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Active baths are characterized by a non-Gaussian velocity distribution and a quadratic dependence
with active velocity v0 of the kinetic temperature and diffusion coefficient. While these results
hold in over-damped active systems, inertial effects lead to normal velocity distributions, with
kinetic temperature and diffusion coefficient increasing as ∼ vα0 with 1 < α < 2. Remarkably,
the late-time diffusivity and mobility decrease with mass. Moreover, we show that the equilibrium
Einstein relation is asymptotically recovered with inertia. In summary, the inertial mass restores an
equilibrium-like behavior.

A fluid in equilibrium can be characterized as a heat
bath in terms of its temperature, viscous drag, and diffu-
sivity, obeying the Einstein relation [1]. Active Brownian
particles (ABP), under certain conditions, can constitute
a similar homogeneous and isotropic (as opposed to po-
lar) active fluid – i.e., an active scalar fluid – in the pres-
ence of local energy dissipation and self-propulsion [2–
7]. A question that naturally arises is to what extent
such a fluid can be characterized as an active heat bath.
The active nature of ABPs is determined by the self-
propulsion speed v0 and the orientational diffusivity of
the heading direction Dr. This leads to a persistent ran-
dom motion for individual ABPs, in dimension d, char-
acterized by a late-time active diffusivity that scales as

v20
Drd(d−1) . Early experiments on tracer particle dynamics

in a bacterial suspension showed enhanced active diffu-
sion [8, 9]. A higher density reduces diffusivity in equi-
librium [10] but increases it in a non-equilibrium bacte-
rial bath [8]. Various theoretical techniques were used
to obtain the impact of an active bath on tracer parti-
cles [11–17]. Recent works have characterized ABP sys-
tems in terms of kinetic temperature, effective diffusivity,
and viscous drag as a function of changing activity [18–
25]. While diffusivity and kinetic temperature increase
with activity, a non-monotonic variation of viscous drag
has been predicted [22]. At the motility-induced phase
separation (MIPS) [26–28], it was shown that the kinetic
temperature could vary across a steady-state system with
low (high) temperature characterizing the dense (dilute)
phase [20]. However, it remains unclear to what extent
such a description can be developed into a coherent self-
consistent picture of active fluid, given, e.g., the breaking
of time-reversal symmetry and the absence of equilibrium
fluctuation-dissipation.

Despite tremendous progress in the study of active
matter [2–6], until recently, relatively little attention was
paid to the impact of inertia on the active matter except
for [20, 29–34]. One reason for this is the extremely
short time (∼ 100 ns) and length scales (Angstrom)
for the ballistic-diffusive crossover in colloidal particles.

However, for larger active elements, including birds, fish,
and animals on the one hand, and artificial macro-sized
robots [35–37] on the other hand, inertial effects can be
substantial. This paper considers a homogeneous and
isotropic fluid of active Brownian particles (ABP) and
probes its active bath-like characteristics. A remark-
able fact emerges: not only transient behaviors, even
the asymptotic properties, including the effective diffu-
sivity and mobility at the steady state, do depend on in-
ertial mass, in sharp contrast to a non-interacting ABP
gas. Furthermore, the strong non-Gaussian distribution
of velocities returns towards equilibrium-like Gaussian
for large mass. Finally, with increasing mass, the devia-
tion from the equilibrium fluctuation-dissipation relation
drops sharply. In summary, while activity amplifies non-
equilibrium features, increasing the inertial mass brings
the fluid back to equilibrium.

The model.– We consider N active Brownian particles
(ABP) of mass m, a moment of inertia I, and diameter
σ moving in a two-dimensional (2d) rectangular box of
area Lx × Ly with periodic boundary conditions (thus,
density ρ = N/LxLy). The particles self-propel in di-
rections n̂i = (cos θi, sin θi) with force FA,i = γtv0n̂i.
Without interactions, this leads to a propulsion speed
v0. The heading direction (i.e., θi) undergoes a long-
time diffusion leading to an effective persistent motion.
The inertial active dynamics evolve as

mv̇i = −γtvi + Fi + FA,i + γt
√

2Dt ηi(t)

Iθ̈i = −γr θ̇i + γr
√

2Dr ζi(t), (1)

where Fi = −∇i
∑
j U(rij), the symbols ηi(t) and ζi(t)

represent Gaussian white noises, and viscous drags, as-
sociated with translation and rotation, are described
by γtvi and γr θ̇i, respectively. Interactions among
particles are due to volume exclusion effects modeled
via the Weeks-Chandler-Anderson potential: U(r) =
4ε[(σ/r)12 − (σ/r)6] + ε if the inter-particle separation
r < rc = 21/6 σ and U(r) = 0 otherwise. The units of
length and energy are set by σ and ε, respectively. The
rotational diffusivity Dr can have a non-thermal active
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FIG. 1. Velocity distributions in the particle frame. Probabil-
ity distributions of velocity components (a) parallel P (v‖) and
(b) perpendicular P (v⊥) to the heading direction at Pe = 100
and for different M values indicated in the legend. Similarly,
in P (v⊥), non-Gaussian long tails disappear at high inertia.
For comparison, we present the distribution functions for non-
interacting particles at M = 0.01 using the solid black lines
in both plots.

origin. Inertial relaxations in translation and rotation
take time scales τI = m/γt and τd = I/γr. Beyond
τd, diffusion in the heading direction leads to a persis-
tent motion with a bare persistence time τp = 1/Dr,
which sets the unit of time. Unless specified otherwise,
we use an equilibrium heat bath with Dt = 1.0σ2Dr,
and a small and constant τd = 0.33τp [20]. We particu-
larly focus on the impact of changing activity in terms
of the Péclet number Pe = v0/(Drσ) and that of the re-
duced mass using M = τI/τp. This system can undergo
motility-induced phase separation (MIPS) for low enough
M , and high enough Pe at a moderate density [20]. In or-
der to fully characterize the properties of a homogeneous
active bath, we fix the density to a low value, ρ = 0.1,
corresponding to a packing fraction 8%, such that the
system does not phase-separate even in the over-damped
limit [7].

Results.– An increase in Pe, as expected, drives the
system away from equilibrium. In Fig.1, we show the
change in velocity distribution to reveal the impact of
inertia. For this purpose, we consider the two compo-
nents of the velocity, in the heading direction v‖ = v · n̂
and perpendicular to it v⊥ = (1 − n̂n̂) · v. In 2d, v⊥
is a scalar. At small M , inertial lag is small. Despite
that, P (v‖) at M = 0.01 shows a long tail; see the red
curve in Fig.1(a). This tail, which is absent in a system
of non-interacting active particles, emerges due to en-
hanced frontal collision in the heading direction and the
resultant inertial recoil. At larger inertia, secondary back
collisions become prominent, symmetrizing the distribu-
tion to a Gaussian-like profile, e.g., at M = 5 [38]. The
asymmetry in collisions will be scrutinized using a pair
distribution function in Fig. 2. The P (v⊥) distribution
also shows inertial restoration of equilibrium-like behav-
ior. The long non-Gaussian tails are observable at small
M and disappear with an increase in M . The comparison
with distributions obtained in the absence of interaction,
black curves in Fig.1(a) and (b), shows that the non-
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FIG. 2. Pair distribution in the heading direction: (a) P (r‖)
at Pe = 100 and various M values indicated in the legend.
The fore-aft asymmetry decreases with increasing M . One
gets a fully symmetric distribution at equilibrium, as shown
in (c). (b) Variation of asymmetry parameter Ap as a function
of Pe is shown for various M values indicated in the legend.
(d) An approximate data collapse is obtained for inertial sys-
tems using appropriate rescaling of (b). (e) The variation of
scale factors shown as a function of M . At large M , they
show approximate dependencies E ∼M0.4 and F ∼M0.6.

Gaussian behaviors are strongly dependent on the inter-
particle collisions. At high inertia, bouncing backward
and forward from neighboring particles symmetrizes the
distributions rendering them equilibrium-like shapes.

The impact of interaction manifests in the pair-
distribution function in the heading direction, i.e., the
probability P (r‖) of finding a neighboring particle in di-
rection n̂; see Fig.2. Due to enhanced frontal collision,
more particles accumulate in front. Such accumulations
in front and associated depletion wakes have been ana-
lyzed recently in overdamped dilute ABPs [39]. A peak
in the back appears due to secondary back collisions ex-
perienced by inertial ABPs after frontal recoil. With
increasing M , recoil increases, reducing the frontal ac-
cumulation and increasing the secondary collisions from
the back – these affect the symmetrization of the pair
distribution – restoring equilibrium-like behavior.

The asymmetry in the pair distribution is quanti-
fied in terms of the parameter Ap that measures the
difference between the heights of the front and back
peaks (Fig.2(b) ). For fixed M , the asymmetry initially
increases with Pe. For overdamped systems (black solid
line denoting M = 0), the increase is followed by satura-
tion in the absence of recoil. In contrast, in the presence
of inertia, after the initial increase, Ap decreases with
Pe. The data collapse in Fig.2(d) shows that at small
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FIG. 3. (a) The increase in kinetic temperature kBTkin = m〈v2〉/2 with Pe is shown at various M values indicated in the
legend. At large Pe, kBTkin ∼ Peαk with αk = 1.90, 1.69, 1.54, 1.53 at M = 0.01, 0.1, 1, 5. (b) The increase in effective
diffusivity Deff With Pe is shown at at various M values listed in the legend. Asymptotically it grows as Deff ∼ Peαd with
αd = 1.98, 1.43, 1.13, 1.17 at M = 0.01, 0.1, 1, 5. (c) At large M , the kinetic temperature decreases as kBTkin ∼ M−γk with
γk = 1, 0.8, 0.75 at Pe = 1, 10, and 100. (d) Deff reduces with M to saturate, and follows a scaling form Deff = B + DM−γd
with γd = 0.43, 0.52, 0.81 at Pe = 1, 10, and 100. (e) The mobility µ as a function of Pe decreases as µ ∼ Pe−αµ where
αµ = 0.02, 0.13, 0.31, 0.41 at M = 0.01, 0.1, 1, 5. (f) It decreases with M as µ ∼M−γµ at large M with γµ = 0.82, 0.77, 0.52 at
Pe = 1, 10, 100.

Pe, the asymmetry increases with Pe as Ap ∼ Pe0.4 and
then decreases as Ap ∼ Pe−0.35. Such scaling properties
are common to all inertial ABPs. The increase is due
to enhanced frontal collisions associated with increased
activity. The decrease is due to inertial recoil and is the
reason behind the restoration of equilibrium-like behav-
ior.

Another way of measuring how far the system is from
equilibrium is given by the extent to which the equilib-
rium Einstein relation is violated I =| Deff − µkBTkin |,
where µ is the particle mobility and Tkin the so-called
kinetic energy [40, 41]. Following a tracer particle dy-
namics is a useful tool to characterize the properties of
a bath [11, 12, 14–17]. In the presence of translational
fluctuations, the impact of the activity on diffusivity at
low Pe gets overshadowed by Dt. While these effects can
be subtracted out, for simplicity and intending to under-
stand the impact of the activity, in the following, we set
Dt = 0. From the late-time behavior of the mean-squared
displacements (MSD), we obtain the effective diffusivity
Deff . The kinetic temperature kBTkin is readily obtain-
able from the velocity fluctuations. Using a separate nu-
merical calculation of the change in velocity 〈vx〉 of a test
particle under an external force fx, we obtain the mo-
bility µ = (∂〈vx〉/∂fx)fx=0 around the non-equilibrium
steady states of the ABPs. In the presence of an external
force on the test particle, a local statistical reorganization
of other ABPs follows. Such a reorganization depends on
active speed and inertia, resulting in mobility variation.
Using these, we obtain violation I.

In Fig.3, we show the variations of kinetic temperature,

diffusivity, and mobility as a function of Pe and M . At
large enough values of Pe and M , and they show the
following scaling forms: (i) kBTkin ∼ Peαk and kBTkin ∼
M−γk , (ii) Deff ∼ Peαd and Deff ∼ M−γd , (iii) µ ∼
Pe−αµ and µ ∼ M−γµ . Note that mobility decreases
both with Pe and M , while the other quantities increase
with Pe.

The kinetic temperature kBTkin = m〈v2〉/2 increases
as a function of Pe (Fig.3(a) ). The black solid line cap-
tures a Pe2 scaling common to all M values at small Pe.
The asymptotic behavior kBTkin ∼ Peαk at various M
values shows how the exponent αk decreases with M .

In Fig.3(b) we show how the effective diffusivity Deff ∼
Peαd increases with Pe. At small Pe, Deff ∼ Pe2 for
all M . This behavior continues to all Pe in the limit
of small inertia, M = 0.01, as in over-damped systems.
However, with increasing inertia, the value of the growth
exponent αd decreases, and finally, Deff ∼ Peαd becomes
approximately linear with Pe at M & 1.

In Fig.3(c) and (d), we show the M -dependency of the
kinetic temperature and effective diffusivity. The kinetic
temperature fits to the functional form kBTkin = A/(C+
Mγk), such that at large M , they show a scaling form
kBTkin ∼ M−γk with the decay exponent γk decreasing
with Pe. The effective diffusivity Deff decays with M
until it saturates, and follows a scaling form Deff = B +
DM−γd with the decay exponent γd increasing with Pe.

Finally, we consider the mobility µ. In the over-
damped limit, µ is approximately independent of activity
Pe (M = 0.01 in Fig.3(f) ). This behavior agrees with the
observation in Ref. [23] at low densities. However, in the
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FIG. 4. The violation of equilibrium fluctuation-dissipation
I =| Deff−µkBTkin |, a measure of how far the system is from
equilibrium as a function of Pe and M , is shown in (a) and

(b), respectively. I increase with Pe as Peαd or Pe(αk−αµ).
With M , it decreases to saturate at B.

presence of inertia, mobility decreases with both Pe and
M . At the larger activity, an increase in frontal collision
frequency in the direction of external force increases the
effective drag, leading to an effective thickening of the
active fluid. Such a thickening is in qualitative agree-
ment with Ref. [25], unlike the non-monotonic variation
predicted in Ref. [22], and oppose to the active thinning
predicted in Ref. [42]. As a function of Pe, the mobil-
ity decreases as µ ∼ Pe−αµ where the exponent αµ it-
self increases with M (Fig.3(f) ). The collision and recoil
in inertial ABPs further increase the drag coefficient for
higher inertial mass. The reduction of µ with M follows
a form similar to that of the dependence of kBTkin on
M (Fig.3(c) ), such that at large M µ ∼ M−γµ . Note
that γµ also decreases with Pe.

With the help of these results, we find that the viola-
tion I increases with Pe, but decreases withM . In partic-
ular, our findings indicate that I ∼| Peαd − Pe−αµ+αk |,
i.e., it can grow as Peαd or Peαk−αµ depending on
whether αd > (αk − αµ) or not (Fig.4(a) ). On the other
hand, I ∼| B+DM−γd −M−(γµ+γk) | decreases with M
to saturate at a Pe-dependent value B (Fig.4(b) ). Such
a decrease is more significant at higher Pe. For small Pe,
the system remains close to equilibrium for all M values.

Concluding remarks.– We have shown how the non-
equilibrium properties of an active fluid consisting of
ABPs, at a density far away from the onset of MIPS
behave as a function of activity and inertial mass. While
the departure from equilibrium gets pronounced with in-
creasing Pe, i.e., activity, we found that inertial mass
restores equilibrium-like properties. In particular, we
showed that the non-Gaussian velocity distributions, the
fore-aft asymmetry in the (heading-direction) pair dis-
tribution, and the absence of an Einstein fluctuation-
dissipation relation between diffusivity, mobility, and ki-
netic temperature observed in active over-damped sys-
tems, crossover to their equilibrium counterparts with
inertial mass. In short, we found that the inertial recoil

can effectively thermalize the active fluid. Remarkably,
the late-time diffusivity and mobility of the bath depend
on inertial mass, in contrast to free ABPs. The effective
diffusivity and temperature grow with active velocity and
decrease with inertial mass. In contrast, effective mobil-
ity decreases with mass and activity. Together, these
findings show a reduction in the violation of equilibrium
fluctuation-dissipation with increasing inertia. In sum-
mary, inertia brings back equilibrium-like behavior in the
active fluid.
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delay of self-propelled particles, Nat. Commun. 9, 5156
(2018), 1807.04357.
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FIG. 5. Inertia brings back equilibrium-like features. The speed distributions in heading direction at Pe = 10 for different
masses M = 0.01 in (a), M = 0.1 in (b), M = 1 in (c) and M = 5 in (d). In each plot, blue and red curves represent the results
for Dt = 1.0 and 0.0, respectively.

Inertial thermalization

As has been pointed out in the main text, with increasing M , the velocity distribution gets thermalized due to
collisions and recoil. Here we supplement that finding with an independent measure in which we compare the velocity
distribution in the heading direction in the presence (Dt = 1) and absence (Dt = 0) of a thermal bath (Fig.5). For
small M , the two distributions are significantly different from each other. With increasing M , the distribution in
the absence of thermal bath starts to thermalize, aided by relatively faster orientational relaxation of the heading
direction during a slow inertial relaxation, and collisions from the front and secondary collisions from back after the
frontal recoil. As a result, they start to come close to each other to merge at M & 1.
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FIG. 6. Probability distribution of particle separation of interacting neighbors projected along the heading direction P (r‖)
at the system density ρ = 0.1 for Pe = 2, 50 and 100. The results In (a) correspond to an over-damped system and in (b),
(c), and (d) for an under-damped system with M values = 0.01, 0.1, and 1.0, respectively. The common legend representing
different Pe values is placed inside plot (d).

Pair distribution

In Fig.6, we show the distribution of particles around a test particle in its heading direction at Pe=1, 10, and 100
and inertia M = 0, 0.01, 0.1, 1. These distributions are used to calculate the asymmetry parameter Ap presented in
the main text.

Mobility

To measure mobility, we apply an additional force Fx on the tagged particle and calculate its mean velocity along
the same direction 〈vx〉 for various Fx values. The mean velocity 〈δvx〉 = 〈vx〉|Fx − 〈vx〉|Fx=0 as a function of Fx is
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FIG. 7. The mean velocity of a tagged particle in response to the external force Fx is shown for Pe = 1, 10, and 100 in (a)
at M = 0.01, in (b) at M = 0.1, in (c) at M = 1.0 and in (d) at M = 5. The slope of the corresponding linear fits at Fx = 0
gives mobility µ = limFx→0〈δvx〉/Fx. By definition 〈δvx〉 = 0 at Fx = 0. For the sake of clear visualization, each curve for Pe
= 10 and 100 is shifted upwards.

shown in the figure 7. The slope of the linear fit for 〈δvx〉 vs Fx curve near Fx = 0 gives mobility. In the overdamped
regime M = 0.01, mobility does not show dependency on Pe as its value is observed to be the same µ ∼ 0.9 for Pe =
1, 10, and 100 Fig.7 (a). In the underdamped limit (M ≥ 0.1), mobility decreases with Pe, see Fig.7 (b),(c), (d).
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FIG. 8. Mean square displacement for Pe = 1, 5, 20, and 70 in (a) at M = 0.01, in (b) at M = 0.1, in (c) at M = 1.0 and in
(d) at M = 5. The common legend representing different Pe values is placed at the extreme right. These calculations are done
for Dt = 0.

Mean-squared displacement

In Fig.8, we plot mean-squared displacement 〈r2〉 scaled by time t for different M and Pe values. All of them show
ballistic to diffusive crossover at a time scale determined by the orientational persistence of the heading direction, a
quantity that is kept constant in this paper. The asymptotic diffusivities Deff = limt→∞〈r2〉/4t are obtained from
these graphs and used in the main text.

0.1

1

10

1 10 100

(a)

0.01

0.1

1

10

0.01 0.1 1 10

(b)

γ
i

Pe

γk
γd
γµ

α
i

M

αk
αd
αµ

FIG. 9. Scaling exponents γi and αi used in Fig.4 are presented as a function of Pe (a) and M (b), respectively. i = k, d, µ
represent exponents of kinetic energy, diffusion, and mobility.
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Scaling exponents

The variations of scaling exponents determining the Pe and M dependence of kinematic temperature, effective
diffusivity, and mobility are shown in Fig.9.
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