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A general theory for the melting of two dimensional solids explaining the universal and non-universal prop-
erties is an open problem up to date. Although the celebrated KTHNY theory have been able to predict the
critical properties of the melting transition in a variety cases, it is already known that it is not able to capture
the occurrence of first order transitions observed in certain systems as well as it doesn’t provide a clear way to
calculate the melting temperature for a specific model. In the present work we have developed an analytical
method that combines Self Consistent Variational Approximation with the Renormalization Group in order to
deal simultaneously with the phonon fluctuations and the topological defects present in the melting process of
two dimensional crystals. The method was applied with impressive success to the study of the phase diagram
of the Gaussian-core model, capturing not only the reentrant feature of its 2D solid phase, but also the related
critical temperatures as a function of the density in quantitative detail. The developed method can be directly
applied to study the melting of any hexagonal simple crystal formed by particles interacting through any finite
pairwise interaction potential. Additionally, it has the potential to explain the occurrence of first order transitions
in the melting process of two dimensional crystals.

I. INTRODUCTION

Two dimensional systems described by continuous microscopic variables present unusual phase transitions between the low
and high temperature phases. This is related with the fact that in two dimensions thermal fluctuations are quite strong, preventing
the stabilization of a long range ordered phase1–4. In this scenario, a vestigial quasi long-range order is often observed at low
temperatures with slowly power law decaying correlations functions5,6. Such is the case of the nematic, 2D-solid and hexatic
phases7–15 in a vast class of different physical systems like ultra-thin magnetic films16–18, quasi two dimensional copolymer
systems19,20), vortex matter in two dimensional superconductors21–23 and many others13,14.

The study of these kind of phases has its origin in a series of pioneering works by Berezinskii, Kosterlitz, Thouless (BKT),
Halperin, Nelson and Young5,6,24–29. In these works it was established the central role of the thermal induced process of pair
unbinding and proliferation of topological defects in the disruption of the quasi long-range order. From the technical point of
view the development of this research area is historically tied with the development of a proper Renormalization Group (RG)
theory capable to describe the proliferation of the topological excitations at high-temperature. The success of this RG scheme
granted the 2016 Nobel prize in physics 30.

Despite this huge success, important questions remain open today in the physics of 2D transitions. Most of these questions
originate from the difficulty to properly estimate non-universal properties, such as the transition temperature, in the wide range
of diverse physical system, where topological defects unbinding occurs. Indeed, while the BKT RG scheme yields a phe-
nomenological description of the coarse grained topological variables, the connection between their properties and the actual
microscopic theory at hand is often unfeasible. Thus, a natural question arises “How can we maintain a close connection be-
tween the microscopic details of the system and its BKT description?”. In the context of the melting of two-dimensional crystals,
one can also ask “How can we construct a RG scheme which accounts for the variety of scenarios observed in simulations and
experiments that include first order phase transitions31–35?". The answers to these questions are the topic of the present work.

In order to access non-universal properties, first, it is necessary to build RG equations maintaining full connection with the
microscopic model. Second, good estimates of the relevant energy of the defects are needed to capture the temperature scale
of the corresponding phase transition36,37. And lastly, the effects of smooth fluctuations on the ground state should be taken
into account, since close to the melting temperature they could produce a significant deviation of the effective microscopic
rigidity from its bare or zero temperature value6,17,38. Following this route it has been possible to estimate the properties of
the topological phase transition in diverse XY model configurations 37,39–42. In few specific cases the Self-Consistent Harmonic
Approximation (SCHA) has been used to calculate the effective rigidity as a function of temperature and simultaneously this
information used as an input of the RG equations in order to estimate the melting temperature better than RG or variational Mean
Field alone 36,41.

In this context, the construction of a similar calculation scheme for the study of the melting process of two dimensional
crystals still constitutes an unexplored route. The construction of such method shall provide not only good estimates for the
melting temperature of two dimensional crystals but shall also yield a self-consistent approach providing the correct qualitative
behavior of the phases below and above the transition. This last property constitutes a substantial advantage with respect to the
several implementations of Density Functional Theory (DFT), which have been used to tackle the melting problem in two and
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three dimensional crystals,43–45. These traditional approaches in the vast majority of cases consider that the 2D solid phase can be
treated as a periodic phase which breaks translational symmetry, yielding a major shortcoming that in general produces a wrong
description of the critical properties of the melting transition, or even predict incorrectly the nature of the phase transition itself.
In light of the previous discussion, a theory of 2D melting, that we intend to construct, represents a major advancement towards
the understanding of melting in two-dimensional crystals, as it will be capable to explain the diversity of melting scenarios
observed in numerical simulations31–34,46–50.

In this work we implement a Self-Consistent Harmonic technique that retains total connection with the microscopic model.
This allows us to determine the effective elastic Lamé’s coefficients as a function of the density of particles and the temperature.
A first mean field estimate of the melting temperature then can be found as the moment when the effective transversal elastic
rigidity goes to zero. Contrasting with all other DFT techniques in two dimensions, this kind of mean field calculation has
the distinctive virtue of being able to describe properly the qualitative behavior of the phases below and above the melting
transition. To improve the mean field results, we use the obtained values for the effective elastic coefficients as an input into the
RG equations for the melting transition of a two-dimensional solid. This produces a strong correction to the phase boundary of
the 2D solid phase. To test the quality of this method that incorporates the SCHA into the RG theory we performed extensive
overdamped Langevin simulations to determine an accurate melting curve for the two dimensional solid phase. The obtained
analytical results shows an impressive agreement with the simulational results.

II. SELF-CONSISTENT HARMONIC APPROXIMATION FOR THE 2D SOLID MELTING

We consider a classical system of particles in two dimensions interacting through a Gaussian pairwise potential of the form
V (r) = V0 exp(−r2/r20), known as the Gaussian-Core Model (GCM)51–53. The parameters r0 and V0 represent the range and
the intensity of our soft-core potential, respectively. The partition function of this model can be written directly in terms of the
configurational integral, which is obtained after integrating over all momenta of the particles:

Z =
1

N !

∫ (∏
i

d2ri
Λ2

)
e−β

∑
i<j V (|ri−rj |), (1)

where Λ ≡ h/
√
2πmkBT is the de Broglie thermal wave length and N the number of particles. Having in mind that our goal

is to study the melting of the two-dimensional solid phase it is natural to consider that each particle will effectively explore a
region of finite "volume" around its equilibrium position. This consideration allows us to write the position of each particle ri
as Ri + ui, where Ri represent the equilibrium lattice position of the i-particle and ui its relative position respect Ri.

For the pair interaction potential we are considering, the ground-state configuration is given by a triangular lattice with
spacing a = (2/

√
3ρ)1/2, where ρ stand for the density of particles in two dimensions. In this way the equilibrium positions

of the particles can be represented as Rj = a (ne1 +me2), with n and m integers and the basis vectors of the lattice taken as
e1 = (1, 0) and e2 = (−1/2,

√
3/2).

Once we include the combinatorial factor of distributing the N particles of the system on the N sites of the solid, the partition
function can be rewritten as:

Z =

∫ ∏
i

d2ui

Λ2
e−

β
2

∑
i̸=j V (|Ri−Rj+ui−uj |). (2)

This last expression allows us to define our effective Hamiltonian as H ≡ 1/2
∑

i ̸=j V (|Ri − Rj + ui − uj |). Before we
proceed to implement the Self-Consistent Harmonic Approximation (SCHA) in order to obtain the melting curve of the 2D solid
phase, it is worth mentioning that the usual mean-field approaches devised as a variational theory on the local density profile
fails to identify the 2D solid phase. Instead, depending on the pair interaction potential, such theory can predict at most a phase
with broken translational symmetry in two dimensions - which is forbidden by the Mermim-Wagner theorem. Moreover, in our
case, since the Fourier transform of our pair interaction potential is positive-definite, even such a theory would fail to identify
the existence of the solid phase. Furthermore, the GCM have a density versus temperature reentrant hexagonal solid phase in
its low temperature regime52 and the melting of the solid phase occurs through a two-step process with an intermediate hexatic
phase existing in a very narrow temperature region53.

Now we proceed with the implementation of the SCHA. The Fourier transform of the field u(Rj) on the triangular lattice is
defined as:

u(Rj) =

√
3a2

2

∫
BZ

d2q

(2π)
2 e

iq·Rj û(q), (3)

û(q) =
∑
j

e−iq·Rju(Rj), (4)
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where the momentum integral is performed over the first Brillouin zone (BZ) of the triangular lattice. We choose our test
Hamiltonian in the usual harmonic form for an hexagonal two dimensional solid (see Appendix A):

H0 =Nϵ0(ρ) +
1

2

(√
3a2(ρ)

2

)
×∫

BZ

d2q

(2π)
2

[
f1(q)

∣∣û∥(q)∣∣2 + f2(q) |û⊥(q)|2
]
,

(5)

where ϵ0(ρ) represent the ground state energy per particle of the GCM at a given density ρ. The dispersion relations f1(q) and
f2(q) represent the longitudinal and transversal elastic test response functions to be found, in principle, through the minimization
of the variational free energy functional. Additionally, the longitudinal and transversal elastic fields are given as: û∥(q) =
−iq · û(q)/q and û⊥(q) = −iq⊥ · û(q)/q, with q⊥ = (−qy, qx).

Although the form of the test Hamiltonian may look highly elaborated it is in fact quite intuitive since it coincides with the
expansion ofH up to second order in powers of û(q), considering generic dispersion relations for the longitudinal and transversal
elastic modes. In the long wave limit (q → 0), the harmonic theory predicts f1(q) = (2µ + λ)q2 and f2(q) = µq2, where µ
and λ represent the so-called Lamé’s elastic coefficients – these and other results of harmonic theory for the solid elasticity are
reviewed in the Appendix A.

Now we can proceed with the construction of the variational free energy. As it is well known, the actual free energy of the
system is bounded from above by the minimum of the functional:

Fvar = F0 + ⟨H⟩0 − ⟨H0⟩0 , (6)

where ⟨◦⟩0 = 1
Z0

∫
Πidui exp(−βH0)◦. Given the Gaussian character of our test model it is not hard to conclude that:

〈
û∥(q)û∥(q′)

〉
0
=

(2π)2δ(q + q′)
√
3a2

2 βf1(q)
,

⟨û′⊥(q)û′⊥(q′)⟩0 =
(2π)2δ(q + q′)

√
3a2

2 βf2(q)
,

(7)

and consequently:

⟨H0⟩0 = Nϵ0 +
1

2

(√
3a2

2

)
×∫

d2q

(2π)2
[
f1(q)

〈
|û∥(q)|2

〉
0
+ f2(q)

〈
|û⊥(q)|2

〉
0

]
= Nϵ0 +NkBT.

(8)

Now we focus on the determination of the free energy of the test model F0, which can be obtained from the corresponding
partition function Z0. In this case the quadratic form of the test Hamiltonian (5) allows for a direct integration of the Gaussian
degrees of freedom, obtaining:

Z0 = e−βNϵ0

(∏
q

2π

βΛ2
√
f1(q)f2(q)

)
, (9)

which lead us to a free energy of the test Hamiltonian of the form:

F0 = − 1

β
logZ0 = Nϵ0 +

1

β

∑
q

log

(
βΛ2

2π

√
f1(q)f2(q)

)

= Nϵ0 +
N

βρ

∫
BZ

d2q

(2π)2
log

[
βΛ2

2π

√
f1(q)f2(q)

]
.

(10)

To proceed with the construction of our variational free energy, we should now determine ⟨H⟩0. Considering the translational
symmetry of the solid phase, it is possible to write:

⟨H⟩0 =
N

2

∑
Ri ̸=0

⟨V (Ri + u(Ri)− u(0))⟩0 , (11)
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where {Ri} corresponds to the equilibrium positions of the particles in a hexagonal solid at a fixed density. At the same time,
the average interaction energy between two particles linked to lattice sites separated by a vector R is given by:

⟨V (R+ u(R)− u(0))⟩0 =

∫
d2q

(2π)2
eiq·Rgq(R)V̂ (q), (12)

where we have used the standard form of the Fourier transform in two dimensions to decouple the average process of the potential
V (r). Here gq(R) ≡

〈
eiq·(u(R)−u(0))

〉
0
, represent the positional correlation function calculated with the Boltzmann measure

of H0. Considering now the Gaussian nature of the stochastic variables u(R), we can express gq(R) as:

gq(R) = exp

−1

2

∑
α,β

qαqβ ⟨(uα(R)− uα(0))(uβ(R)− uβ(0))⟩0


= exp

−1

2

∑
α,β

qαqβ

(√
3a2

2

)2 ∫
d2kd2k′

(2π)2
(
eik·R − 1

) (
eik

′·R − 1
) 〈
uα(k)uβ(k′)

〉
0


= exp

{
−1

2

√
3a2

2

∫
BZ

d2k

(2π)2
2 (1− cos(k · R))

[
(k · q)2

k2
〈
|û∥(k)|2

〉
0
+

(k⊥ · q)2

k2
〈
|û⊥(k)|2

〉
0

]}

= exp

{
− 1

βρ

∫
BZ

d2k

(2π)2
(1− cos(k · R))

[
(k · q)2

k2
1

f1(k)
+

(k⊥ · q)2

k2
1

f2(k)

]}
.

(13)

At this point we can verify that in the limit of zero temperature (β → ∞) the positional correlation function converges to one,
as expected for the perfectly ordered crystal.

The expression in Eq. (13), once inserted in Eq. (12), complete the construction of the variational free energy functional in
terms of f1(q) and f2(q). In this way, the variational free energy per particle in units of kBT can be written as:

βfvar[f1(q),f2(q)] =
1

ρ

∫
BZ

d2q

(2π)2
log

[
βΛ2

2π

√
f1(q)f2(q)

]
− 1 +

β

2

∑
Rj ̸=0

∫
d2q

(2π)2
eiq·Rjgq(Rj)V̂ (q).

(14)

Demanding δfvar/δf1(q0) = 0 and δfvar/δf2(q0) = 0, we obtain the following set of integral equations for f1(q) and
f2(q):

f1(q0) =
∑

Rj ̸=0

(cos(q0 · Rj)− 1)×

∫
d2q

(2π)2
eiq·Rj V̂ (q)gq(Rj)

(q0 · q)2

q20

f2(q0) =
∑

Rj ̸=0

(cos(q0 · Rj)− 1)×

∫
d2q

(2π)2
eiq·Rj V̂ (q)gq(Rj)

(q⊥
0 · q)2

q20
,

(15)

where q0 = (q0,x, q0,y), q⊥
0 = (−q0,y, q0,x) and gq(Rj) is defined in Eq. (13). The numerical solution of this set of integral

equations is a quite difficult task. However, it is expected that the long distance elastic properties of the system is captured by
low momentum behavior of f1(q) and f2(q). This can be used to follow a simpler approach to determine the boundary in the
phase diagram of the 2D solid phase. Considering the symmetries of the solid phase under study, we already know that in the
low momentum regime (q → 0) the leading order term of the functions f1(q) and f2(q) is proportional to q2. This feature can
be used to derive a system of equations for the effective Lamé coefficients of the solid, which we define as:

r1(T ) =
1

2
lim
q→0

(∂2f1(q)/∂q
2) ≡ 2µ(T ) + λ(T )

r2(T ) =
1

2
lim
q→0

(∂2f2(q)/∂q
2) ≡ µ(T ).

(16)
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In this way, considering the form of Eq. (15), we can conclude that the elastic coefficients satisfy the following set of equations:

r1 = −1

2

∑
Ri ̸=0

(e · Ri)
2

∫
d2q

(2π)2
eiq·Ri V̂ (q)gq(Ri)(e · q)2,

r2 = −1

2

∑
Ri ̸=0

(e · Ri)
2

∫
d2q

(2π)2
eiq·Ri V̂ (q)gq(Ri)(e⊥ · q)2,

(17)

where e can be taken as (1, 0) and e⊥ as (0, 1). Once we have obtained an exact system of equations for r1 and r2 it is natural
to approximate f1 and f2 by its low momentum form (f1(k) = r1k

2 and f2(k) = r2k
2) in the calculus of gq(R). This

consideration lead us, after a simple but lengthy calculation, to:

gq(R) = exp
[
−ω∥(R)q2∥ − ω⊥(R)q2⊥

]
, (18)

where q∥ and q⊥ represent the components of q parallel and perpendicular to R, and the coefficients ω∥(R) and ω⊥(R) depend
on r1 and r2 in the following way:

ω∥(R) =
1

βρ

(
A∥(R)

r1
+
A⊥(R)

r2

)
ω⊥(R) =

1

βρ

(
A⊥(R)

r1
+
A∥(R)

r2

)
.

(19)

and the functions A∥(R) and A⊥(R) are defined as the following integrals over the first Brillouin zone of the hexagonal crystal:

A∥(R) =

∫
BZ

d2k

(2π)2
1− cos(k · R)

k4
(k · R)2

R2

A⊥(R) =

∫
BZ

d2k

(2π)2
1− cos(k · R)

k4
(k · R⊥)

2

R2
.

(20)

Here it is important to mention that, in the determination of gq(R), we have neglected the cross term proportional to q∥q⊥ in
the argument of the exponential function. This approximation is very well justified since, depending on the direction of R, the
corresponding coefficient is either zero, or a small and rapidly decreasing function of R whose highest value is of the order of
1% of the other coefficients in the quadratic form.

In this way the obtained expression for gq(R) in Eqs. (18) and (19) allows us to close the system of Eqs. (17) for r1(T ) and
r2(T ). Such system can now be used to determine the effective Lamé coefficients as they are affected by phonon fluctuations.
We can then identify the 2D solid phase as the region in the phase diagram in which the effective shear modulus r2(T ) > 0.

A. Application to the Gaussian-Core Model (GCM)

As mentioned earlier in this work we focus on the analytical study of the GCM for which V̂ (q) = πV0e
−q2r20/4. The Gaussian

form of this potential allows the analytical integration of the right-hand side of equations (17), leading us to following system of
equations for r1(T ) and r2(T ):

r1,2 = −
∑

R

R2
xe

− R2

1+4ω∥

32R2( 14 + ω∥)5/2(
1
4 + ω⊥)3/2

×[
2R2

y,x(
1

4
+ ω∥)

2 −R2
x,y

(
R2 − 2(

1

4
+ ω∥)

)
(
1

4
+ ω⊥)

]
.

(21)

where the sum over R, as in eq. (17), is performed over the hexagonal lattice with spacing a(ρ), and ω∥ and ω⊥ represents
the functions of R given by eq. (19). Finally, the coefficients A∥(R) and A⊥(R) entering in the system (21) are determine
numerically for each value of R. Now we can proceed with the numerical solution of the system for r1 and r2 at any density
and temperature.

In the first column of Fig. 1 we show the numerical solution for µ and 2µ + λ as a function of temperature at several fixed
densities of particles. As we can see, the transversal elastic coefficient, or shear modulus, µ(T ) displays the typical behavior
of the order parameter in a BKT-like transition with an abrupt decay when temperature approaches the melting temperature
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0

0.1

0.2

0.3
ρr20

(a)

(c)

(b)

(d)

0

0.75

1.5

2.25

0 0.025 0.05 0.075 0.2 0.4 0.6 0.8

µ
/
V
0

0.18
0.26
0.34
0.42
0.50

(2
µ
+

λ
)/
V
0

kBT/V0 ρr20

T = 0
T = Tm

FIG. 1: Behaviour of the Lamé coeficients µ and 2µ + λ, resulting from the variational approach as function of the temperature, for some
specific density values. The temperature ranges between zero and the critical value Tm, at which the µ(T ) function has a infinite slope.
Comparison of the Lamé coefficients at T = 0 and T = Tm. The solid curves represent the ground state values and the dashed lines represent
the value at T = Tm.

(Tm). In terms of densities, we are able to observe the re-entrant behavior of µ(T ) already expected from previous numerical
simulations results53. In the other hand, the longitudinal elastic coefficient 2µ(T ) + λ(T ) grows steadily with the density, a
expected behaviour for any stable solid. Additionally, we observe that this quantity is an increasing function of temperature in
the region of densities where µ takes its maximum value, as can be seen in Fig. 1-b. This unusual behavior is related with the
fact that in this region of densities the fluctuations in the position of particles tends to increase the effective repulsion between
them.

In the second column of Fig. (1), we show a comparison between the values of µ and 2µ + λ, at zero and at the meting
temperature, as the density is increased. We observe that the value of µ decreases with temperatures at all densities, while
(2µ+ λ) displays a weak non-monotonical behavior with temperature.

Finally, the melting curve in the temperature versus density plane can be observed in Fig. (2) in green. A detailed analysis of
this phase diagram for the GCM and its comparison with equivalent results using different techniques will be presented in the
following sections. However, we can anticipate that direct comparison with simulation results lead us to conclude that this mean-
field technique overestimates significantly the maximum melting temperature of the model. Nevertheless, the SCHA developed
in this work has the merit of being a novel mean field calculation describing properly the ground-state properties of the system
as well as the qualitative behavior of the 2D solid phase and its melting.

III. DEFECT MEDIATED PHASE TRANSITION AND RG RELATIONS

In order to improve the agreement between the mean field results and the computational results is necessary to take into
account the effects of the relevant topological defects, known as dislocations. The proliferation of dislocations is quite effective
in disrupting the periodic order of the solid phase as the melting process occurs increasing temperature. The theory for describing
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the defect mediated melting transition in two dimensions, also known as KTHNY theory, was provided in a series of foundational
works by Toner, Halperin, Nelson and Young26,28,29,54 in which RG equations are obtained for the renormalized Young’s modulus
and fugacity of the dislocations, respectively.

The RG system of equation for the Young’s modulus in units of kBT (K(l)) and the defect’s fugacity (y(l)) is given by:

dK−1

dl
=

3

2
πy2(l)eK(l)/8π

[
I0

(
K(l)

8π

)
− 1

2
I1

(
K(l)

8π

)]
,

dy

dl
=

[
2− K(l)

8π

]
y(l) + 2πy2(l)eK(l)/16πI0

(
K(l)

8π

)
, (22)

with the initial conditions given by the bare values of K and y, i.e. K(0) = 4µ(µ+λ)
(2µ+λ)kBT and y(0) = exp(−Ec/kBT ). Here

µ and λ represent the Lamé’s coefficients and Ec represent the energy of an isolated defect. Within RG theory the melting
temperature corresponds to the lowest temperature at which K(l → +∞) = 0, signaling that the long distance effective rigidity
of the system goes to zero.

To use the RG equations for detecting the melting transition the energy of the relevant defects in the melting process should be
provided. In our case we estimate such quantity using the harmonic elastic theory to calculate half of the energy corresponding
to a pair of conjugate dislocations. The obtained result depends on the orientation of the Burguer’s vector of the dislocations (e)
with respect to the underlying lattice, and weakly on the orientation of the distance vector between the dislocations of the pair
d. Since there is a continuum of possible configurations for the dislocation pair, the energy of the dislocation is estimated as
the average energy between all configurations maintaining the minimum possible length of the dislocation pair. In this way the
energy of a dislocation in units of kBT is estimated to be:

Ec

kBT
= K(0)

∫
BZ

d2q

(2π)2

〈
(q⊥ · e)2

〉 〈
sin(q · d/2)2

〉
q4

≈ 0.072K(0). (23)

An important consideration to reach this result is related to the minimum distance between a pair of stable dislocations.
Numerical simulations performed for the GCM model lead us to the conclusion that such distance is higher than the lattice
spacing. One useful way to obtain a pair of stable dislocations in this system is to subtract a particle from a perfect crystal
configuration and leave the system to relax to a new stable configuration exhibiting a pair of dislocations separated by a distance
that can be roughly estimated to d =

√
3a55. More details on how to reach this conclusion and calculate the energy of a

dislocation pair can be found in Appendix B.
We realize now that, since the initial condition of the RG flow equations are completely determined by the value of the bare

Young’s modulus in units of thermal energy K(0), the melting transition will occur at a certain specific value of the parameter
K(0). In this case the direct numerical solution of the system of Eqs. (22) allow us to conclude that the melting transition occurs
approximately at K(0)c ≈ 23.922π. It is important to mention that within the KTHNY theory, it is well established that the
effective Young’s modulus at the critical pointK(l → ∞) is equal to 16π. However the corresponding value of the bare Young’s
modulus K(0) it is not an universal quantity and its value at the critical point depends on the specific energy cost of the relevant
defects. The value of K(0)c can now be used to build the melting curve considering the calculated Lamé’s coefficients, µ(T )
and λ(T ), dressed by phonon fluctuations. The melting temperature (Tm) of the 2D solid phase at a given density is determined
from the self-consistency relation 4µ(ρ, Tm)(µ(ρ, Tm) + λ(ρ, Tm))/ ((2µ(ρ, Tm) + λ(ρ, Tm))kBTm) = 23.922π.

The result of this procedure is shown in Fig. 2, which can be compared with our Molecular Dynamics (MD) simulations
results for the 2D solid melting temperature, discussed further in the next section. The agreement between the analytical and
computational results is quite impressive, indicating that the proposed method not only captures well the phenomenology of the
described phase transition but also produce a precise estimation of the melting transition.

IV. NUMERICAL SIMULATIONS

In order to confront the theoretical phase diagrams found in the previous sections, we have performed molecular dynamics
(MD) simulations of the GCM in a NVT or canonical ensemble. It is worth mentioning that the analytical results of this work
are derived in the same ensemble, while previous simulation results for this model are available in the NPT ensemble53. We are
interested in sampling the equilibrium configurations, so we have employed the Langevin equation in the overdamped limit to
simulate the behavior of the system in contact with a heat bath:

γṙi = −
∑
j

∇iV ( |ri − rj |) +
√

2kBTγ ξi(t), (24)
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FIG. 2: Phase diagram for simulations are represented by black circles and dashed line (cubic splines used as guide to the eyes). The result for
variational mean field is presented by a green line and renormalization group + variational approach in orange.

where T is the temperature of the thermal bath and γ is the viscosity. We have chosen to measure the timescales in units of γ and
the temperature scales in units of V0/kB . The random force ξi(t) is a white noise with ⟨ξi(t)⟩ = 0 and ⟨ξi(t)ξj(t′)⟩ = δijδ(t−t′).

The simulations have been performed using the Heun algorithm to integrate numerically the N stochastic differential equa-
tions of motion56, for which we used a time step dt/γ = 0.1. In order to accelerate the relaxation to thermal equilibrium at
all temperatures, we have used the parallel tempering technique57,58, considering sets of two types of initial conditions, one
corresponding to a liquid (disordered) and another to a crystalline hexagonal lattice. This allows to define a criterion to identify
thermal equilibrium at each temperature as the stage at which all sets of configurations attain the same stationary state. We have
used a number of particles ranging from 1024 up to 8100 particles.

In order to characterize the phase diagram of the system, we measure two relevant and well established order parameters
associated to the translational (ψT ) and bond-orientational orders (ψ6)9. They are defined as:

ΨT =
1

N

∣∣∣∣∣∣
N∑
j

eik0·r

∣∣∣∣∣∣ , (25)

Ψ6 =
1

N

∣∣∣∣∣∣
N∑
j

1

Nnn(j)

Nnn(j)∑
l

e6iθjl

∣∣∣∣∣∣ , (26)

where k0 represents the characteristic wave vector of the reciprocal lattice, estimated from the position of the peaks in the
structure factor. Additionally, Nnn(j) stand for the number of nearest neighbours of the particle j and θjl is the bond angle
between particles j and l, both determined from a Delaunay triangulation.

The goal of our computational study is to address the construction of the density versus temperature phase diagram for the
GCM. In particular, we focus in the estimation of the 2D solid melting temperature. Furthermore, it is well established in
previous works that the solid-liquid melting in the GCM occurs through an intermediate hexatic phase, present in a quite slim
region next to the 2D solid phase boundary. Also, in this work we estimate the phase boundaries of the hexatic phase.
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FIG. 3: Susceptibilities of the order parameters for increasing number of particles, for (a) ρr20 = 0.4 and (b) ρr20 = 0.7. The susceptibility
associated to the translational order parameter (χT ) in presented in magenta and the corresponding to the orientational order parameter (χ6)
in green. The width of the filled curves represent the statistical uncertainty of the data. (c) Phase diagram of the GCM from MD simulations
in NVT ensemble. The points in green are the estimates for the hexatic-liquid phase boundary and points in magenta are the analog for the 2D
solid-hexatic phase boundary. The lines are guides to the eyes. The narrow region in grey corresponds to the hexatic phase.

The signatures of the transitions are more pronounced if we study the corresponding order parameter susceptibilities, defined
as:

χα ≡ 1

kB

∂Ψα

∂T
=

N

kBT

[〈
Ψ2

α

〉
− ⟨Ψα⟩2

]
. (27)

In order to estimate the 2D solid melting temperature we observed the maximum of the translational order parameter suscep-
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tibility (χT ), whereas for the hexatic melting temperature, the maximum of orientational order parameter susceptibility (χ6).
These quantities are shown as a function of temperature in the first row of Fig. 3 for an increasing number of particles and for
two values of the density. The corresponding melting temperatures can be estimated by extrapolating linearly the location of the
maxima as a function of N−1/2. It is important to mention that considering the temperature corresponding to the maximum of
the susceptibilities for the largest system size would produce a visually indistinguishable phase diagram in comparison with the
one presented above. The resulting phase diagram is shown in Fig. 3.c, where we can notice that the extension of the hexatic
phase is quite narrow in temperature and increases progressively with density from ρr20 > 0.4. For the comparison between
simulational and analytical results in Fig. 2 we have considered the magenta curve from Fig. 3.c, which corresponds to the
boundary of the 2D solid phase.

A. Melting criteria from Young modulus measurements

One of the conclusions of our analytical results in the previous section is that the bare Young modulus K(0) in units of
kBT at the melting temperature takes approximately the value of 23.9π for the GCM. This value is a consequence of the
microscopic model constructed to estimate the core energy of the dislocations, shown in detail in Appendix B. Conversely, the
K(l → ∞) = 16π criterion for the renormalized Young modulus is an universal prediction from the KTHNY theory valid for
any model in principle. In this scenario, a microscopic calculation of the bare and renormalized Young modulus would be an
important and independent validation of our analytical predictions.

The Young modulus can be measured in numerical simulation by well established techniques, such as the one that measures
the elastic properties from unperturbed equilibrium distances between particles, shown in early works from Squire et al 59. This
method uses a quadratic expansion in the deformation field for the Helmholtz free energy density f , in order to extract the elastic
tensor componentsCijkl = ∂2f/∂ηij∂ηkl|η=0, where ηij represent a small strain tensor perturbation in the equilibrium positions
of the particles. These elastic constants can be expressed as a sum of different contributionsCxyxy = C44 = C(B)+ρkBT−C(F )

44

and Cxxyy = C12 = C(B) − C
(F )
12 . Here, the Born term is the same for both of these constants and can be written as:

C(B) =
1

V

〈∑
i<j

(
V ′′(rij)−

V ′(rij)

rij

)
x2ijy

2
ij

r2ij

〉
, (28)

while the fluctuation terms are given by:

C
(F )
44 =

V

kBT

[〈
σ2
xy

〉
− ⟨σxy⟩2

]
(29)

C
(F )
12 =

V

kBT
[⟨σxxσyy⟩ − ⟨σxx⟩ ⟨σyy⟩] , (30)

where the stress tensor is defined as:

σαβ =
1

V

∑
i<j

V ′(rij)
rαijr

β
ij

rij
, (31)

where α, β are the Cartesian components of the distance rij between pairs of particles. In order to estimate the Young’s modulus,
we define the shear modulus as G = C44 − P and the bulk modulus as B = C44 +C12, where the pressure P can be calculated
using the virial expression. In this way, the Young’s modulus can be found as:

K =
4a2

kBT

GB

G+B
(32)

where a = (2/
√
3ρ)1/2 is the triangular lattice spacing. This quantity has been measured in two-dimensional melting simulation

studies using the same technique depicted above60–62, as well as using other methods63–65.
The fluctuation contributions to the elastic constants given by Eqs. (29) and (30) are variances of the intensive variables

σαβ . These variances are expected to behave as 1/N , in order to produce finite values of C(F )
44 and C(F )

12 in the thermodynamic
limit. Within the SCHA the variables rαij in Eq. (31) have a Gaussian probability distribution. In general, such equation can be
rewritten in terms of the Fourier transform of the pair potential V (r), which allow us to translate the nontrivial rij-dependence
of the kernel of σαβ to an expression that contains rij only in the argument of complex exponentials. The stochastic average
of these kind of quantities decay exponentially with the quadratic fluctuation of rij . In this way, the fluctuation contributions to
the elastic constants given by Eqs. (29) and (30) can be seen as ’variance of variances’ that, within the SCHA, are expect to be
particularly small.
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Within this hypothesis we can identify the Eq. (32) calculated without the contributions from Eqs. (29) and (30) as K(0), the
bare value of the Young’s modulus in units of thermal energy as calculated within the SCHA. Consequently, we can think of this
quantity measured in simulations as the effective Young’s modulus affected only by phonon fluctuations. From this estimation
of K(0) obtained within numerical simulations we can independently verify the melting criterion for the GCM obtained from
analytical calculation (K(0)c ≃ 23.9π). At the same time, taking into account all contributions to C44 and C12 in Eq. (32) lead
us to the macroscopic effective value of the Young’s modulus K ≡ K(l → ∞) within our simulations. This provides a more
standard path for the determination of the melting temperature of the 2D solid phase in numerical simulations, resulting from
the criterion K(Tc) = 16π.

Finally, we present in Fig. 4.(a) the behavior of the bare Young’s modulus K(0) together with the reference value of 23.9π for
the melting temperature, and in Fig. 4.(b) the macroscopic Young’s modulus K with its reference value of 16π. By selecting, at
each density, the corresponding melting temperature we can draw the estimated 2D solid phase boundary corresponding to each
melting criterion. The comparison of these phase boundaries with the one shown in Fig.3.(c) is presented in Fig. 4.(c). As can
be observed, the criterion K(0)c ≃ 23.9π for the GCM produces a 2D solid phase boundary that agrees well with the results
obtained from more general methods.

V. CONCLUSIONS

In the present work we have developed a novel technique to study the 2D solid melting transition of the GCM. Although the
boundary of this phase is already known from previous computational studies, up to our knowledge, this is the first time that it
is reproduced analytically with such level of accuracy. In contrast with other MF predictions, we have observed that the SCHA
alone is able to predict correctly the qualitative properties of the melting transition, such as the reentrant melting curve and the
density for which the melting temperature is higher. In spite of this, only the mechanism of topological defects proliferation
related to BKT like transitions is able to explain the significant reduction of the melting temperature when compared with MF
predictions. This mechanism is captured in our approach by performing a two-step calculation where the Young’s modulus
and the defects fugacity calculated by MF are used as initial condition of the RG flow describing dislocation proliferation and
unbinding.

Our approach demonstrates how the relative low value of the energy of dislocation pairs causes a drastic reduction of the
melting temperature, due to the early proliferation of topological defects. The effect is correctly captured by the RG system in
Eq. (22), once proper values of the defect parameters are introduced. Our estimate for the energy of the defects can be seen as a
leading order approximation, since in general it is expected that higher order contributions will depend on the particle’s density
and on the Young’s modulus itself in a nonlinear way. This is a possible explanation for the small difference observed in Fig. 2
between the analytical and numerical melting curves at higher densities. A better agreement could be reached by improving the
estimation of the energy of the defects, however such involved calculation is beyond the scope of the present work. Additionally,
it is important to mention that in the low density regime where the effects of the phonon are weak we verified that, as expected,
the melting curves calculated using the zero temperature Young’s modulus and using the effective one dressed by phonons
produces similar melting curves.

We would like to stress that the presented method is an important step not only in the characterization of the melting transition
of two 2D crystals but also to the study of this process in other modulated two dimensional systems, like for magnetic 2D
textures66–70. Finally, it is worth noticing that the developed method has the potential to produce melting scenarios originally not
contained in the KTHNY theory. A first order transition melting scenario is in principle a possibility in those cases where the
SCHA produces a discontinuous melting transition and the defect energy is high enough for the mean field transition to takes
place at lower temperature than the one predicted by RG equations. In this sense, this kind of self-consistent variational plus
RG methods can possibly provide a more general framework to explain the variety of melting scenarios observed in different
models.
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Appendix A: Harmonic theory for the solid elasticity

In this appendix the elastic properties of the harmonic solid are deduced. The Hamiltonian of a classical system ofN particles
interacting through a pair potential V (r) is given as:

H =
∑
i

p2
i

2m
+
∑
i<j

V (|ri − rj |), (A1)

and the associated canonical partition function is:

Z0 =
1

N !

∫ (∏
i

d2rid2pi

h2

)
e−βH (A2)

=
1

N !

∫ (∏
i

d2ri
Λ2

)
e−β

∑
i<j V (|ri−rj |). (A3)

Considering that the ground-state of the system is given by a hexagonal crystal with lattice sites Ri, the fluctuations in the
particles’ positions can be defined as ui = ri −Ri. We can now expand the potential energy up to second order in u, which lead
us to:

V0 =
1

2

∑
i ̸=j

V (|ri − rj |) =
1

2

∑
i̸=j

V (|Ri − Rj + ui − uj |)

≈1

2

∑
i ̸=j

{
V (Ri − Rj) + ∇⃗V (Ri − Rj) ·∆u+

+
1

2
∆uT · H ·∆u

}
. (A4)

Here ∆u = ui − uj and H represent the Hessian matrix of V (Ri − Rj). The linear term in eq. (A4) vanishes by symmetry
arguments of the ground state. If we use now the definition of Fourier transform on the hexagonal lattice presented in the main
text, the interaction energy can be rewritten as:

V0 = Nϵ0 +
1

2

√
3a2

2

∫
BZ

d2q

(2π)2

(
2

(
1

2
∂2xV (R)

)FT

(0)− 2

(
1

2
∂2xV (R)

)FT

(q)

)
ûx(q)ûx(−q)

+
1

2

√
3a2

2

∫
BZ

d2q

(2π)2

(
2

(
1

2
∂2yV (R)

)FT

(0)− 2

(
1

2
∂2yV (R)

)FT

(q)

)
ûy(q)ûy(−q)

+
1

2

√
3a2

2

∫
BZ

d2q

(2π)2

(
2 (∂xyV (R))

FT
(0)− 2 (∂xyV (R))

FT
(q)
)
ûx(q)ûy(−q),

(A5)

where ϵ0 represent the ground state energy per particle of the system and (F (R))FT (q) ≡
∑

j e
iq·RjF (Rj). Using this property

and expanding the exponential function up the second order in q, we arrive at the well known elastic Hamiltonian for a two
dimensional hexagonal solid:

V0 =Nϵ0

+

√
3a2

4

∫
BZ

d2q

(2π)2
(
(2µ+ λ)q2x + µq2y

)
ûx(q)ûx(−q)

+

√
3a2

4

∫
BZ

d2q

(2π)2
(
(2µ+ λ)q2y + µq2x

)
ûy(q)ûy(−q)

+

√
3a2

4

∫
BZ

d2q

(2π)2
(2(µ+ λ)qxqy) ûx(q)ûy(−q).

(A6)

where the Lamé’s coefficient (µ, λ) can be obtained comparing eqs. (A5) and (A6). Such relations can be rewritten in real space
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as:

µ =
∑
R ̸=0

(
R2

y

2

)(
R2

yV
′(R)

R3
+
R2

xV
′′(R)

R2

)
,

2µ+ λ =
∑
R ̸=0

(
R2

x

2

)(
R2

yV
′(R)

R3
+
R2

xV
′′(R)

R2

)
.

(A7)

These are general expressions for the elastic constants at zero temperature for a simple hexagonal crystal, once V (R) is
known.

Finally we would like to rewrite the effective Hamiltonian (A6) in its diagonal form, since this is the starting point for
the evaluation of any statistical average. We perform an orthogonal transformation introducing the longitudinal û∥(q) and
perpendicular û⊥(q) components of the deformation field satisfying the following relations:

ûx(q) = i
qx
q
û∥(q)− i

qy
q
û⊥(q),

ûy(q) = i
qy
q
û∥(q) + i

qx
q
û⊥(q).

(A8)

In terms of û∥(q) and û⊥(q), the effective Hamiltonian (A6) can be recast as:

V0 =Nϵ0 +
1

2

(√
3a2

2

)∫
BZ

d2q

(2π)
2

[
f1(q)

∣∣û∥(q)∣∣2
+ f2(q) |û⊥(q)|2

]
,

(A9)

where f1(q) = (2µ+ λ)q2 and f2(q) = µq2.

Appendix B: Energy of dislocations and application of the RG theory

It is well established in the literature that the long-distance Hamiltonian of a pair of interacting dislocations can be written in
Fourier space as26,54:

HD

kBT
=

−K
8π

1

(Auc)2

∫
BZ

d2q

(2π)2

∑
i,j

b̂i(q)b̂j(−q)

×
(
−4π

q2
δij + 4π

qiqj
q4

)
,

(B1)

where K = 4µ(µ+λ)
(2µ+λ)kBT is the Young modulus of the crystal in units of kBT , b̂(q) denote the Burger’s vector density and Auc

represent the area of the unitary cell of the lattice. Although this expression was originally obtained in the continuum limit, to
make it well defined a short distance cut-off need to be introduced and in this way the integration over momenta is limited to
the first Brilloun zone of the corresponding under-lying lattice of the solid. A dimensional analysis of this equation lead us to
the conclusion that b̂(q) has the same dimension of a2, this means that b(r) is dimensionless, which is naturally interpreted as
b(r) been measured in units of a. Here is important to notice that that due to mathematical convenience all calculations in this
appendix are performed in the continuum and consequently the Fourier transform adopt its usual form in two dimensions.

Let us consider that the density associated to the Burguer’s vector of a dislocation at position R of the discrete lattice is given
by:

bd(r,R) = e δr,R. (B2)

where δr,R represent the standard Kronecker delta symbol and e represent the Burguer’s vector of the corresponding dislocation.
Now we would like to extend the field defined in eq. (B2) to the continuum to proceed with the calculation of the energy of a
dislocation. Let us define this field as bc(r). From dimensional arguments, it is natural to propose the following relation between
both formulations: ∫

uc(R)

bc(r′ − R)d2r′ = Aucbd(R,R), (B3)



15

whereAuc is taken as 1
2

√
3a2, considering that the dislocations "center" have to be positioned on the underlying triangular lattice

of the solid. The previous relation lead us to the conclusion that bc(r) = 1
2

√
3a2eδ(r). In this way the field corresponding to

a conjugate dislocation pair — as the one shown in Fig. 5 (b) — separated by a vector d and oriented in the direction e can be
written as

bc(r) =
√
3a2

2
[δ (r − d/2)− δ (r + d/2)] e. (B4)

d

FIG. 5: Vacancy and conjugate dislocation pair in a triangular lattice. The particles in green has five neighbours and in orange has seven. The
arrows represent the burgers vector of each dislocation.

The modulus of the vector e is take it as one, which corresponds to the minimum possible value of the Burguer’s vector of a
dislocation in units of the lattice spacing. Now we can write our dislocation field in Fourier space as:

b̂(q) =
√
3a2

2
(−2i) sin

(
q · d
2

)
e, (B5)

It is not difficult to realize now that the energy of a dislocation pair will depend on the orientation of the vectors d, which
is parameterized by the angle α, and e, parameterized by the angle θ, while both angles are measured respect to the x-axis.
Consequently, we observe that the x and y components of the dislocation density field are given by:

b̂x(q) =
√
3a2

2
(−2i) cos(θ) sin

(
q · d
2

)
,

b̂y(q) =
√
3a2

2
(−2i) sin(θ) sin

(
q · d
2

)
.

(B6)

In this way, the energy of a single dislocation can be calculated as one half of the total energy of a pair of conjugate dislocations,
wich in units of kBT can be written as:

Ec

kBT
=

K

16π

1

(Auc)2

∫
BZ

d2q

(2π)2
4π

q2

[
b̂x(q)b̂x(−q)

(
1− q2x

q2

)
+ 2b̂x(q)b̂y(−q)

(
−qxqy

q2

)
+ b̂y(q)b̂y(−q)

(
1−

q2y
q2

)]
, (B7)

which after some simplifications can be recast in the following form

Ec

kBT
=

K

16π

1

A2
uc

∫
BZ

d2q

(2π)2
12πa4(q⊥ · e)2

q4
sin2(q · d/2),

= K

∫
BZ

d2q

(2π)2
(q⊥ · e)2

q4
sin2(q · d/2).

(B8)
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To finally determine the actual value of the energy of a dislocation, we take the arithmetic average over all possible configu-
rations in θ and α, considering the do not have in fact one single type of defect but a continuous class. This procedure allow us
to conclude that: 〈

(q⊥ · e)2
〉
θ
=
q2

2
,〈

sin2(q · d/2)
〉
α
=

1

2
(1− J0(qd)) ,

(B9)

which lead us to the conclusion:

Ec

kBT
= K

∫
BZ

d2q

(2π)2
1− J0(qd)

4q2
. (B10)

In order to reach a final mean value for the energy of a dislocation, we need as an input the distance between the dislocations in
the pair, d. We can consider this distance as the minimum distance for which a dislocation pair is stable, since such pairs are the
most relevant.

To understand better how to estimate such a quantity we performed M.D. simulations at kBT ∼ 0 (see main text) for the
specific model under consideration (GCM). We used the ordered triangular lattice as initial condition for our simulation, removed
or added a single particle and study the stationary configuration of the system given those specific initial conditions. Here is
important to remark that vacancy or interstitial defects can be both considered as dislocation pairs, nonetheless we often regard
them as different kind of defects since they have a higher symmetry55 than an arbitrary dislocation pair. In our simulations we
have noticed that vacancies are stable for ρ ≤ 0.3, and naturally small fluctuations continuously deform its structure into pairs
of dislocations with distance d ∼

√
3a for ρ > 0.3 – both cases are represented in Fig. 5 (b).

For higher temperatures, we have also noticed the presence of dislocation pairs more tightly bounded. Different from the
defects found by relaxing the system from a vacancy initial condition, these pairs are not stable. They can be thus thought as
“virtual” dislocation pairs, as they vanish quickly if we let the system relax at kBT ∼ 0. As an example of this line of reasoning,
in ref.55, defects are considered as dislocation pairs only if the separation is greater than a certain threshold value necessarily
higher than the lattice spacing of the underlying lattice.

Finally, if we consider d =
√
3a in Eq. (B10) and perform the numeric integration over the Brillouin zone, we can conclude

our estimate for the energy of a dislocation, Ec/kBT = bK, with b ≃ 0.072.
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