behavior of the
overtones describes the transition from the spectrum of
a quadratic potential to the one of a particle in an infinite
square well (En ∝ n2).
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FIG. 8. Application of the inverse method to the energy-
dependent quadratic potential Eq. (16) for case a/b > 0,
with parameters a = 0.25, b = 0.0125 and c = 0.0125.
Top panel: The series of curves of varying colors indicate
the chosen value of E when computing the energy-dependent
potential Vorig(x,E) = VHO(x,E) starting from E = 0 to
E = E′ = 20a/b. The inverse potential (green dashed) is la-
beled as Vinv(x) and the width-equivalent potential (red dot-
ted dashed) is labeled as Vwidth(x). Bottom panel: Here we
show the spectrum of bound states for the original potential
Eorig

n (black circles), the inverse potential Einv
n (green cross)

and width-equivalent potential Ewidth
n (red squares).

the top panel of Fig. 9. The WKB-equivalent and width-
equivalent potentials are also presented. As in the pre-
vious case in Fig. 3, the difference between Vinv(x) and
the width equivalent potential Vwidth(x) is apparent, al-
though they become similar close to Evertex. In the bot-
tom panel of the same figure, we show the transmission
associated with each potential. In this case, they are all
very similar to each other.

2. Pöschl-Teller potential

In Fig. 10 and Fig. 11 we complement the previously
introduced examples for energy-dependent Pöschl-Teller
potentials describing a potential well reconstruction, and
a potential barrier reconstruction, respectively.
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FIG. 9. Application of the inverse method to the energy-
dependent quadratic potential barrier Eq. (16) for case a/b <
0, with parameters a = −0.1, b = 0.001, c = 0.2, and V0 = 10.
Top panel: The series of curves of varying colors indicate
the chosen value of E when computing the energy-dependent
potential Vorig(x,E) = V̄HO(x,E) starting from E = 0 to
E = E′ = 4Evertex. The inverse potential (green dashed)
is labeled as Vinv(x) and the width equivalent potential (red
dotted dashed) is labeled as Vwidth(x). Bottom panel: Here
we show the transmission for the original potential Torig(E)
(black solid line), the inverse potential Tinv(E) (green dashed
line) and the width-equivalent potential Twidth(E) (red dot-
dashed lines).
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FIG. 10. Application of the inverse method to the energy-
dependent Pöschl-Teller potential Eq. (20) for case a/b > 0,
with parameters a = −10, b = −0.6, c = 0.3, k = 0.3, and
V0 = 10. Top panel: The series of curves of varying colors
indicates the chosen value of E when computing the energy-
dependent potential Vorig(x,E) = VPT(x,E) starting from
E = 0 to E = E′ = 2Elimit. The inverse potential (green
dashed) is labeled as Vinv(x) and the width equivalent po-
tential (red dotted dashed) is labeled as Vwidth(x). Bottom
panel: Here we show the spectrum of bound states for the
original potential Eorig

n (black circles), the inverse potential
Einv

n (green cross) and width-equivalent potential Ewidth
n (red

squares).

−15 −10 −5 0 5 10 15
x

0

5

10

15

20

25

30

V
(x

)

Evertex

Vorig(x,E = 0)

Vorig(x,E = E ′)

Vinv(x)

Vwidth(x)

0 2 4 6 8 10 12 14 16
E

10−39

10−33

10−27

10−21

10−15

10−9

10−3

T
(E

)

Torig(E)

Tinv(E)

Twidth(E)

FIG. 11. Application of the inverse method to the energy-
dependent Pöschl-Teller potential Eq. (20) for case a/b > 0,
with parameters a = 5, b = 0.5, c = 0.2, k = 0.2, and
V0 = 0. Top panel: The series of curves of varying colors
indicate the chosen value of E when computing the energy-
dependent potential Vorig(x,E) = VPT(x,E) starting from
E = 0 to E = E′ = 2Evertex. The inverse potential (green
dashed) is labeled as Vinv(x) and the width equivalent po-
tential (red dotted dashed) is labeled as Vwidth(x). Bottom
panel: Bottom panel: Here we show the transmission for the
original potential Torig(E) (black solid line), the inverse po-
tential Tinv(E) (green dashed line) and the width-equivalent
potential Twidth(E) (red dot-dashed lines).
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