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I do not know what I may appear to the world, but to myself I seem to have been only like a
boy playing on the sea-shore, and diverting myself in now and then finding a smoother
pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered
before me.

— Sir Isaac Newton. [SM20]

Dedicated to my loved ones.






ABSTRACT

The study of topological phases in condensed matter physics has seen re-
markable advancements, primarily focusing on systems with a well-defined
bulk and boundary. However, the emergence of topological phenomena
on self-similar systems, characterized by the absence of a clear distinction
between bulk and boundary, presents a fascinating challenge. This thesis
focuses on the topological phases on self-similar systems, shedding light on
their unique properties through the lens of adiabatic charge pumping. We
observe that the spectral flow in these systems exhibits striking qualitative
distinctions from that of translationally invariant non-interacting systems
subjected to a perpendicular magnetic field. We show that the instantaneous
eigenspectra can be used to understand the quantization of the charge
pumped over a cycle, and hence to understand the topological character
of the system. Furthermore, we establish a correspondence between the
local contributions to the Hall conductivity and the spectral flow of edge-
like states. We also find that the edge-like states can be approximated as
eigenstates of the discrete angular-momentum operator, with their chiral
characteristics stemming from this unique perspective. We also investigate
the effect of local structure on the topological phases on self-similar struc-
tures embedded in two dimensions. We study a geometry dependent model
on two self-similar structures having different coordination numbers, con-
structed from the Sierpinski gasket. For different non-spatial symmetries
present in the system, we numerically study and compare the phases on
both structures. We characterize these phases by the localization properties
of the single-particle states, their robustness to disorder, and by using a
real-space topological index. We find that both structures host topologically
nontrivial phases and the phase diagrams are different on the two struc-
tures, emphasizing the interplay between non-spatial symmetries and the
local structure of the self-similar unit in determining topological phases.
Furthermore, we demonstrate the presence of topologically ordered chiral
spin liquid on fractals by extending the Kitaev model to the Sierpinski
Gasket. We show a way to perform the Jordan-Wigner transformation to
make this model exactly solvable on the Sierpinski Gasket. This system
exhibits a fractal density of states for Majorana modes and showcases a
transition from a gapped to a gapless phase. Notably, the gapped phase fea-
tures symmetry-protected Majorana corner modes, while the gapless phase
harbors robust zero-energy and low-energy self-similar Majorana edge-like
modes. We also study the vortex excitations, characterized by remarkable
localization properties even in small fractal generations. These localized
excitations exhibit anyonic behavior, with preliminary calculations hinting
at their fundamental differences anyons observed in the Kitaev model on a
honeycomb lattice.
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Science is the search for truth - it is not a game in which one tries to beat
his opponent, to do harm to others. We need to have the spirit of science in
international affairs, to make the conduct of international affairs the effort

to find the right solution, the just solution of international problems, not

the effort by each nation to get the better of other nations, to do harm to
them when it is possible.

— Linus Pauling [PH58]
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INTRODUCTION

The field of condensed matter physics has witnessed a remarkable evolution,
with topological phases emerging as a captivating frontier. These phases,
which encompass a diverse range of exotic behaviors, have fundamentally
reshaped the understanding of quantum matter. This field delves into the
exotic behaviors of quantum matter that cannot be described by traditional
symmetry-breaking paradigms. In essence, topological phases represent a
new realm of understanding in condensed matter physics, opening the door
to novel material properties and potential technological applications.

The journey into the realm of topological phases began with the ground-
breaking discovery of the Integer Quantum Hall Effect (IQHE) in the
early 1980s. This breakthrough phenomenon demonstrated that in two-
dimensional electron gases subjected to strong magnetic fields, the Hall
conductivity becomes quantized in integer multiples of a fundamental con-
stant (¢?/h) to better than one part in 10° along with the presence of robust
current carrying edge states, a profound manifestation of topological order
[KDP8o; Lau81; Hal82]. The quantization of Hall conductivity is intimately
linked to the underlying topology of the electronic wavefunctions, reflecting
the robustness of these topological phases against perturbations [Lau81;
Tho+82]. Subsequently, the Fractional Quantum Hall Effect (FQHE) un-
folded as another remarkable chapter in this history, introducing anyons
as fractional charge quasiparticles and emphasizing the exotic nature of
topological phases [TSG82; WENQqo]. These seminal discoveries marked a
paradigm shift in the study of condensed matter, shifting the focus from
conventional symmetry-breaking transitions to the exploration of topological
phases and their intricate interplay with quantum matter.

The topological nature of the IQHE is further underscored by the existence
of energy gaps between different Landau levels, which represent distinct
quantum states. As a result, the many-body ground state is gapped when
the fermi energy lies in the gap between two landau levels which implies
that electronic correlations are weak. In such cases, the electron-electron
interaction can be safely ignored while describing the low-energy physics
and ground-state properties. These gaps are a consequence of the magnetic
tield-induced quantization which protect the topological properties of the
system against small perturbations. The presence of magnetic field results
in the change in the phase of the electronic wavefunctions as one moves
through the momentum space. The winding number represents the net
change in phase or the number of times the phase "winds around" the Bril-
louin zone which is quantified by the TKNN invariant or the Chern number.
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The Hall conductivity in IQHE is directly related to the TKNN invariant; its
quantized nature being a consequence of this [Tho+82].

The principles underpinning the Integer Quantum Hall Effect (IQHE)
resonate throughout a broader context encompassing various topological
phases. A notable illustration of this resonance emerges in certain crys-
talline insulators like Chern insulators and topological insulators, in which
non-interacting electrons show similar behaviour as IQHE in the absence
of external magnetic field as a result of their intrinsic topological charac-
ter. These insulators feature gapped energy bands due to the translational
invariance within the crystalline lattice, which naturally establishes the
Brillouin zone as the parameter space for defining essential topological
invariants, such as the Chern number (TKNN invariant). In the context of
non-interacting systems, the systems with a non-zero topological invariants
are said to belong to a topologically non-trivial phase as they cannot be
adiabatically deformed to a trivial insulator. Topologically non-trivial phases
are usually identified by the presence of robust in-gap boundary modes, and
are characterized by relevant topological invariants [KMos5; FKo7]. These
phases are well understood for translationally invariant systems, as the
presence of a well-defined momentum eigenbasis gives a natural setting
to describe the topology of bulk wavefunctions. Systematic classification
of topological phases on non-interacting translationally invariant systems
has been done in terms of both non-spatial and spatial symmetries [Sch+08;
Kitog; Fu11; Lud1s; Sla+13; Chi+16].

While translational invariance serves as a fundamental condition for the
presence of a well-defined momentum eigenbasis, it is increasingly evident
that this requirement is not essential for the existence of topological phases.
Surprisingly, topological phases have been discovered and extensively stud-
ied in systems that lack translational invariance, such as quasi-periodic,
quasi-crystalline, and amorphous materials [DMN20o; AS17; Mit+18]. Unlike
their crystalline counterparts, these systems do not possess a well-defined
momentum eigenbasis, making it impossible to describe topologically non-
trivial phases through the traditional notion of winding of eigenstates over
a manifold in momentum space, similar to the Bloch states” winding in
k-space for translationally invariant non-interacting systems. However, what
these systems retain is the concept of a well-defined ‘bulk” and “bound-
ary’, akin to regular lattice systems with open ‘boundary’. Consequently,
it becomes feasible to define (albeit approximately) ‘boundary” conditions
analogous to periodic boundary conditions in lattices. The identification
of topologically non-trivial phases in such systems hinges on several key
characteristics. These include a gapped spectrum under “periodic’ bound-
ary conditions which captures the physics in the bulk, and the presence
of in-gap edge states in scenarios with open boundary conditions which
captures the physics on the boundary. Real-space formulations of topological
invariants, such as the real-space Chern number and the Bott Index, become
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instrumental in characterizing these phases. The discovery and study of
topological phases in non-crystalline settings have not only expanded our
understanding but have also led to a more comprehensive comprehension of
these phases, transcending the confines of translationally invariant systems.

Traditional understandings of topological phases in non-interacting crys-
talline systems have been grounded in the existence of a well-defined k-
space manifold within the bulk and a gapped bands. The emergence of edge
states under open boundary conditions is conventionally interpreted as a
manifestation of the bulk topology, as described by the bulk-boundary cor-
respondence. However, the landscape shifts when considering amorphous
and quasi-crystalline systems. These systems lack the well-defined k-space
eigenbasis seen in crystalline materials but retain the notion of locality,
and well-defined bulk and boundary. The discovery of topological phases
within systems like amorphous and quasi-crystalline materials has fostered a
broader understanding of topological phenomena that relies on the presence
of well-defined gapped bulk. This naturally raises the intriguing question:
what transpires in systems where the distinction between a well-defined bulk
and boundary becomes less clear; thereby bringing fractals and self-similar
structures into the picture. Examples of such systems are tight-binding mod-
els defined on finite truncations of fractals like the Sierpinski Gasket (SG)
and the Sierpinski Carpet (5C) with one or more degrees of freedom per site
[Aga19; BCN18; Fre+20; PP19; IKY20]. Non-trivial phases have been reported
in such systems. These phases seem to be identified with the presence of
gapless self-similar states which are chiral in nature and are localized around
each of the intrinsic "holes” present in these structures[Aga19; BCN18; PP19].
Also, the Hall conductivity in such phases is shown to be quantized and
robust to small disorders [BCN18; Fis+21]. These phases also seem to be
characterized by a non-zero value of real-space topological invariants and
hence have also been dubbed "topological’.

The study of topological phases in self-similar structures presents a cap-
tivating challenge, as several key aspects remain shrouded in ambiguity.
While non-trivial phases exhibiting some semblance to conventional topo-
logical phases have been reported, a comprehensive understanding of these
phases continues to elude us. The existing literature offers only a limited
microscopic comprehension of these phases. One puzzling observation per-
tains to the real-space invariants employed to characterize these systems.
Traditionally, these invariants are well-defined when there exists a group of
states, isolated from the rest of the spectrum by energy gaps. Intriguingly,
in certain self-similar phases, these invariants are reported to be quantized
even when the spectrum remains gapless, lacking a distinct group of isolated
states. The microscopic origin of this quantization not yet understood well.
Equally perplexing is the emergence of special self-similar chiral states. In
amorphous systems, a periodic boundary condition can be defined, yielding
a gapped spectrum. The in-gap states appearing in open-boundary condi-
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tions, localized along the boundary, are readily interpreted as manifestations
of bulk topology. However, the absence of a clear demarcation between bulk
and boundary in fractal structures raises uncertainty regarding the interpre-
tation of these self-similar special chiral states. Whether or not they can truly
be understood as analog to edge states in integer-dimensional systems is
still not clear. Several other questions intensify the quest for understanding;:
Can the comprehension of topological phases within self-similar systems
somehow be linked to our understanding of lattices? What variables dictate
the presence and properties of topological phases within self-similar sys-
tems: the Hausdorff dimension of the fractal, non-spatial symmetries, or the
coordination number? Is it possible to realize non-trivial topological order
on interacting systems with fractal geometries, such as the chiral spin liquids
on fractals? These questions underscore the captivating journey of discovery
that lies ahead, promising to shed light on the intricate nature of topological
phases within self-replicating structures. Moreover, with the recent advances
in the field of experimental physics, it possible to realize and study such
quantum systems in controlled lab settings [Xu+21], making this study
even more relevant. This thesis endeavors to contribute to this fascinating
tield of study by addressing some of these questions, striving to present
a comprehensive understanding of topological phases in self-similar systems.

This document is divide in three parts. The first part is subdivided into
two chapters and deals with the preliminaries. The second part is also subdi-
vided into 2 parts where we present our study of the non-interacting models
on self-similar structure. This is based on our works in Ref. [SN23] and Ref.
[SN21]. And in the third part we present our yet unpublished ongoing study
on the chiral spin-liquid on fractals before finally concluding the document.

In chapter 2, we review some of the fundamental works in topology in or-
der to provide foundational knowledge necessary to grasp the core concepts
underpinning our research in this thesis. We introduce the concept of topol-
ogy and Chern number in 2-dimensional systems through Harper-Hofstadter
model. We also present real-space topological invariants as essential tools for
characterizing topological phases in systems lacking translational invariance.

In chapter 3, we introduce fractals and and review some of the existing
works on fractals in the literature. It begins with an exploration of tight-
binding models on fractals and self-similar graphs, offering the requisite
mathematical framework. Furthermore, the chapter describes prior works
on the Harper-Hofstadter model on Sierpinski Gasket, setting the stage for
the original research presented in the subsequent chapters.

In chapter 4, we present an understanding of quantization of Hall con-
ductivity in self-similar structures, hence topology, from a perspective of
adiabatic charge pumping. A central focus is the establishment of a corre-
spondence that connects the local nature of spectral flow to local contribu-
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tions to the Hall conductivity. We present an understanding of edge-like
states in fractals like the Sierpinski gasket in terms of eigenstates of par-
ticle on a ring. We further examine self-similar structures with different
Hausdorff dimensions, shedding light on the topological characteristics of
these structures. We also establish a connection between the well-established
bulk-boundary correspondence observed in square lattices and the local
correspondence within self-similar fractals mentioned above.

In chapter 5, we study the role of non-spatial symmetries on the topologi-
cal phases in self-similar system. Specifically, we investigate the interplay
between non-spatial symmetries and the inherent self-similarity of struc-
tures. Owing to the self-similarity of these structures, the way the sites are
coordinated locally becomes an important aspect to study. Through numeri-
cal calculations, we demonstrate that in the presence of certain non-spatial
symmetries, the coordination number becomes an important factor in decid-
ing if the system can host a topological phase.

Chapter 6 delves into the realm of spin-liquids within fractal structures.
We show the existence of an exactly solvable topologically ordered chiral
spin liquid on self-similar systems by studying Kitaev model on a self-similar
graph embedded in Sierpinski gasket. We present a way to perform the
Jordan-Wigner transformation on the corresponding (non-bipartite) graph
making the model exactly solvable. The system fractionalizes into Majorana
fermions and Z2 fluxes with a fractal density of states of the Majorana
modes. We further show the existence of a gapped and gapless phases,
with the presence of symmetry-protected robust Majorana corner modes
in the gapped phase and the robust presence zero-energy and low-energy
self-similar Majorana modes in the gapless phase.

Chapter 7 offers a reflective summary of the research findings and their
implications. It synthesizes key insights and connections between the diverse
aspects explored in the preceding chapters. The chapter concludes with
a forward-looking perspective, highlighting potential avenues for future
research and the lasting relevance of the discoveries made within the context
of topological phases within self-similar structures.






Part I

PRELIMINARIES

In this part, we review the concepts which are necessary to motivate the
main ideas of this work and would be used in the subsequent chapters
of this thesis. Specifically, we review two main concepts, (i) concepts of
topological phases in non-interacting lattice systems, and (ii) we present
a scheme to construct self-similar graphs on from fractals, study simple
tight binding models using these graphs, and show how the idea of real
space renormalization can be inherently associated with these graphs.






TOPOLOGICAL PHASES IN NON-INTERACTING
LATTICE SYSTEMS

Topology is the study of geometrical properties of a system which remain
unaffected under continuous deformations. These deformations can be some-
thing like including stretching, twisting, and bending, all executed without
abrupt structural discontinuities, such as tearing or puncturing. Properties
that do not change throughout these continuous changes are called as topo-
logical invariants. Similarly, in the context of condensed matter physics,
topological phases are the phases of matter which remain invariant when
Hamiltonian of the system is continuously deformed.

Traditionally, condensed matter physics focused on understanding phases
of matter through the lens of symmetry breaking. However, the discovery
of the quantum Hall effect played a pivotal role in the development of the
field of topology in condensed matter physics. The quantum Hall effect was
first observed in 1980 by Klaus von Klitzing, who later received the Nobel
Prize in Physics for this groundbreaking discovery. The effect occurs when
a two-dimensional electron gas (2DEG) is subjected to a strong magnetic
tield perpendicular to its plane, resulting in the emergence of quantized
Hall resistance.

The significance of the quantum Hall effect lies in its robustness and the
presence of highly conductive edge states that are insensitive to disorder and
imperfections. These edge states are topologically protected, meaning they
are immune to local perturbations and can only be destroyed by a phase tran-
sition. This behavior immediately captured the attention of physicists and
led to a deeper exploration of topological properties in condensed matter
systems. In this chapter, we review some existing literature demonstrating
the idea of topology in condensed matter systems, focusing primarily on
two dimensional lattice systems.

2.1 THE BERRY PHASE, BERRY CURVATURE AND THE CHERN NUMBER

Berry phase and Berry curvature are few of the key ideas demonstrating
the emergence of geometry and topology in quantum mechanical systems.
Here, we will mainly focus on abelian Berry curvatures. A more general
discussion can be found in reference [SW89].

Consider a Hamiltonian H(¢(t)) which depends on a time dependent
parameter ¢(t). Note that this parameter can be a vector. We consider the
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ground state, |¢) of this system and look at how the state evolves when
the Hamiltonian adiabatically evolves along a closed path in the parameter
space. The evolution of the state is given by the time-dependent Schrodinger

equation
w0 _ b(p))p) @)

We denote the instantaneous ground states of the Hamiltonian by |n(¢)).
Note that the choice of phases for the instantaneous ground states are
fixed but arbitrary. In the absence of any level crossings, the adiabatic the-
orem states that the ground state would evolve and acquire a phase given
by, [p(t)) = e®Bel [n(p(t))), where 6(t) = —(1/h) fot Eo(@(t'"))dt' is the
dynamical phase and y(t) = fot i(n(e()|n(e(t)))dt is the geometrical
phase. We are not interested in the dynamical phase and we can get rid
of it by setting E(f) = 0. This would correspond to a simple redefinition
of the Hamiltonian H(¢) — H(¢) — Eo(¢), under which the instantaneous
eigenstates remain unchanged.

To demonstrate the geometrical nature of the geometric phase, we define
a Berry connection
0

Ai(p) = —i(n| =— |n). 2.2
i(9) = =il 5 m) (22
When we evolve the ground state adiabatically along a closed curve C in the
parameter space, the geometrical nature of the geometrical phase shows up
as y can then be expressed in a time independent form (only depends on

the path in the parameter space)

20y — — f AoV
7= [ A 55t =~ f o) 23)

However, the Berry connection is not gauge invariant. It is dependent on
the initial choice of phases of |n(¢)). Suppose we change the phase of the
instantaneous ground states by a parameter dependent phase |n'(¢)) =
¢'“(?) |n(@)). Then the corresponding Berry connection would be given by
A=A +dw/ d¢/. This takes the same form as the gauge transformation
of magnetic vector potential in electromagnetism. Following the analogy
from electromagnetism, we remove this gauge redundancy by defining the
curvature of the connection. The Berry curvature is then given by

_a.Aj oA, .<<an a_n>_<a_na_n>) (2.4)
a(pj a(pf a(pk 4

T AN
We can express the berry phase in terms of the Berry curvature by using the
generalized Stokes theorem

0 7{C Ai(p)dg /S FidS”~, (2.5)
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where S is the two-dimensional area in the parameter space which is
bounded by the contour C. This shows that the Berry phase is also gauge
invariant and contains physical information.

Till now, we have only shown the emergence of geometry in quantum me-
chanical systems in the context of adiabatic evolution. Next we demonstrate
the emergence of topology. The Berry phase can be expressed in the form
an integral of a curvature over a surface in the parameter space. However
if the surface in the parameter space is a smooth closed surface, then by
Chern-Gauss-Bonnet theorem, the integral of the curvature over the surface
is quantized in the units of 27t. To see emergence of such a quantity in
quantum mechanical systems, let us consider the derivatives of the Hamilto-
nian with respect to the adiabatic parameters. The expectation values of the
derivative of the Hamiltonian in the ground state is given by

9015 9(0) = 5o WOIH( ()

(o) = (o0 o] )
(s
()
-7 ) ()

where we have used |dn(¢)/dt) = ¢ [an/d¢F) going from the third line
to the fourth line. Suppose the adiabatic parameters lie on a 2-dimensional
smooth closed surface, S, (for example, a torus). Then a topological quantity,
namely the first Chern number, emerges when we average out the initial
values of adiabatic parameters in Eq. (2.6),

9 dz oH . d2

The integral of the curvature over the closed surface is the first Chern
number given by

1
= /S o F (2.8)

and is always an integer: C € Z, as a consequence of the Chern-Gauss-
Bonnet theorem.

11
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While we have introduced the concept of Berry curvature and Chern
numbers arising from adiabatic dynamics, it’s important to note that such
curvatures have broader applications. For instance, consider particles on
a lattice with translational invariance. In two-dimensional translationally
invariant systems, the Hamiltonian exhibits block diagonalization in the
quasi-momentum basis due to this invariance. Each block is labeled by a
quasi-momentum vector k = (kx,ky), and we denote the corresponding
Hamiltonian block as H(k). Consequently, the Brillouin zone naturally be-
comes the parameter space for the Hamiltonian H (k). The Hall conductivity
can then be expressed as an integral of the curvature over the Brillouin zone,
known as the TKNN [Tho+82] invariant, given by:

ous,
) @

—ie? d’k (] ouf | ouf ous

T = ;C"" Co = /Bz 27 (<akx aky> - <aky
Here, a represents the index of the filled bands, and fBZ denotes the integral
over the Brillouin zone. The Chern number C, is well-defined as long as the
band remains gapped from the rest of the spectrum. Being solely dependent
on the eigenvectors, it remains invariant under continuous deformation

of the spectra as long as the gap remains open, making it ‘topological” in
essence.

2.2 REAL-SPACE FORMULATIONS OF CHERN NUMBER

Although C, is defined above in the momentum basis, the Chern number
is not dependent on the choice of basis of representation being a physical
property of the system. So, it is possible to express the Chern number in
terms of the projectors on to the set of occupied states given by

d’k oP, OPy

C= - ﬁTf(Pk[%/ %])

(2.10)

where Py is the projector on to the set of occupied states with quasi-
momentum k [PHB10]. The corresponding real-space formulation is ob-
tained by identifying V = —it, where t is the position operator. Using this
we can express dPy / ok, = —i[%, P] and 0Py /0k, = —i[f), Py]. Substituting
this into Eq. (2.10) and using [, d°kPy/(271)* = P, we get that

C=-2mi trcell(P[[j\C/ P]/ []?/ P]]) (2.11)

where trj; refers to the trace over the degrees of freedom of a single unit cell
[PHB10] and the area of a unit cell is taken to be 1. We note that P[%, J|P =
[PXP,PjP| — P[%,§P] = [P&P,PyP], giving us C = —27itr.[PiP, P{P].
So, one can identify the real-space Chern marker operator to be C =
—27i[P&P, P)P]. The same result has been obtained independently in Ref.
[BR11], with a slight reformulation in the form of the local Chern marker
where they identify the local Chern marker operator as 47Im(PxPj). For
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oo

Figure 2.1: Schematic of the partition for the defining Kitaev’s real-space Chern number

translationally invariant systems, C is same for every unit cell. So, when
if we consider a supercell, then we just need to divide by the area of the
supercell and we get back the same Chern number. But one cannot supercell
to be the whole lattice as position operators are not well defined due to
periodic boundary conditions(PBC). For open boundary conditions(OBC),
when we trace over the entire lattice, we see that C = —27ti Tr[PXP, PjP] =0
as the trace of commutator is zero. This is intuitive as the global topology is
trivial in the case of OBC. However, the topology and bulk is not dependent
on the boundary conditions. So, for a system with well-defined bulk and
boundary, in OBC one can decompose the contribution to the Chern number
—27ti Tr[PXP, P§P] = 0 = Cpy + Cedge and recover the Chern number of the
bulk [BR11].

Another formulation of the real-space Chern number is given by Kitaev
[Kito6], which has been used in the literature to characterize the topological
phases in self-similar systems. Here we only highlight the main ideas. The
details of the derivation can be found in Ref. [Kito6]. The real-space Chern
number is defined in terms of tri-partition of a region as

C = 127i Tr(PAPBPC — PAPCPB) (2.12)

where P is the projector onto the occupied states and A, B and C are the
spatial projectors to the corresponding regions marked in Fig. 2.1. The key
idea here that this quantity is not sensitive to the points away from the
triple contact point of the tri-partition if the P decays exponentially, which
is the case for the gapped bands [FZG23]. As a result, the real-space Chern
number does not depend on the exact regions A,B and C. So, one can deform
the region freely away from the triple contact point. In the case of infinite
systems, one can extend the boundaries of the circle in Fig. 2.1 all the way to
infinity. In that case, A + B 4+ C = 1 and the real-space Chern number can
be expressed as C(P, A, B) = 4i Tr([PAP, PBP]). One can also make use of
freedom of choice of A and B and calculate the real-space Chern number
for different topological configuration. For a configuration, where A = I,

13
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is the projection on to the left of x = xo and B = Iy, is the projection onto
the bottom of of y = vy, the real-space Chern number can be expressed as

C(P, Ty, I1y,) = 27wi Tr ([PI1y, P, PT1,,P]) = 2mi Tr(P[[Ix, P, [ITy, P]])
(2.13)
[Kito6]. Notice that in this case, the half-planes, whose spatial projectors
are Iy, and I, are defined to have a sharp boundary. For translationally
invariant systems, one can deform these sharp boundaries to make it linear
and then by replacing I1y, — % and I, — §, we recover the expression in
Eq. (2.11) with a minus sign, which is just an artifact of the definition.

There are other real-space formulations of the Chern number like the
Bott-Index and the Localizer index [LH10; Lor19] which we do not cover
here. Local decomposition of the real-space Chern number by Kitaev will be
discussed in Chapter. 4.

2.3 EDGE STATES AND THE BULK-BOUNDARY CORRESPONDENCE

One of the immediate consequences of the presence of gapped bulk with
non-zero Chern number is the appearance of robust states in the gap when
one introduces an edge or interface in the system. This is one of the most
common signatures of topologically non-trivial systems. The main idea is
the following. Let us consider an interface between two systems which have
different Chern numbers. We assume both systems to have a gapped bulk.
So as one moves from one system to the other through the interface the
Chern number changes. However, being a topological invariant, the Chern
number cannot change as long as the gap remains open. This automatically
implies that the bulk gap must close at the interface leading to the presence
of gapless states. These gapless states must be localized at the interface as
both the systems have a gapped bulk away from the interface. This idea also
applies to the case for finite systems which have a topologically non-trivial
bulk away from the edges. The edges can be considered as an interface
between a topologically non-trivial gapped system and vacuum, which is
trivial by definition with zero Chern number. This leads to the presence of
gapless states at the edge. These states cannot be destroyed as long as the
bulk-gap remains open, making them robust to the presence of small local
disorders.

The bulk-boundary correspondence is the statement that in the absence of
additional symmetries, the number of edge modes equals to the difference
in the Chern number at the interface. Here, we follow the derivation pre-
sented in Ref. [FJK11] and deomnstrate this for a simple two band gapped
Hamiltonian H. Without the loss of generality, we further assume it to be
spectrally flat with eigenvalues 11, as any gapped two band Hamiltonian
can be continuously deformed into one which is spectrally flat. Ler the
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spectral projector on to the band with energy —1 be called P. So, we have
H =1 —2P. A boundary can be introduced in this by defining

Vix)=1 ifx<0
V(ix)=-1 ifx>0

H,=PV(x)P+1—-P; { (2.14)

such that H, = 1 (trivial) for x < 0 and H, = H for x > 0, modeling
an interface of the system with the vacuucm. Notice that H, has decays
exponentially with x as P decays exponentially and V(x) is local. To see the
bulk-boundary correspondence, we start with the real-space formulation
of the Chern number given in Eq. (2.13). Given that we have translational
invariance along y, we deform the boundary of the one of the half-planes,
I1,, — 7. Using the identity —i[}, P | = 0P, /dky, and replacing the sum as
integrals, we get that

C = /dkyTrC(ky), (2.15)

where C(k,) = Pky[[onPky],E)Pky/ oky|. Eq. (2.15) is then evaluated in the
eigenbasis {|¢,)} of P, V(x)Py, with eigenvalues {1, } and We have

(u]C(ky) [n) = (1 + An) /20K,

So, C = Y,(An(27r) — A4(0)) /2. Now if k is the number of edge-modes that
cross the Fermi level, then we have A, (271) = A,,14(0) independent of n. As
a result, A, (27) and A, ¢(0) keep getting cancelled when taking he sum
over n, resulting in C = k. This demonstrates, that the bulk Chern number
of a system is equal to the number of edge-modes present in the system
when the system posses an interface with vacuum.

2.4 AN EXAMPLE: THE HARPER-HOFSTADTER MODEL

The Harper-Hofstadter model is essentially a tight-binding description
of free electrons on a 2-dimensional lattice in the presence of uniform
perpendicular magnetic field. This model has been extensively studied in
the literature on various lattices [Hof76; Ram85; Pra16]. Here, we choose to
work on square lattice. The Hamiltonian is given by:

—i0, +
Hypy = — Z e lfkcjck (2.16)
<jk>

where j, k are the labels for the sites positioned at 7; and #, < ... > denotes

nearest-neighbors, C}L(C]') is the creation (annihilation) operator for state

i), and 0y = (27te/h) fr_r},(] A - dl, is the Peierl’s phase associated with the
bond between sites at positions 17] and 7} with the flux quantum ¢y = h/e.
The physics is invariant with respect to the choice of gauge. what de-
cides the physics is the amount of flux which is piercing through each
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Magnetic field [d%] Magnetic field [%]

Figure 2.2: Spectra of the Harper-Hofstadter model as a function of the magnetic flux ¢. (a)
shows the normalized density of states which takes the shape of the well-known
Hofstadter butterfly. (b) shows the Chern number computed for various filling
as a function of the magnetic flux. The computations have been done on a square
lattice with Nyj.s = 341.

plaquette. For all the numerical calculations, we have used the Landau
gauge, A = (0,Bx,0). We have parameterized the magnetic strength by
B = 27t¢p/a, where a is the lattice spacing and 27¢ is the flux piercing
through the smallest triangles of the structures.

We can define a magnetic version of the Brillouin zone whenever ¢ is
a rational multiple of ¢o, ¢ = p¢po/q for some integers p and q such that
they share no common factors. The gauge invariant translation operator, Ty
along the x direction, and Ty along the y direction, do not commute with
each other. However, in the Landau gauge which we have chosen, T, and Tg
do commute with each other and the Hamiltonian. As a result, a magnetic
Brillouin zone can be constructed by grouping q sites together along the
y direction to form a larger unit cell. The magnetic Brillouin zone hence
a torus, which is g times smaller than the original Brillouin zone, and the
spectrum at ¢ = p¢y/q breaks into q sub-bands. The spectra of the model
as function of ¢ results in the famous Hofstadter butterfly shown in Figure.
2.2 (a). To study the spectrum, we look at the normalized density of states
pe, which is given by

E) =Y “6(E—E) = Y —li :
pe(E) = ) 0(E - ”)_ZNHSIEI})(E—E”)ZJrgZ (2.17)

n n

where N is the total number of eigenstates and n denotes the index of each
eigenstate. In this case, we have used open boundary conditions as a result
of which we do not see the gaps in the spectra. Instead, we see the presence
of the gapless edge modes. In Fig. 2.2, the regions with low pp correspond
the gapless modes and the regions of high pr correspond to the magnetic
sub-bands. Fig. 2.2 shows the Chern number as a function of filling and
magnetic field. We see that the Chern number is quantized when the Fermi
level is in the regions with low pr which otherwise would have been the
gaps under periodic boundary conditions.
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In this chapter, we looked into some of the defining aspects of topology in
non-interacting condensed matter systems. We have not reviewed the role
symmetries on the topological aspects of non-interacting systems which we
briefly talk about in Section. 5.1. In the next chapter, we will review the tight
binding models on self-similar systems, ultimately covering the study of the
self-similar structures on fractals.

17






NON-INTERACTING MODELS ON FRACTALS

In this chapter, we present the concepts which are necessary to motivate the
main ideas of this work and would be used in the subsequent chapters of
this thesis. Specifically, we present a scheme to construct self-similar graphs
from fractals, study simple tight binding models using these graphs, and
show how the idea of real space renormalization can be inherently associated
with these graphs. Then we specifically review two of the works form the
literature: (i) properties of tight binding models on the Sierpinski triangles,
and (ii) the Sierpinski-Hofstadter model and the associated self-similar chiral
edge-like states.

We start out with presenting a description of non-interacting particles on
fractals. We only choose self-similar fractals for our purpose. Non-interacting
finite systems, in general, can be described using a Hamiltonian of the form:

= ;Hﬁ i) (] (3.1)
]

where, {]i)} denotes an orthonormal basis in the Hilbert space and H;; are
elements of a Hermitian matrix, H. Any Hamiltonian of the from given in
Eq. (3.1) can be diagrammatically represented as graph, where the basis
states |i) are represented as vertices or nodes of the graph. The edges of
the graph is then defined using the matrix H; there exists an edge between
i) and [j) with weight H;; if H;; # 0. Such graphs often are insightful
representations of non-interacting systems. For example, in the tight-binding
approximation for crystalline systems, the graph of the Hamiltonian can be
directly mapped onto the lattice structure when the basis of representation
is chosen to be basis of atomic orbitals present in the system. This in turn
allows us to correlate the lattice geometry and the Hamiltonian in such
systems. In the case of fractals, presently we do not have a well-defined
way to describe systems in the continuum limit. So, we would start out by
assuming a tight-binding description of fractal systems, and hence shift our
focus towards generating self-similar graphs from fractals.

3.1 CONSTRUCTION OF SELF-SIMILAR GRAPHS

To generate self-similar graphs from fractals, we make use of the iterative
scheme of construction of fractal structures. We first explain this using the
Sierpinski Gasket (S5G), and later generalize it to construct a variety of graphs
corresponding to fractals of different generations.

For the construction of graphs on SG, we use a recursive procedure the
starting from an equilateral triangle. We divide it into four equilateral tri-
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Figure 3.1: Schematics for the construction of the self-similar structures. These structures
are constructed by discretizing the recursive generation scheme of the Sierpinski
Gasket. The shaded regions are the finite truncations of the SG for different
generations. The blue and red dots indicate the positions of the sites for the
structures 5G-4 and 5G-3, respectively. The black solid lines represent the bonds
between the sites. The three corner sites are marked with an additional yellow
dot in both structures.

angles of equal area, remove the central triangle, and repeat the procedure
infinitely for each of the remaining triangles. We call the structure generated
after g iterations for “SG with generation ¢", and the triangles removed in a
particular generation as the “triangles of a generation g". It is then possible
to construct various graphs on the SG, but for simplicity we choose to focus
on self-similar graphs which are equicoordinated, except at the corner sites.
We construct self-similar graphs with coordination numbers 3 and 4 as illus-
trated in Figure. 3.1, but we have not found equicoordinated graphs with
other coordination numbers (graph with coordination number zero is trivial).

To construct an 4-coordinated graph (shown in Figure. 3.1), we identify
the vertices of the triangles in each generation of the SG with the sites,
and the edges with the bonds. This gives a self-similar graph in which, all
sites except the three corner sites (marked in yellow in Figure. 3.1), have
coordination number 4. We denote this structure by “SG-4”. Tight-binding
models on this type of structure have been extensively studied using real
space renormalization methods (to be discussed later in this chapter).

Similarly, for the construction of an 3-coordinated graph (also shown
in Figure. 3.1), we identify the centroids of the smallest triangles in each
generation of the SG with the sites, and connect the nearest neighbors. This
gives a self-similar graph where, in each generation, all sites except the
three corner sites, have coordination number 3. We denote this structure
by “SG-3”. Notice that the first generation of the SG-4 is obtained from
the zeroth generation of the SG, whereas the first generation of the SG-3 is
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obtained from the first generation of the SG.

We can generalize this construction scheme to generate fractals and self-
similar graphs from other structures. For example, we can generate a fractals
of different dimensions from a square. We take a square, divide it into L2
equal squares, retain K of those squares and remove the rest, and recursively
carry out the procedure on the retained squares. This gives a fractal of
Hausdorff dimension log(K) /log(L). Now to construct self-similar graphs,
we follow the procedure as in the case of SG-3. We identify the centres of
the squares are the sites and then connect the nearest neighbors with edges.
Finite truncations of such structures are said to be of generation g if the
recursion scheme is truncated after the ¢ iteration. A couple of examples
of self-similar graphs generated from this scheme is shown in Figure. 3.2 ((a)
and (b)). We note that, not all possible fractals generated from this scheme
lead to connected self-similar graphs. One of such cases is shown as an
example in Figure. 3.2(c).

3.2 SELF-SIMILARITY AND REAL-SPACE RENORMALIZATION

The self-similar nature of the graphs constructed using the above construc-
tion scheme ensures that, for each graph, we can remove certain specific
sites from a given generation g so that the structure with the remaining sites
resembles that of generation ¢ — 1. For each structure, we term these specific
sites as the “sites of generation g’. One such example is illustrated in Fig. 3.3.
In both structures shown in the example, in each generation, only the three
corner sites of the SG-3 and the SG-4 are two coordinated, but we expect
this to not affect the physics when we are far from the corner sites. In this
section, we show how the self-similarity of some of these graphs, like those
from the Sierpinski Gasket, leads to the construction of exact real-space
renormalization and later go on to use the renormalized Hamiltonian for
solving the tight-binding model on SG-4 as an example. Several works in
the literature make use of these scheme for studying self-similar systems
[Dom+83; RT82; BKP85; Ghe+87]. Here we will primarily follow the review
of all these works by [Kimg8].

Consider a Hamiltonian H represented by the self-similar graph of gener-
ation g. In some self-similar graphs, the fact that one can remove the sites
of generation g to obtain a graph of generation g — 1 implies that one can
H can renormalized to a new Hamiltonian H' defined on the sites of g — 1
with exactly the same structure. To see this, let us first denote the set of sites
of generation g as the Q and the set of rest of the sites as P. Let P and Q be
the projectors onto sites in P and Q respectively. So the eigenvalue equation
for H can be decomposed in terms of sites in P and Q and can be written as

H|‘P>= Hpp HPQ Yp _ pr\Pp—i-HpQTQ _E Yp , (3'2)
HQP HQQ TQ HQPTP+HQQTQ ‘FQ
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o '
Bl g

Figure 3.2: Few examples of graphs constructed using the recursive scheme on a square. (a)

and (b) are examples of self-similar graphs. (a) is a graph made from a fractal
log(7)
log(3)

known Sierpinski Carpet with Hausdorff dimension

, whereas (b) is constructed from the well-

log(8)
log(3)
a case where the applying the recursive scheme does not result in a connected
graph.

with Hausdorff dimension

. (c) is an example of
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Figure 3.3: Schematics showing the self-similarity of (a) SG-4 and (b) SG-3. The sites of the
third generation are marked in red for both structures. When these sites are
removed, the remaining structure resembles that of the second generation.

where the eigenstate |[¥) = [¥p, ¥o]T and E is the eigenvalue. The idea is to
now eliminate ¥ and rewrite the whole equation in terms of ¥p. This can
be done by expressing ¥ in terms of ¥p and E as following

Yo = (E—Hgg) "Hgp¥r (3.32)

Hpp¥Yp + HPQ(E - HQQ)_1HQP1FP =EY¥p (3.3b)

. We see that Eq. (3.3b) is an eigenvalue equation written completely in
terms of sites in P. So the renormalized Hamiltonian H’ can be identified as

H' = Hpp + HPQ(E — HQQ)_1HQPr (3.4a)

(ip|H'|jp) = {ip|H|jp) +IE (ip|H|lg) (Ig|(E — Hog)~"|mq) (mg|Hl|jp),
Jm

(3-4b)

where ip,jp € P and lg,mg € Q. In principle, every system can be de-
composed into some set of sites, Q, and its compliment P, and one can
write an effective renormalized Hamiltonian H’ for sites in P. However
H' does not have the same structure as H in general. What makes H’ to
have the same structure as H are the following additional structures of
Hgg- Consider the condition where the sites in Q can be regrouped in to
different disjoint subsets Q; such that there does not exist a path between
g; € Q; and q; € Qj when restricted to only the sites in Q. This ensures
that Hpg has a block-diagonal form Hpo = diag(Wy, Wy, ...) such that W;
acts only on sites in Q;. As a result, (E — Hog) ™! also has a block diago-
nal form given by (E — Hpg) ' = diag((E — Wy) 1, (E— W,)~1,...). This
means that (E — Hop) ™! does not ‘connect’ sites in subset Q; with sites in
subset Q; for any 7, j. Moreover, for any subset Q;, let the set of sites in P
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which are connected to those in Q; be named P;. If for any two py, py € P,
there always exists an edge between them in the graph of generation g — 1,
then Y, ,, (ip|H|lg) (lg|(E — Hgg) *|mq) (mg|H|jp) cannot generate any
additional edges which are not already present in the structure of g — 1.
This implies that H' (if it exists) will have the same structure as H, except
that the onsite potentials and the hopping matrix elements gets renormal-
ized. And due to this preservation of the structure of the Hamiltonian, the
renormalization can be repeated arbitrary number of times. The structures
given in Fig. 3.3 are examples of the graphs which satisfy these conditions.
More mathematical details on the equivalence of H and H' can be found in
Ref. [Kimg8]. Next we go on to solve a simple tight-binding model on SG-4
as an example.

3.2.1  Tight-binding model on Sierpinski triangle

Various non-interacting models have been studied in the literature using real-
space renormalization method. Here, we review the properties of simplest
tight-binding model on SG-4, which is referred to as ‘Sierpinski triangle’
in the literature. The model was studied by Rammal and independently
by Domanyetal., hence it is termed as the R — D model. The graph of the
Hamiltonian H is the same as SG-4 (see Fig. 3.3(a) or Fig. 3.1(a)), where
Hj; = u for all sites j, and Hj, = t if j, k are connected by an edge or Hjx =0
otherwise. Here, t is considered to be real.

For doing the decimation, we identify the Q sites and P sites as the
ones marked in red and blue respectively in Fig. 3.3(a). The set Q can be
decomposed as into union of disjoint subsets Q; as the graph of the sites
in Q clearly decomposes into disjoint triangles. So, for the renormalized
Hamiltonian H’, we have

(i H'[j) = Y (GIH|L) (1(E—W;) "t m) (m|H]|j), (3-52)
MEQ;

(i[H'liy =u+2 Y ([H[L) (I|(E—W;)" |m) (m|Hlj), (3.5b)
IL,meQ;

where i,j € P. The factor of 2 in front of the sum in Eq. (3.5b) is because of
the fact that each site in P is present in two P;. From Eq. (3.5), we that the
renormalized hopping and onsite energies are given by

;o 2—¢€
! _t(e—|-2)(c—:—1) (3-63)
) e+3)(e—-2)
e ey (3:6)
e = u_ —e(e+3) (3.6¢)

t/



3.3 EFFECT OF MAGNETIC FIELD AND TOPOLOGY

where U = u — E and € = U/t. The spectrum and the properties of the
eigenstates can be studies by inverting Eq. (3.6c) which is given by

2
€= —; + (%) — € (3.7)

which is referred as the decoration relation in the literature [Kimg8]. The
spectrum for the infinite generation of SG-4 can be generated by using the
eigenvalues of the H on a triangle as seeds. These eigenvalues are 2 and 1.
The eigenvalues corresponding to €/ = 1 being used as the seed are called
edge eigenvalues as this seed corresponds to an energy where the decimation
is ill-defined as H' becomes singular. The eigenvalues corresponding to
€’ = 2 being used as the seed are called isolated eigenvalues. The spectrum of
H at infinite generation is basically the set of all such generated eigenvalues
along with their limit points. These limit points turn out to be the Julia
set [Dom+83]. Important properties of the states on SG-4 in the infinite g
limit include the fact that each eigenvalue is infinitely degenerate and every
eigenstate can be written as a linear superposition of ‘superlocalized” states
which only have finite amplitude on a finite number of lattice sites [Dom+83;
Kimg8].

3.3 EFFECT OF MAGNETIC FIELD AND TOPOLOGY

The tight-binding graphs mentioned in the the previous sections were mod-
els to study the free particles on self-similar fractals. It is natural to ask the
question: what happens to these free particles when we switch on a magnetic
tield. To study this problem from a tight-binding perspective on graphs,
typically one makes use of the well-known Peierl’s substitution. As a result,
the hopping amplitudes get modified with an additional phase, ; — e'%jk ik,

where 0 = (2mq/h) | ;k’ A -dl, q is the charge of the particle, and A is the
vector potential associated with the magnetic field. Detailed study of the
spectral properties of such tight-binding models using the real-space renor-
malization approach can be found in references [Dom+83; BKP85; Ghe+87;
Kimg8]. Not only from the perspective of spectral properties, this problem
is also interesting from the perspective of topology and the integer quantum
Hall effect.

3.3.1  The Sierpinski-Hofstadter model

The Sierpinski-Hofstadter model is the application of the Harper-Hofstadter
model to study non-interacting electrons on a Sierpinski fractals, in the the
presence of uniform magnetic field. As we discussed in the previous section,
the topological phases in non-interacting translationally invariant systems
are identified by the presence of robust chiral edge(boundary) modes, and

25



26

NON-INTERACTING MODELS ON FRACTALS
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Figure 3.4: (a) SG-3 with ¢ = 7, and (b) SG-4 with ¢ = 7. For the calculation of the real
space Chern number using Eq. (3.9), we choose a subsection of the system and
divide it into three partitions. The partitions are shown with red, green and blue
and the projectors onto these partitions are labeled A, B, and C respectively.

are characterized by the Chern number defined in the bulk. So, from a
purely physical point of view, we see that idea of a well defined bulk and
boundary plays a crucial role in identifying the topological phases in these
systems. However, from a purely mathematical point of view, all the above
properties are essentially the properties of the tight-binding graphs of these
systems. So at this point it is natural to ask what happens if we choose a
tight-binding graph of a system which lacks the distinction between bulk
and boundary. And self-similar fractals are excellent examples of such sys-
tems. In an attempt to answer this, the Sierpinski-Hofstadter model was
studied on SG-4 and SC in the reference [BCN18]. Later a few other works
explored different properties like the Hall conductivity and robust currents
which are some signatures of topological phases, on various fractals [Fis+21;
Fre+20; IKY20; SN21].

We consider two different discretizations of the Sierpinski gasket (SG),
namely SG-3 and SG-4, mentioned in section 3.1. These two structures have
relatively slower growth in the system size N as a function of the generation
g. For example, N = 33 for SG-3 and N = (38 + 3)/2 for SG-4, whereas
N = 8¢ for a self-similar structure constructed from the Sierpinski Carpet.
This makes it comparatively easier to numerically access higher generations
and reach closer to the limiting fractional dimension for SG-3 and SG-4. The
Hamiltonian for the system is the Harper-Hofstadter Hamiltonian given
in Eq. (2.16). The only difference is that, here we have parameterized the
magnetic strength by B = 27t¢p/ (1/3a /4), where a is the distance between
nearest neighbor sites and 27¢ is the flux piercing through the smallest
triangles of the structures.



3.3 EFFECT OF MAGNETIC FIELD AND TOPOLOGY

(a) E=-0.59 81.0 (b) E =-0.667 21.0 (0) E =-0.568 glo
0.8 08 | L 0.8

0.6 0.6 0.6

04 """"""""""" 0.4 0.4

Ny . N, Shdh dadh "

Figure 3.5: Examples of edge-like states for the Sierpinski-Hofstadter model on SG-3. Cal-
culations have been done for ¢ = 6.

To study the spectrum, we look at the normalized density of states pg,
which is given by

1 1 .
pE(E):;N(S(E_E"):ZNng% (E—Ei)z#—e2 (3:8)

n

where N is the total number of eigenstates and n denotes the index of each
eigenstate. Given a state [¢) = }; ¢ ‘rj>, we study the localization of the
state by computing the normalized onsite density, p; = |1,b]-|2 / max(|1pj|2).
The Harper-Hofstadter model on the Slerpinski Gasket gives rise to some
exotic states which were not present in the case of translationally invariant
lattice systems [BCN18; SN23]. These states appear to be highly localized on
some particular sites of SG-3 and SG-4, which seem to look like analogous
to the edge states found in the topological lattice systems. A few examples
of such states are shown in Figure. 3.5. However, due to self-similarity, the
notion of bulk and edge is ill-defined on fractals. And due to this lack of
sharp distinction between bulk and edge states in the case of fractal systems,
we define “bulklike” and “edgelike” states as follows. An eigenstate is a
bulklike state if it has finite probability density on sites which enclose the
triangles belonging to more or less every generation of the SG. On the other
hand, an eigenstate is an edgelike state, if it is localized on sites which
enclose the triangles belonging entirely to a particular generation of the SG.

We also calculate the real space Chern number for different fillings using
Kitaev’s prescription [Kito6] given by

C(P) = 127i(Tr(APBPCP) — Tr(APCPBP)) (3.9)

where A, B, C are the projections onto the three partitions shown in Fig. 3.4,
and P =Y, c..c [n) (n| is the projector onto the set of occupied eigenstates.
The normalized density of states and the Chern numbers as a function of
the magnetic field are shown in Fig. 3.6. It is immediately clear from Fig. 3.6
that most of the spectrum has a very low pg. This is significantly different
from the Hofstadter butterfly on lattices with open boundary conditions
which have well-defined bulk regions (high pr) and edge regions (low pg)
in the spectrum. Moreover, for both SG-3 and SG-4, almost the entire region
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Figure 3.6: Density of states and the real space Chern number for (a) SG-3, N = 3° and,
(b) SG-4, N = (37 + 3) /2. The density of states, pg, is computed using Eq. (3.8)
with e = 1073 and the Chern number is computed using Eq. (3.9).
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with low pg is characterized by C = £1.

3.4 OUTLOOK

Recently, significant developments have been made in the study of quantum
fractals in photonic waveguides[Yan+20] and in the experimental realization
of quantum fractals within controlled laboratory settings [Xu+21]. This
has ignited a surge of theoretical studies in this domain [Iva+22; Zhe+22;
MNR22] which is driven by the possibility of self-similar quantum systems
to yield profound theoretical insights and unveil the potential for discovering
exotic phenomena previously uncharted in conventional condensed matter
physics. As we move into the next chapter, we're diving deeper into this
exciting field. We’ll build on what we’ve learned so far, zoom in on these
self-similar structures and provide a way to understand the topological
phases on these structures.



Part II

NON-INTERACTING MODELS

In this part, we present our study of the topological phases in non-
interacting models on self-similar structures. In the first chapter of this
part, we present our understanding of topological phases in terms of
adiabatic charge pumping which is primarily based on our work in Ref.
[SN23]. The second chapter in this part is based on our works in Ref.
[SN21], we show the effect of the interplay of non-spatial symmetries
and coordination on the topological phases on these structures.






TOPOLOGY THROUGH ADIABATIC CHARGE
TRANSPORT

Topological phase diagrams of some well-known models on self-similar
structures are present in the literature [Aga19; BCN18; SN21]. The Sierpinski-
Hofstadter model, which we reviewed briefly in the previous chapter, is
an example of one such model. However, only a limited microscopic un-
derstanding of such phases is available at present. For example, in the case
of self-similar structures, understanding of these topologically nontrivial
phases in terms of winding of the eigenstates over some manifold, analogous
to the winding of the Bloch states in the k space for translationally invariant
non-interacting systems, is not present at the moment. Given the lack of
an eigenstate winding perspective for self-similar structures, we use the
perspective of adiabatic charge pumping in this chapter to understand the
emergence of topology in self-similar systems and the quantization of real-
space indices. Adiabatic pumping in translationally invariant non-interacting
systems has been thoroughly studied. These systems form multiple mag-
netic bands (or Landau levels in the continuum case) when subjected to
a perpendicular magnetic field. When additional flux is threaded through
the system using a thin long solenoid, some states flow across the band
gap from one band to another. The Chern number can be expressed as the
number of such states flowing across the band gap. In this chapter, we study
whether similar ideas can be used to present a microscopic understanding
of the topology in self-similar systems.

4.1 ADIABATIC CHARGE TRANSPORT IN TERMS OF INSTANTANEOUS
PROJECTORS

We consider a finite non-interacting system, S, with a Hamiltonian, H(¢(t)),
where ¢(t) is a time dependent parameter. We assume that the Hamiltonian
has no other explicit time dependence and from now on, in this section,
we suppress the time dependence of the parameter. The instantaneous
eigenstates can be obtained from the eigenvalue equation

H(g) [n(¢)) = En(9) n(9)) . (4.1)

We assume that there is a time ¢t = T after which the Hamiltonian returns
back to itself, up to a gauge transformation. We now consider a subsystem,
B, of the system. The rest of the system is denoted by S — B. We want to
quantify the net charge, Q, leaking out of the subsystem over a time period
when the system is adiabatically evolved in time. Q is given by

T
Q= /0 ), (4.2)
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where ] is the current operator and () is the expectation value of the operator
in the many-body ground state wave-function at time ¢. In the adiabatic
limit, each single particle eigenstate of the Hamiltonian H(¢(t)) evolves as

[n(e(1))) = e Dem O n(p(0))), (4-3)

where 60,(t) = —(1/h) fot E.(¢(t'))dt is the dynamical phase and 7, (t) =

fot i(n(e(t")|n(e(t)))dt is the geometrical phase. So the many-body time-
evolved state in the adiabatic limit, [()(#)), is the Slater determinant of the
adiabatically time-evolved occupied single particle states.

The current operator can be identified from the change of the total number
operator over subsystem, B, which is given by the von Neumann equation

d (ng)
ot

= —i{[ng, H(9)]), (4-4)

where ng = Y 5 |1y) (ry| is the total number operator over B. Then we
identify the current operator as | = —i[ng, H(¢)]. In the case of adiabatic
evolution, the time-evolution can be generated by the adiabatic Hamiltonian,
K(t) = i[Py, P1], instead of H [dBL22]. Here Pr = ¥, ¢ occ [1(9)) (n(9)] is
the instantaneous projector onto the set of occupied single particle states.
The derivation of the adiabatic Hamiltonian, K, can be found in appendix A
of Ref. [dBL22]. So, the adiabatic current operator is given by

]A = _i[nB/K(t)]

. . . (4-5)
= (nBP[PI + PiPing — ngP;P; — PIPII’IB).

The expectation value of the adiabatic current operator in the many-body
ground state then becomes

(") = QM) = Tr(P?)
= Tr(PingPPy) + Tr(P?Pynp)
— Tr(PngP;Py) — Tr(PiPPing) (4-6)
= Tr(ngP;P;) + Tr(P;Pinp)
— Tr(ngPrPPy) — Tr(PiPPng),
where the last equality has been obtained by using the cyclic property of the

trace and the fact that PI2 = P;. Now we use the identity P;P;P; = 0, and we
get

<]A> = Tr(ngPP;) + Te(PPyng)

= Tr(ngPiP;) + Tr(ngPP;) (4.7)
= Te(npP}) = Tep(Py),
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where Tr(..) is the trace over degrees of freedom in subsystem B. So the
net charge leaking form B can be expressed as

Q= / ) dt = / Trg(:P))dt
—TTB(PI(T) P(0)).

(4-8)

From Eq. (4.8) we see that, in the adiabatic limit, the net charge leaking
from the subsystem can be expressed as the change in the instantaneous
projector onto the occupied states over the pumping cycle, traced over the
degrees of freedom of the subsystem. Now, as the parameter is assumed to

get back to its initial value at time T, the Hamiltonian returns back to itself,

up to a gauge transformation. So, the set of projectors onto the eigenstates
of the Hamiltonian at t = 0, {|n(¢(0))) (n(¢(0))|}, is the same as the set of
projectors onto the eigenstates at t = T, {|n(¢(T))) (n(¢(T))|}. So, if there
is no spectral flow due to the change in ¢ in the instantaneous spectra of the
Hamiltonian, P;(T) = P;(0) and there is no adiabatic charge transport as a
result. Clearly, to get a non-zero adiabatic charge transport from the region
B, there must be spectral flow in the instantaneous spectra of the system.

Now let us consider a scenario where P;(T) # P;(0). Let \V; be the set of
eigenstates which are occupied at t = O butnotat t = T, N, ¥ be the set of
eigenstates which are occupied at t = T but not at t = 0, and O be the set
of eigenstates which remain occupied both at t = 0 and t = T. As we have
assumed that the system is particle conserving, the number of states in N;
and Ny are the same, denoted by N. So, P1(0) = L,c . 1) (n] + Loco |0) (0]

and Pi(T) = Le, |m) (m] + Loco |0) (o]. So, we get

Q = Trg(Pi(T) — P1(0))
=Trp( ), |m)(m|— ) |n)(n|)

meNy neN; (4-9)
= Y Trp(|m) (m|) — Y Trp(|n)
meN nehN;

If a state |n) is completely localized in B, then Trg(|n) (n|) = 1, and if it
is completely localized in & — B, then Trp(|n) (n]) = 0. So, if all states
in Ny and N; are completely localized either in B or in S — B, then
YmeN; Trg(|m) (m|) and Y, ;. Trp(|n) (n]) would be integers, giving rise to
a quantized adiabatic charge Q. Now, if all states in \; and N are completely
localized in § — B, then ¥, v, Trg(|m) (m|) = Lnen; Trp(n) (n]) = 0 and
Q = 0. Also, if all states in A; and Ny are completely localized in B, then
Ymen; Trg(|m) (m|) = Lpen; Trs(|n) (n|) = N and Q = 0. A non-trivial
quantized contribution to the adiabatic charge transport is obtained when a
pair of states, |[m) € Ny and |n) € N, are localized in such a way that one
of them is completely localized in B and the other is completely localized in
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S —-B.

4.2 ADIABATIC CHARGE PUMPING IN SIERPINSKI-HOFSTADTER MODEL

We insert an infinitely long, thin solenoid through a given point (xg, ). The
flux, 27t @, through the solenoid is then varied adiabatically from 0 to 27t. We
are interested in studying the response of the system to the change in flux.
To study that, it is important to study the many-body ground state of the
system. Since the flux is pumped adiabatically and the Hamiltonian is non-
interacting in nature, the many-body ground state of the system at a given
instant is the Slater determinant of the occupied single-particle eigenstates
of the instantaneous Hamiltonian, H(¢), with a dynamical and a geometric
phase factor. So we first take a look at the single-particle eigenstates and
eigenvalues of H(¢). For the rest of the numerics in the text, given a state
W) = X |rj>, the localization is shown by computing the normalized

onsite density, p; = |1/Jj|2/max(|1/’j|2)-

4.2.1  Instantaneous spectrum and spectral flow

The form of the Hamiltonian H(¢) is the same as in Eq. (2.16), except that an
additional Peierl’s phase, 8 = (27te/h) [-¥ A, - dl, gets added to each bond

7,
due to the flux-tube. Here A, is the vector ]potential due to the flux tube, and
for the numerical computations, it is taken to be A, = (0, ¢/7,0) in cylin-
drical coordinates. The spectrum of H(¢) at ¢ = 0 and ¢ = ¢ are identical
as the Hamiltonian returns to itself, up to a gauge transformation. In fact,
the spectrum is periodic in ¢ with a period of ¢y. But for ¢ # n¢y, n € Z,
the spectrum of the Hamiltonian changes in general resulting in the flow
of the energy of individual eigenstates. We track the flow of the energies of
the eigenstates as a function of ¢. We say that a given state has undergone a
spectral flow if the state does not return back to the same initial energy as ¢
is changed from 0 to ¢y.

Figure 4.1 shows the spectral flow of the Harper-Hofstadter model on SG-3.
We would like to highlight the fact that the spectral flow here is qualitatively
different from that of the Harper-Hofstadter model on a 2-dimensional lat-
tice. In the case of a 2-dimensional lattice, spectral flow is observed across the
band-gap. The states in the bulk undergoing spectral flow move in energy
(up or down depending on the Chern number), from one band to the next
band, across the gap. The edge states, which lie entirely in the gap, undergo
spectral flow in the opposite direction to that of the bulk states (shown in
Fig. 4.2(a)). In contrast, in the case of SG-3, spectral flow is observed almost
throughout the entire spectrum (in the low pr regions). Here, the states
undergoing spectral flow go from one group of degenerate states with low
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Figure 4.1: Spectral flow for SG-3, N = 37 with ¢/Pp = 0.3. (a) shows the flow of the
eigenstates as a function of ¢/¢y for a part of the spectrum. (b) is a zoomed
in version of the spectral flow highlighting the nature of the flow. (c) shows
the localization of different edge-like states corresponding to different spectral
flow (computed at ¢ /¢y = 0.2). The coloured dots in (b) represent the points at
which the states in (c), marked with corresponding colors, were computed. The
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degeneracy in the low pr region to another, as opposed to one ‘band’ to
another or one high pr region to another. This qualitative difference in the
spectral flow is also observed for other self-similar structures as shown in
Fig. 4.2.

The states in the low pr regions of the spectrum can be qualitatively
grouped into four groups (column (b) of Fig. 4.1): (I) the states which flow
up in energy (positive spectral flow), (II) states which flow down in energy
(negative spectral flow), (III) states with almost no change in energy, but are
degenerate at ¢ = 0 with states undergoing spectral flow, and (IV) states
with almost no change in energy and are not degenerate at ¢ = 0 with states
undergoing spectral flow. We find that the states in group I are edge-like
states localized on the sites forming a loop which encloses the flux tube. The
states in group II are edge-like states localized on the outermost triangle on
SG-3. The states in group III and IV, which do not undergo a spectral flow,
are also edge-like states but they are localized on sites forming loops which
do not enclose the flux tube. We find that the real space localization is more
or less the same for all states belonging to a given group, for low values of ¢
and sufficiently away form the point of avoided crossings. This means that
the states retain their edge-like localization away from the avoided crossings
during the spectral flow. The representative real space localization of the
states in the above mentioned groups, for a given position of the flux tube,
are shown in column C of Fig. 4.1 for these four groups. Close to the avoided
crossings, the nature of the states changes due to hybridization.

The extent of hybridization is dependent on the localization of the states;
states localized nearby in real-space hybridize strongly in the absence of
any symmetry. Here, the states belonging to different groups are edge-like
states, localized on sites immediately enclosing triangles of different gener-
ations. Hence the extent of hybridization is not significant. This has been
checked by fidelity computations, shown in the Fig. 4.3. Fidelity is defined as:
Fom = (Pu(@)|Pm(p — d¢)), where |¢,(¢)) and | (¢)) are instantaneous
eigenstates of the Hamiltonian (H(¢) |¢»(¢)) = Ex(¢@) |¢m(9))), labeled by
labels n,m such that n > m = E, > E,. A high value of F;, , ~ 1 means
that the state |, (¢ — d¢p)) flows to |P,(¢)) without significant hybridiza-
tion when the flux ¢ is changed by an amount d¢.

Why certain states undergo spectral flow and certain states do not can be
understood from their localization. For states belonging to group I and II, the
states are always localized on a closed loop enclosing the flux tube. Hence,
they are sensitive to flux (Aharonov-Bohm effect) and undergo spectral flow.
On the other hand, the states which belong to group III and IV are localized
on loops which do not enclose the flux tube. Hence, the vector potential of
the flux tube can be effectively gauged out resulting in these states being
not sensitive to the flux. As a result, they do not show spectral flow. This
becomes further clear from Fig. 4.4 where we show the change in the spectral
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Figure 4.2: Comparison of the spectral flow of the Harper-Hofstadter model in self-similar
structures to that in a square lattice. In each column, the top panel shows the
position of the flux-tube with respect to the structure under consideration, and
the bottom panel shows the corresponding spectral flow. (a) shows the spectral
flow in a a 29 x 29 square lattice with open boundary conditions (N = 841
sites). (b) and (c) show the spectral flow in two other self-similar structures, not
originating from the Sierpinski gasket, with Hausdorff dimensions log(7) /log(3)
(N = 7* sites) and log(8)/log(3) (N = 8* sites) respectively. For the square
lattice, the spectral flow is observed across the band gap. In contrast, in self-
similar structures, there is no well-defined notion of bands and associated gaps.
The nature of the spectral flow for these structures is similar to that of the
SG-3 (Fig. 4.1); all eigenstates in the low pg region of the spectra enclosing the
flux-tube undergo spectral flow.



38

o
n

Fidelity

o
o

a
o =
U o

Fidelity

o
o

Figure 4.3:

TOPOLOGY THROUGH ADIABATIC CHARGE TRANSPORT

0.0 0.2 0.4 0.6 0.8 1.0
(I
H T
ul‘
i
|
0.0 0.2 0.4 0.6 0.8 1.0
Flux [%]

Fidelity computations for avoided crossings. Fidelity is defined here as: JF, , =
(¢ (@)|¢m (@ — d¢)). For the numerics, we have chosen §¢ = 0.01¢g and N = 37.
(a) shows a part of the instantaneous spectrum when the flux tube is placed
inside one of the triangles of the second generation (shown in Fig. 4.1(c)). The
flow of two particular states, one of them being primarily localized on the sites
immediately enclosing the triangle of the second generation and the other being
localized on the sites of the outermost triangle of the SG, are marked in blue
and green colors. (b) and (c) show the fidelity of these two states as a function
of ¢. Large dips in /), and a correspondingly large peak in F,; , 1 (Fynt1)
are seen when the highlighted states come close in energy with another state
localized on far off sites. These indicate that the state |i,,) has flowed to |, 1)
(|¢n41)) without any significant hybridization. On the other hand, shallow dips
in F,, and a correspondingly small peak in F,, ,_1 (F, ;1) are seen when the
highlighted states come close in energy to a state localized on sites relatively
close to the highlighted states. These indicate avoided crossings with significant
hybridization.
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Figure 4.4: Change in the spectral flow due to the change in the position of the flux tube
for SG-3 (N = 3%, ¢/ = 0.3). Columns (a), (b) and (c) show a portion of the
spectral flow for three different positions of the flux tube. The position of the
flux tube is marked by a red cross-hair in the SG-3 diagrams at the top of the
respective columns. A few typical states which are localized on sites enclosing
holes of different generations are chosen and their spectral flows are highlighted
with different colors. Column (d) shows the localization of these typical states
(¢/¢o = 0.2). To mark the correspondence, we have put circles of respective
colors on the top-left corner of each of the localization plots. The black dashed
line shows the position of the Fermi energy, Er = 0.03. The figure shows that
only the edge-like states enclosing the flux tube undergo spectral flow.
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flow by changing the position of the flux. Clearly, a state localized on a given
loop only undergoes spectral flow when the flux tube is enclosed within the
loop. Also, for a bunch of degenerate edge-like states localized on different
loops, the flux tube breaks the degeneracy if enclosed by one of the loops,
resulting in spectral flow of only the state enclosing the flux tube (Fig. 4.6).

There are a few other states in the spectra which we have not discussed
in detail in this work. These states belong to the very few high pr regions
in the spectra. In terms of localization, they are predominantly bulk-like in
nature. Also, they do not show a clear spectral flow, owing to the high pg
around them.

4.2.2  Charge transport from the instantaneous spectrum

Let us consider a case where we have filled our system to a certain Fermi
energy, Er (dashed black line in Fig. 4.4). At ¢ = n¢pp : n € Z, let us denote
the set of states with positive spectral flow (group I in Sec. 4.2.1) as {|¢?,,)}
with energies {E;, }, and the set of states with negative spectral flow (group
Il in Sec. 4.2.1) as {|¢",,) } with energies {E,,, }. Here, m, m’ are the labels for
the eigenstates localized on sites immediately enclosing a single triangle of
a given generation of SG-3, such that their energies are ordered increasingly
(Em < E;;1q for all m). Now, let us assume Ef is such that E,;, < Er < E;;11
and E,;_ < Er < E,y for some m, m’.

When we vary the flux adiabatically by a unit through the flux tube, the
Hamiltonian returns back to itself (up to a gauge transformation), but the
states undergoing spectral flow do not return back to themselves. In the
beginning of the pumping cycle, ¢?, , ¢" , | were occupied and ¢?,  ,,
y"  were empty. During the pumping cycle, the filled state ¢”, gets pushed
up in energy across Er and flows to ¢?, ,, and the empty state 9", flows
down in energy across the Er to 9", , ;. As a result of this spectral flow,
at the end of the pumping cycle, ¢?, , is filled and 9" ,_; is empty. This
spectral flow is observed for all m, m’ such that E,, and E,, are away from
the gaps (regions with zero pg) in the energy spectrum at ¢ = 0. And as
long as Er is away from these gaps, exactly one state with positive spectral
flow and one state with negative spectral flow cross the Fermi energy during
the pumping cycle. Now, as pointed out earlier in the previous subsection,
y" Vm' are localized on the sites on the outermost triangle and ¢?, Vm are
localized on the closest sites enclosing the flux tube. So, when a unit flux is
pumped, a single state localized on the outer-most sites of SG-3 is emptied
and a single state localized near the flux tube gets filled, effectively pumping
a unit charge radially from the outer-most loop to the loop closest to the
flux tube. The mathematical details corresponding to the above arguments
can be found in section 4.1.
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We want to highlight the local nature of the radial charge transport
happening in this case. From the instantaneous spectrum (columns (a), (b),
(c) of Fig. 4.4), it is clear that edge-like states, localized on sites immediately
enclosing different triangles of SG-3, undergo spectral flow and cross the
Fermi energy as the position of the flux tube is changed. As described in the
previous paragraph, only these states which flow across the Fermi energy
contribute to the radial charge transport as a result of adiabatic pumping.
So, given the position of the flux-tube and the Fermi energy, it is possible to
exactly determine which edge-like states are contributing to the transport.
Also, the position of the flux-tube can be used as a tuning parameter to
selectively pump particles from sites immediately enclosing a particular
triangle to the outermost triangle. In Sec. 4.3, we also compute the local Hall
conductivity in a slightly different setting which also reveals the local nature
of the transverse charge transport in greater detail.

4.3 LOCAL HALL CONDUCTIVITY AND ITS ROBUSTNESS TO DISORDER

In this section, we study local contributions to the Hall conductivity, follow-
ing the approach of [dBL22]. Specifically, we look at the Hall response of
the system when the system is subjected to a step-function electric potential.
To do this, we consider a horizontal cross-section at some y = y( and raise
the potential of the system below this cross-section by —Vj. Such a potential
can be treated in a time dependent gauge, A(t) = (0, —A(t)d(y — v0),0),
where A(t) = Vyt. The time dependent Hamiltonian then becomes H(t) =
e AM80) He~ iAW), where 9(yo) = ¥;0(y; — yo) |r;) (r;|. Now, working
in the adiabatic limit, we look at the transverse current across a vertical
cross-section at some x = x(. For a non-interacting finite system in the above
mentioned setting, it has been shown that the site-resolved Hall-conductivity,
0xy(r), can be expressed as a local Chern marker in the adiabatic limit
[dBL22]. We highlight here the main ideas leading to this result in the con-
text of our system. The details of the calculation can be found in Ref. [dBL22]
and references therein.

Given that we are interested in the adiabatic limit, we use the adiabatic
Hamiltonian, K(t) = i[P, Pj], to generate the time-evolution. Here, P; is
the instantaneous projection operator onto the occupied states defined as
Pp =Yg, <k, In(t)) (n(t)|, where H(t) [n(t)) = E, |n(t)). With the adiabatic
Hamiltonian, the instantaneous projection operator satisfies the von Neu-
mann equation

3Py (t) = —i[K, Py). (4.10)

Given the form of H(t), it is clear that P; = ¢"0?(%0) pe=V0t%(v0)  and hence
K(t) = A(P8(yo)Q + Qd¥(yo)P), where P = P;(t = 0) and Q = 1 — P. The
adiabatic transverse current operator, J,(t), can be obtained from the rate
of change of the number of particles present in one side of the vertical
cross-section using the instantaneous von Neumann equation, as Jx(t) =

41



42 TOPOLOGY THROUGH ADIABATIC CHARGE TRANSPORT

0.02
(a) s =0.9803 0.01 | (b) 6 =0.974

ATAN T/
ava Ny,
AVARERY| WA

—-0.02
210y, 2M0oyy,
(c) €=0.9781 0.06 | (d) € =0.9782 0.03
0.00 0.00
$A
Wi
—-0.06 -0.03
(e) 2M0xy 2n0oyy
1.0
0.8
0.6
v
0.4
0.2
0.0 RSERRSSS:
0.00 0.25 0.50 0.75 1.00 1.25 150 1.75 2.00

W

Figure 4.5: (a-d) Site-resolved Hall conductivity, oy, for the Harper-Hofstadter model on
SG-3 with N = 37, for E r = 0.03. The dashed horizontal line represents the
cross-section across which the potential difference is applied. The dashed vertical
line represents the cross-section across which the current has been calculated.
The sum over local Hall conductivity, € = Y ,cp 2710y (r), where P denotes the
set of sites which immediately enclose the cross-hair, are mentioned on the plots
up to four decimal places. (e) Variation of the local sum of Hall conductivity, €,
as a function of disorder strength W for different positions R of the cross-hair
as in (a-d), calculated for the Harper-Hofstadter model with onsite Anderson
disorder on SG-3 with N = 37, for Er = 0.03. Averaging has been done with,
Nw = 200, disorder realizations. The error bars on the plot show the statistical
standard deviation of € over the disorder realizations.
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i[K(t),8(x0)], where 8(xo) = ¥L;8(x; — x0) |r;) (rj|. The site-resolved current
operator can be defined as

Ji (xj ) = %{5]'/ 263, (4.11)

where §; = ‘r]'> <rj‘. So, the site-resolved adiabatic current, ( ]jf(r]', t)) =
Trrj(PI]f(r]-, t)), is then given by

(J(xj, 1)) = iATre, (P9(x0) Q8 (yo) P) + h.c.. (4.12)

Now, identifying A = —E, we get the expression for Hall conductivity,
Oxy = <]f(r]-, t))/E, as

Oxy(tj) = 2ImTry, (PY(x0) Q0 (yo)P). (4.13)

The local Chern marker is then defined as €(r;) = 270y (rj). This has
been referred to as the cross-hair marker in Ref. [dBL22] due to the fact that
the horizontal line at y = yp and x = x( appear as a cross-hair. An important
thing to note here is that the local Chern marker defined above is not unique
for a given system as the way to define the site-resolved adiabatic current is
not unique. The definition given in Eq. (4.11) is one simple way to define
such a local quantity. Instead, the quantity which is physically relevant is
the sum of the local Chern marker over some given region. This is because
the sum of the local Chern marker over a region can be expressed as the
Hall conductivity which is derived from the total current leaking from that
given region. The current leaking from that given region is defined as the
rate of change of particles over the region and does not have ambiguity in
its definition as opposed to the site-resolved adiabatic current.

Figure 4.5 (a-d) shows the adiabatic site-resolved Hall conductivity calcu-
lated for our system. For the purpose of comparing to the charge pumping
picture, we have kept the same Fermi energy for these computations as that
for the charge pumping computations. We find that there are two significant
local contributions to oy, one positive and one negative, as }_; 0xy(r;) = 0
due to the conservation of particle number over the entire system. Fixing the
cross-section (y = yo) across which the potential difference is applied, when
we change the cross-section (x = x() across which the transverse current is
calculated, we find numerically that the positive contributions to oy, come
only from the sites close to the position of the cross-hair. More specifically,
we find that, given a position of the cross-hair, the positive contributions
to 0y, come only from the sites which enclose the cross-hair as long as the
cross-hair is not inside one of the smallest triangles of the structure. The
negative contribution comes solely from the sites on the outer-most triangle
of SG-3. What this suggests is that, as long as we are away from the smallest
possible triangles of the structure, the contribution to the transverse current
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comes primarily from the sites which immediately enclose the cross-hair,
or in other terms, from the edge-like states which are localized on the sites
enclosing the triangle containing the cross-hair. This shows the correspon-
dence between the local contribution to the Hall conductivity and the local
nature of the transverse charge transport in this system mentioned in Sec.
4.2.2.

The local Chern marker essentially serves as a local deconstruction of
Kitaev’s real space Chern number given in Eq. (3.9). The major contribution
to Kitaev’s real space Chern number comes from the region where the three
partitions touch each other [Kito6]. Away from the triple contact point, the
contribution to Kitaev’s real space Chern number decreases exponentially
and hence it is insensitive to the exterior of the union of the three partitions
for large enough partitions. As a result, Kitaev’s real space Chern number
can be expressed as C(P) = 27tiTr([Pd(xo)P, PO (yo)P]) when x, yo are cho-
sen as the co-ordinates of the triple contact point, as mentioned in Eq. (128)
of reference [Kito6]. This is also the expression for the Hall conductivity as
shown in reference [ASSg4]. However, this is nothing but the negative of
the sum of the local Chern marker over the sites present in a large enough
region around the triple contact point. Given that Kitaev’s real space Chern
number is expressed as a trace over sites of a region, it does not provide
information about the local nature of the Hall transport. Hence, it does not
tell us which single-particle states would undergo spectral flow. However,
the information about the local nature of the Hall transport is captured
by the local Chern marker, revealing the correspondence between the local
contribution to the Hall conductivity and the local nature of the spectral
flow as mentioned in the previous paragraph.

To see the quantized nature of the charge transport, we look at the sum
of the local Chern marker over the sites in the proximity of the cross-hair.
More specifically, we look at

¢ =Y 2moyy(r)), (4.14)
erP

where P denotes the set of sites which immediately enclose the smallest
triangle containing the cross-hair. We consider this quantity as it is physically
relevant and it tells about the net charge leaking from the region containing
the sites in P. This can be expressed as the change in the projector over
the occupied states, traced over the given region when the Hamiltonian
is taken in a cycle [dBL22; Kito6; ASS94]. Hence, this quantity would be
quantized if the change in the projector has support only in the region we
trace over. In this system, we find that the value of € is closely quantized to
1, as mentioned in the plots in Fig. 4.5 (a-d), suggesting again that significant
contribution to the radial current comes from the edge-like states localized
on sites in P.



4.4 EDGE-LIKE STATES IN SIERPINSKI-HOFSTADTER MODEL

To see the topological nature of the charge transport, we perturb the
Hamiltonian slightly by adding small on-site disorder. The new disordered
Hamiltonian is then given by

Hyis = H+Y_ejcfc, (4.15)
j

where €; is a random number with a uniform distribution over the interval
[—~W/2,W/2]. For a given Fermi energy, we compute oy (r;) for various dis-
order realizations of the same disorder strength W. We find that, for W # 0,
the contribution to oy, now not only comes from the sites in P, but also
spreads over to few other sites in the proximity of P. This spread increases
initially as we increase W until the states become Anderson localized and
oxy(1j) goes to zero. To quantify this spread and study the robustness to
disorder, we then look at how €, averaged over several disorder realizations,
changes as a function of disorder strength W. The result is shown in Fig. 4.5

(e).

We find that up to W ~ 0.2, the value of € is pretty well quantized
and robust to disorder. As we keep increasing W, the average value of ¢
starts decreasing and the standard deviation, shown as error bars in Fig.
4.5 (e), starts increasing. The initial decrease in the average value of € is a
consequence of the increase of the contribution to 0y, coming from the sites
not present in P. The standard deviation can be considered as an indicator
of the amount of variation of the contribution to 0y, is coming from the
sites not present in P, which are found to be random in nature. This spread
can be understood by the fact that in the presence of weak disorder, the
edge-like states start to lose their property of being primarily localized on
the sites in P. It is natural to ask if there is a better quantization at higher
W, by redefining € to take into account the contributions of a few additional
layers of sites apart form those in P to oy,. However, for this structure, there
is no natural way to determine how to select sites to define a layer of sites
and how many additional layers of sites to take into account. Also, because
of the non-uniformity in the spread of the edge-like states to the nearby sites
in the presence of weak random disorder, it is not clear how to determine a
length scale by quantifying their loss of localization.

4.4 EDGE-LIKE STATES IN SIERPINSKI-HOFSTADTER MODEL

Pumping flux through a flux-tube at a given position not only makes it
possible to determine how the states contribute to the transport, but it also
makes it possible to numerically study each edge-like state individually.
The edge-like state localized on sites immediately enclosing triangles of a
given generation are usually degenerate in energy as there are often multiple
triangles of a given generation in SG-3. One example is shown in Fig. 4.6(a),
where three states are degenerate, because there are three triangles of the
second generation. The number of triangles of a given generation increases
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Figure 4.6: The figure shows the degeneracy between edge-like states of SG-3 (N = 37)
at ¢ = 0.3¢p, highly localized on sites immediately enclosing triangles of the
second generation, being lifted when the flux through the tube, ¢, is changed
from 0 to 0.07¢y. (a) shows the localization of a single eigenstate from a bunch
of triply degenerate edge-like states at ¢ = 0. Upon increasing ¢ to ¢ = 0.07¢y,
the degeneracy breaks. One of the states, shown in (b), is lifted up in energy.
The other two remain at the same energy as ¢ = 0, one of which is shown in (c).

exponentially with the generation. So, it becomes hard to isolate a single
edge-like state localized on the sites immediately enclosing a single triangle
of high enough generation. Now, by positioning the flux tube in a given
triangle, the energy of the edge-like state localized on sites enclosing that
particular triangle increases as we pump flux through the tube (grouped
into group Iin Sec. 4.2.1). The energy of the remaining degenerate partners
of that edge-like state does not change with flux as they localize on sites
which do not enclose the flux-tube (grouped into group IV in Sec. 4.2.1).
One such instance of degeneracy breaking is shown in Fig. 4.6(b,c).

Now that we are able to break the degeneracy, we can study the properties
of a single edge-like state. An edge-like state on SG-3, by definition, is highly
localized on the sites immediately enclosing a triangle of a given generation
(Fig. 4.7). Let us denote the set of such sites by P. Notice that the sites in P,
together with the bonds with their respective nearest neighbors in P, form a
ring and hence they can be indexed linearly from 1 to Np, where Np is the
total number of sites in . Now, given an edge-like state, |}, ) = Ly 1),

we construct a state |¢,) = Yrep ¥ |1;). [m) is easy to study due to its

one dimensional nature and can be considered a good approximation for
|l for large system sizes.

The exact expression of the edge-like states is gauge dependent. So to study
|), we first transform to a different gauge where the Hamiltonian, H, be-
comes translationally invariant on the sites in P. The gauge transformation is
given by: c}r — e_@fc;f, where @ = 0,0, =¥, 5 0,1, — (j — 1)27P/Npgo
forje {2,3,...,Np}, where 21 is the total flux threaded through the area
enclosed by the sites in P. Let us call this the ‘translationally invariant’
gauge. Let the transformed state be denoted by [¢;,) = ¥ lp]’.m |r]->. We do a

Fourier transform, ¢ =}, e!27txj/ Np gb;m, to go into the angular momentum
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Figure 4.7: Localization of a single edge-like state at different values of ¢. The colorbar
shows log,,(p;). The values of ¢ in the plots are given in units of ¢ and the
values of the ¢s for this figure are chosen as such to remain significantly away
from the avoided crossing points. We see that the weight of the eigenstate on
sites not in P (defined in Sec. 4.4) is at least 3 orders of magnitude less than
that of the sites in P. ¢ = 0.2¢ is a special case where the edge-like state is
completely localized on the sites in P.

~14
logio(p)

basis. We find that, for a given m, ;' has two sharp peaks at x and Np /2 + x,
(one peak being significantly greater than the other) for some value of x = xg
(Fig. 4.8), as long as we are sufficiently away from an avoided crossing. The
peaks change from g — ko + 1 and Np/2+x9 — Np/2 4 ko + 1 as the flux,
@/ ¢o, is changed from 0 to 1 (Fig. 4.8 (a)). Moreover, we also find that the
position of the peaks changes linearly as we change m (Fig. 4.8 (b)). These
features are reminiscent of eigenstates of a particle on an Np-polygon with
a flux threaded through it, or in other words, eigenstates of the discretized
angular momentum operator [ABAo4]. In fact, these properties are captured
by approximating, [r,) ~ |,,) = ¥ [Ko) + ¥y |\, /2 [K0 + Np/2), where
ko) and |xp + Np/2) are eigenstates of the discretized angular momentum
operator with eigenvalues kg and xo + Np /2 respectively. |¢,,) also captures
the chiral nature of the edge-like states as shown in Fig. 4.9.

For a given magnetic field parameterized by ¢, there are some special
values of the flux ¢ for which an edge-like state can be completely localized
on the sites in P (for example, ¢ = 0.2¢ in Fig. 4.7). For such values of ¢,
the edge-like state exactly becomes an eigenstate of the discretized angular
momentum operator in the ‘translationally invariant” gauge. This shows that
the flux through the flux-tube can also be used as a tuning parameter to
completely localize an edge-like state on a ring and host exact eigenstates of
the angular momentum operator on SG-3. The details of the condition which
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Figure 4.8: The variation in Fourier amplitudes of edge-like states, ¢’ vs x, for different
values of ¢ and different values of m. In this case, N = 37 and Np = 96. Row
(a) shows ¢ vs « for a single edge-like state (m = 10). As @/ ¢y is varied from
0 to 1, the peaks at ¥ = 24 and Np /2 4 x = 72 shift by one unit to x = 25 and
Np/2+x = 73. Row (b) shows ¢}’ vs « for different edge-like states which
are primarily localized on the sites in P. The insets in both (a) and (b) show
how strongly the states are localized on the sites in P. The states whose Fourier
components are shown are marked with red on the instantaneous spectra. In

both (a) and (b), the values of ¢}* have been normalized such that ), [y}’ |2 =1

must be satisfied to generate such an edge-like state is given in section 4.4.1.

4.4.1  Condition for strict localization of edge-like states on SG-3

We start with the Harper-Hofstadter Hamiltonian on SG-3, given by
H= Z ijc}rck, (4.16)
(k)

where Hj, = —e ", when the sites labeled by the indices j and k are nearest
neighbors and 0 otherwise. 0 is the same as defined in Eq. (2.16) of the main
text. Let H denote the Hamiltonian matrix whose elements are H;;. Consider
a triangle of a given generation of SG-3. We put a flux tube, carrying flux

2m@, through this triangle. Let us denote the set of all sites immediately
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Figure 4.9: Time evolution under the action of (a) the approximate time evolution op-

erator and (b) the exact time evolution operator, projected onto a given en-
ergy window (Emin, Emax). The initial state is localized on a site in P. The
exact time evolution operator, projected onto the energy window, is given by
U(t) = Xk, . <En<Ema ©XP(—1Ent) [1) (1|, where |n) is the set of single particle
eigenstates of the Hamiltonian H, with energy E,,.. The approximate time evo-
lution operator is given by U(t) = Yp  _p g exp(—iEnt) |71) (7|. [7) = |¢,,)
for edge-like states localized primarily on P, where ¢, is the approximation of
the state using its first largest two Fourier components as mentioned in Sec. 4.4,
and |1) = |n) otherwise. E,, = (ii|H|f). Note that, at t = 0, both U and U act
as a projection operator onto the set of states in the energy window. Comparing
(a) and (b), we find that the chiral nature of the edge-like states is well captured
by the approximate states mentioned in Sec. 4.4. For this calculation, we have
taken N = 37, Np = 96, Epnin = —0.3 and Epax = 0.

49



50

TOPOLOGY THROUGH ADIABATIC CHARGE TRANSPORT

enclosing the triangle to be P, and the set containing the rest of the sites
to be Q. Now consider an edge-like state |p) = Y; ; |t;). By breaking into
sectors of P and Q, the Hamiltonian can be represented in the matrix form

as follows
H H
o [ p PQ], w17
Hop Hg
where Hp].k = Hy, V],k e P; HPij = Hj, V] e P, k e Q HQij =

Hji, Vj € Q, k € P; and Hg, = Hj, Vj, k € Q. Similarly the state |¢p) can
be expressed as

) = [¢7) +|¥2), (4.18)
where [§7) = ¥pep ¢y 1) and [$©) = ¥c o ¥y |1g). In the vector form, let

Y7 = [¥p, ¢P2""¢PNP]T V{pi} € P and ¥° = [¥g, lPQZ""quNq]T V{gi} € Q
be the representations for |”) and |l/JQ> respectively.

If the state is completely localized on sites in P, then ¥< = 0. Now, given
that ¥ = [¥” ¥9|7 is an eigenstate of H, we get that

Hp H gP Hpr¥7 gP
HY = | 7 'Pe = | P | =Em . (4.19)
Hop Hg 0 Hgop¥ 0

This implies that ¥? must be an eigenstate of Hp and H QP‘I’P =0.%p can
be analytically determined. To do that, we first point out that the sites in
P, together with the bonds with their respective nearest neighbors in P,
form a ring. They can be indexed linearly from 1 to Np, where Np is the
total number of sites in P. So Y7 can be written as ¥7 = [y 1p2...1pp...1pr]T
; — o9
© =Y 50u-10— (j —1)27®/Np¢y for j € {2,3,...,Np}, where 21 is
the total flux threaded through the area enclosed by the sites in P. Under
this transformation, ¥7 — ¥’ P and Hp — HY,, where H), is a Hermitian
circulant matrix given by

We do a gauge transformation given by c;-r — c;.r, where ©; =0,

0O t 0 - 0 ¢
t 0 t 0 O
Hp=1|0 t* 0 t --- 0], (4.20)
't 0 0 t* 0]

—i27TCD/N7J4)0

and t =e The eigenvectors of H}, are given by

() = [W" W ¥ . WP NPTk € {0,1,...,Np — 1},
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where w = ¢27/Np_Gq, ¥'P must be equal to ¢(x) forsomex € {0,1,..., Np —
1}. Now, ¥7 can be obtained by inverting the gauge transform and so we
get

¥7 (k) = [1(x) ()., (6)], (4.21)

LPP(K) — ei®pwpx — ei@peZQ?TpK/pr' (4.22)

Given the analytical form of ¥7, we can plug Eq. (4.21) into the equation,
Hgop¥? =0, and get

Y Hop,,¥p =0, Vg€ Q. (4.23)
peP

Notice that every site g € Q either has exactly two consecutive nearest
neighbors in P or zero nearest neighbors in P. For the sites in Q which have
zero nearest neighbors in P, H op,, =0 Vp € P and Eq. (4.23) is trivially
satisfied. For the rest of the sites g9 € Q, let us say sites pp € P and pg+1 €
P are its nearest neighbors. Then we have Hop, . #p, +Hop, , .1 ¥p+1 =0,
which implies

e*igqo'ﬂo el@l’owpo" + eiigﬂofpoﬂei®ﬂo+1w(P0+1)K = 0. (4-24)
Simplifying Eq. (4.24), we get the following condition

1+ w"e'(@ro+17Oy) p =130 po+1~0a0.00) — . (4.25)

From the choice of {@;}, we get ©@,; 11 — Op, = 0y 11 — 271D/ Npgy.
Also, Ogo,p0 + Opopo+1 — Ogopo1 = Ogopo + Opopot1 + Opyr1gy = —277¢/ 0,
which is nothing but the flux through the triangle whose vertices are sites
go, po and po + 1. Plugging this in Eq. (4.25), we get

1+ wre 2m®/¢oNp ,—27t9/do _ (4.26)
2tk 2n® 27 )
— — = 2n+1)in 27)
Np  Npdo  ¢o ( ) 27
o ¢ (2n+1)
— k- — —Np L =N, 28)
do o 2 i .

where n € Z. We can express the total flux though the area enclosed by the

P sites as the sum of the flux due to the magnetic field and the flux through

the flux tube, 2t® /Py = 2tPA/Po + 2719/ o, where A is the ratio of the

area of the region enclosed by the P sites and the area of the triangle whose

vertices are the sites gg, po and pg + 1. Plugging this into Eq. (4.28), we get
(2n+1)

K = TNP+(A+NP)%+% (4.29)
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For SG-3, we notice that Np = 3z, where z is the number of sites on one
side of the triangle enclosed by the P sites, and z is always an even number.
A is a natural number as it can be expressed in terms of z as, A = z? +2z — 2.
Therefore, we must have

P @ _
(A+ Np) o0 T 90 Z (4-30)
K = (2”2—+1)Np +Z, (4.31)

where Z is an integer. From Egs. (4.30) and (4.31), we conclude that the
state labeled by « is completely localized on the sites in P if we choose ¢
such that Eq. (4.30) is fulfilled for the value of Z that produces the right «
in Eq. (4.31). The resulting state is an eigenstate of the angular momentum
operator with eigenvalue «.

4.5 SUMMARY

In this chapter, we present an understanding of topological phases on self-
similar systems from the perspective of adiabatic charge pumping. We
numerically investigate the spectral flow and the associated charge pumping
when a flux tube is inserted through the structure and the flux through the
tube is varied adiabatically. We find that the nature of the spectral flow is
qualitatively different from that of translationally invariant non-interacting
systems with a perpendicular magnetic field. We show that the instantaneous
eigenspectra can be used to understand the quantization of the charge
pumped over a cycle, and hence to understand the topological character of
the system. We show the correspondence between the local contributions
to the Hall conductivity and the spectral flow of the edgelike states. We
also show that the edgelike states can be approximated by eigenstates
of the discrete angular-momentum operator, their chiral nature being a
consequence of this. In the next chapter, we go on to look into the role of
symmetries on the topological phases in these systems.



INTERPLAY OF SYMMETRIES AND COORDINATION

In the previous chapters, we developed an understanding of the topological
phases in self-similar systems. However, the systems considered there were
simple tight-binding systems on self-similar structures in the presence of an
external magnetic field, which did not possess any additional symmetries.
In this chapter, we study the effect of symmetries on the topological phases
in self-similar systems.

The symmetries (non-spatial and crystal) play an important role in de-
termining which topological phases a lattice can host. For non-interacting
translationally invariant systems, the classification of the topological phases
has been done in terms of the ten-fold classification of the non-spatial sym-
metries. A comprehensive review on this can be found in reference [Chi+16].
The presence of crystal symmetries further diversifies and enriches the clas-
sification of the topological phases [Fu11].

In lattices, the way in which the sites are coordinated locally, plays an
important role in determining the topological phases on a lattice which can
be demonstrated with the following example. Consider a general two-orbital
nearest-neighbor tight-binding model on a 2D Bravais lattice, similar to what
is considered in [Fu11], given by

Hy= ), HO)Wr(R)f(0r)¢p(R +1)), (5.1)

R,<r>,ua,p

where R specifies the position vectors for the sites, r specifies the relative vec-
tors between two sites, {«, B} label the two orbitals, and (cos(6r),sin(6y)) =
r/|r|. The function f(6;) is any function such that Hy, is Hermitian. The
matrix elements of the corresponding Bloch Hamiltonian Hy,(k), which
essentially determine the band topology, encode the information about the
local structure of the lattice as they involve a sum over all nearest neighbors.
This is how local properties like coordination comes into the picture. As the
form of Hy, is entirely determined by the crystal symmetry of the underlying
lattice [Fu11], crystal symmetries are used for topological classification of
such systems. Also, crystal symmetries are known to put constraints on bulk
topological invariants [FGB12]. On some two dimensional lattices, the graph
of the model, formed by identifying the sites as the vertices and the non-
zero hoppings as the edges, forms a regular tiling of the two dimensional
space. For such cases, the coordination number is uniquely determined by
the crystal symmetry and the coordination number is hence not a separate
variable that could influence the topological properties. Examples of such
cases are nearest neighbor models on triangular, square and hexagonal
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lattices. But on self-similar structures, to the best of our knowledge, no
such correspondence has been established between coordination and spatial
symmetries. It is hence important to investigate whether a change only
in the local coordination of the sites can affect the topological phases on
self-similar structures.

The idea of coordination is also crucial for the distinction between “bulk”
and “boundary” on regular lattices. But, self-similar structures lack a clear
distinction between bulk and boundary. However coordination number, and
hence the notion of coordination, is well defined for self-similar structures,
as those are special graphs like regular lattices. For this study, we first
construct two different self-similar structures from the Sierpinski Gasket
(SG), namely SG-3 and SG-4 with coordination numbers 3 and 4 respectively.
These two structures, having originated from the SG, have the same Haus-
dorff dimension. The schematics for the construction of these structures
are shown in Fig. 3.1. We then numerically study a geometry dependent
non-interacting nearest neighbor Hamiltonian on both structures by looking
at certain observables of interest.

Before going further into studying the role of non-spatial symmetries and
coordination on the topological phases in self-similar systems, we briefly
review the structures which different non-spatial symmetries impose on
the Hamiltonian of a non-interacting fermionic system, following the ref-
erence [Chi+16] primarily. We do not discuss the topological classification
corresponding to the symmetry classes. For details on the topological classi-
fication, one can refer to reference [Chi+16] and the references therein.

5.1 NON-SPATIAL SYMMETRIES AND THE TENFOLD CLASSIFICATION

Consider a generic non-interacting fermionic Hamiltonian H. In the frame-
work of the second quantization, H can be expressed as

H=Y ¢]Hjxy), (5.2)
JK

where |, K refer to the combined labels of all the quantum numbers defining
the basis states of the Hilbert space, and the {1/)}}({1/)1(}) refer to the set
of creation (annihilation) operators corresponding to the basis states. Hjx
are the elements of a Hermitian matrix, H, which is the first quantized
representation of F1. Any symmetry transformation in quantum mechanics
can be represented by the action of an operator on the Hilbert space, which is
either linear and unitary, or anti-linear and anti-unitary (Wigner’s symmetry
representation theorem). We introduce symmetry transformations in terms
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of their actions on the fermionic creation and annihilation operators. Let us,
for example, consider a linear transformation

Y= 'y =UpU " =Y Uk (5.3)
K

where U is a second quantized operator acting on creation and annihilation
operators whose action is represented by a linear superposition of ¢k (for
different K labels) with coefficients Ujk respectively. For U to be a symmetry
operator, the system must satisfy the following invariance relations: (i) the
canonical commutation relations must be preserved, and (ii) the Hamiltonian
must be invariant. That is, the operator must satisfy equations

{], vk} =uU{yp], o3 (5.4a)
UAU' =H (5.4b)

In this example, the invariance of canonical anti-commutation relations
implies that Ujx must be elements of a unitary matrix U, and the invariance
of the Hamiltonian implies that UTHU = H. When the action of I can be
factorized in terms of its action on individual sites, that is when U/ = LU,
for site labels j, then we call U a non-spatial symmetry. Such symmetries are
also often referred to as ‘internal” symmetries as they independently act on
the internal degrees of freedom of each site. Here we will briefly discuss
three such symmetries, such as the time-reversal symmetry, the particle-hole
symmetry, and the chiral symmetry.

5.1.0.1  Time-reversal (TR) symmetry

The time-reversal is an anti-unitary operator 7, whose action on fermionic
creation and annihilation operators are defined by

Ty T =Y Tiyx, TiT ' =—i. (5.5)
TK

If a system is invariant under time-reversal symmetry, it must satisfy Eq. (5.4).
For non-interacting systems, this translates to T"H*T = H. The H* appear-
ing in the transformation in the previous line is an artifact of the anti-unitary
nature of 7. The name time-reversal comes from the fact the if any operator
O is invariant under TR, then TO(t)T ! = TeftOe HIT—1 = O(—t) as
TiT ! = —i.

Eq. (5.4b) puts additional constraints on the matrix T. This can be seen by
applying the TR symmetry operator twice which leads to (T*T)TH(T*T) =
H. Since, H is an irreducible representation, we have T*T = ¢%1 as a result
of Schur’s lemma and T being a unitary matrix. Also, as T is unitary, we
have TT = ¢%1, which implies ¢%% — 1. This results in two possibilities,
¢’ = 41 and hence T*T = +1. What this means in terms of the action of
the TR operator on a given state is that, 72¢;7 2 = (T*Ty); = +;. For
systems with 72 = —1, invariance under TR symmetry leads to the famous
Kramer’s degeneracy.
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5.1.0.2  Particle-hole (PH) symmetry

The particle-hole is a unitary operator P, which maps the fermionic creation
operators onto a superposition of fermionic annihilation operators and
vice-versa. Its action is defined by

PPt = ]ZKPMK. (5.6)

The Hamiltonian of a non-interacting system invariant under PH transfor-
mation would satisfy the following:

PHP™!' =Y HiPy;P ' PyxP !
JK

= Y HPixyxPiypy

o (5.7)
=Y (Y PYxHg Prx) (Oxy — $yix)
XY JK
= Tr(H) — ) (P"H'P)yxyyx) = Y Hyx¢yx
YX YX

where the last equality is due to Eq. (5.4b). This implies that PP"HTP = —H
and Tr(H) = 0. Also, applying PH twice and repeating the same arguments
as in the case of applying TR symmetry twice, we get that here also we have
two possibilities P*P = £1. But, in this case, P*P = —1 does not lead to
any degeneracy like that of the Kramer’s degeneracy. Instead, if ¢y is an
eigenstate of a PH symmetric non-interacting Hamiltonian H with energy
en, then by Eq. (5.7), P}, is an eigenstate of H with energy —en.

5.1.0.3  Chiral symmetry

Chiral symmetry is the combination of TR and PH symmetry, S =7 - P.,
whose action is defined as

S S =Y (PT) ki (5.8)
K

The invariance of the Hamiltonian (Eq. (5.4b)) under chiral symmetry results
in STHS = —H, with S = P*T*. Applying the chiral symmetry twice and
following the same reasoning as in the previous two cases of applying the
TR and PH twice, we get that S? = 1. So we can absorb half the phase into
S and redefine S — ¢S, and we have S2 = 1 for the redefined matrix S. This
results in the chiral symmetry operator having eigenvalues 1. Invariance
under chiral symmetry results in symmetric spectra of non-interacting first
quantized Hamiltonian H; if ¢y is an eigenstate of H with eigenvalue €y,
then Syy is also an eigenstate of H but with eigenvalue —ey.

5.1.0.4 The tenfold symmetry classes

In the previous section, we defined the non-spatial symmetries and deter-
mined the structural constraints imposed on the matrices that act on the
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tirst-quantized non-interacting Hamiltonian, denoted as H. Now, we will
delve into a discussion on the general classification of symmetries. It is cru-
cial to highlight that the action of these non-spatial symmetries on H deviates
from the standard definition of symmetry, where the first-quantized non-
interacting Hamiltonian H commutes with a unitary operator. The standard
unitary symmetries, which commute with the Hamiltonian, lead to a block
diagonal form of the Hamiltonian. However, these non-standard symmetries
play a pivotal role in classifying the symmetry properties of these irreducible
blocks that lack further unitary symmetries. The original classification of
these symmetries was accomplished by Altland and Zirnbauer [AZg7], and
thus, it is commonly referred to as the ‘Altland-Zirnbauer” symmetry classes.

To account for the complex conjugation present in the action of time
reversal (TR) and particle-hole (PH) symmetries on H, we redefine T — TK
and P — PK, where K is the complex conjugation operator. Using these
definitions, we can express the following three equations, denoted as (5.9),

which describe the behavior of these non-standard symmetry operators on
H:

T-'HT =H, T?=41, (5.9a)
P'HP = —-H, P?>=+1, (5.9b)
ST'HS=—-H, $*=1, (5.9¢)

For a given irreducible block of H, there exists only one TR symmetry and
one PH symmetry. This can be justified as follows: Suppose there are two
time reversal symmetries associated with a particular irreducible block of
H. This implies that the product of these symmetries would be a unitary
operator that commutes with H. Consequently, it would be possible to
further reduce the blocks of H into sub-blocks, contradicting the initial
assumption of having an irreducible block of H. Therefore, it is evident
that there can be only 10 possible combinations of these symmetries for a
system. We denote the absence of a symmetry by o and the presence of a
symmetry by 4 or —, depending on the sign of the square of the symmetry
operator. Thus, for a given H, both TR and PH can each have 3 possibilities
(0,4, —), resulting in g possibilities. Additionally, there exists one more
possibility where a system can have a chiral symmetry even in the absence
of both TR and PH symmetries, denoted by 1. These 10 symmetry classes
are summarized in Table 5.1.

5.2 THE GENERALIZED BERNEVIG-HUGHES-ZHANG MODEL

Equipped with the knowledge of the structures which are imposed by
the non-spatial symmetries on the single-particle Hamiltonian of a non-
interacting system, we investigate the role of symmetries on the topological
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Class | T| C|S
A o|lo]|o
Alll (o] o |1
Al +]0|o0
BDI |+ | + |1
D o|l+]o
DII | - |+ |1
All | -]o|o
cim |- -1
C -|o
CI + | - |1

Table 5.1: The ten-fold symmetry classes.

phases in fractals. To do this, we study the fermionic, generalised Bernevig-
Hughes-Zhang (BHZ) model. We choose to study this model because of the
following reasons: (i) it allows us to look into different symmetry sectors
by tuning the parameters, and (ii) it allows us to examine and immediately
compare the physics with that in lattice systems as the BHZ model is known
to host topologically non-trivial quantum spin Hall insulating phases on
translationally invariant lattice systems [BHZo06]. Also, this model can be
easily generalized to make it depend on the geometry of the underlying
motif [AS17; Aga19], hence can easily be generalised to accommodate the
structural differences across self-similar graphs with different coordination
numbers.

We define the model in the following way. Each site has two orbital degrees
of freedom, denoted by « = {c,d}, and two spin degrees of freedom, denoted
by o = £1. We consider only nearest neighbor hopping. The Hamiltonian is
given by

~ At 4 At A At s oA
Hpnz = M lejarzlpja —t 2 ll)]'arzq)ka —A Z lpjaaTjk,UlPkU (5.10)
jo <jk>,0 <jk>,0
R nt . . .
where 1/);0 = (6;27, dja), {:cx, T, T} are the Pauli matrices for the orbital
degrees of freedom, and 7 i, is given by

- 0 ie—iUij
Tite =\ . ico .
1e”" ik 0

Here 6j; denotes the angle made by the vector from the jth site to the kth
site, with the x axis. M denotes the on-site energy. The real, non-negative
numbers ¢ and A denote the hopping strengths for hopping between the
same orbitals and different orbitals of nearest neighbor sites, respectively.
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The two ¢ sectors are decoupled from each other and are time reversal
partners of each other, so it suffices to study the model for one value of ¢.
Here we look only at the o = 1 sector and hence the respective two-orbital
Hamiltonian is given by

H = MZ‘?’}LTZ% —t Z 17,7;1'217},( —A Z ’l’;ﬁkﬁ’kr (5.11)
)

<jk> <jk>

0 e "
Tk = : .
]k (ielgjk 0 )

The model in Eq. (5.11) is the generalized half-BHZ model and is known to
host topological phases on square and triangular lattices. For A = t, this
model hosts two distinct topological phases on a square lattice with Chern
number 1 and -1 [BHZo06; AOP16]. However, on a triangular lattice, this
model hosts a different topological phase with Chern number -2, along with
a trivial phase and a topological phase with Chern number 1 [Aga19]. This is
a classic example where different coordination numbers in different lattices
result in emergence of different topological phases. Also, fort = A =1/2,
this model has been studied on a fractal structure which is closely related to
SG-4, but with different boundary conditions [Aga19].

We numerically study the systems by primarily looking at the localization,
dynamics and the topological nature of the single-particle states at half-
filling. For the numerical computations, we use KWANT code [Gro+14]. A
single particle state denoted by label n can be written as

[¥n) = Z@n,jzx ) (5.12)
ju

where {|j) } denotes the basis vectors in the site basis. We study the local-
ization of single particle states by looking at the density at any site j, given

by
on(j) =) Iqon,ja\z- (5.13)

Given that it is unclear how to have a sharp distinction between bulk and
edge states in the case of fractal systems, we define ‘bulk-like” and ‘edge-like’
states as follows. An eigenstate is a bulk-like state if it has finite probability
density on sites which enclose the triangles belonging to more or less every
generation of the SG. On the other hand, an eigenstate is an edge-like state,
if it is localized on sites which enclose the triangles belonging entirely to a
particular generation of the SG.

We use Kitaev’s topological index to study the topological properties of
the systems, which relies solely on the real space description of the system
[Kito6]. This has been used in the literature to study the topological phases
on self-similar structures [BCN18; Fre+20]. We first choose a subsection X of
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(a) (b)

Figure 5.1: Partitions of the 6th generation of (a) SG-4 and (b) SG-3, for the real space Chern
number calculation. The regions A,B and C are marked in red, green, and blue
respectively. The subsection is X=AUBUC

the fractal and divide it into three parts, A, B and C. We use the following
expression for the real space Chern number

v(P) = 127i(Tr(APBPCP) — Tr(APCPBP)) (5.14)

where P = Y [) (k| is the projector onto the desired eigenstates. A, B, C
are diagonal matrices with

A=A®ly, B=B®ly, C=C®ly, (5.15)

where A, B, C denote the projectors into the sectors A,B,C (as shown in Fig.
5.1) respectively, and N,,; is the number of orbitals per site which is 2 in
this case.

We also check the dynamics of the states close to the Fermi energy. To
do this, we project a single particle state, initially localized in the ¢ orbital
of one of the sites of the fractal, onto a part of the eigenbasis defined by
E,.in < E < Ef, and then time evolve under H. Here, E denotes the eigen-
energies of the Hamiltonian and Er denotes the Fermi energy. E,,;, is chosen
such that the energy range, (E,;in, Er), is small enough to look at the states
near the Fermi energy but also large enough to encompass all the edge-like
states below the Fermi energy. All the computations have been done with
Ein = —0.5. Apart from this, we check whether the dynamics change in the
presence of disorder. To do this we add an extra onsite Anderson disorder
term to the Hamiltonian of the form

~ At oA
W =3 ¢ Wi, (5.16)
J
where Wj = diag(e]?, 67) and e]C.,e}i are random numbers drawn from a
uniform random distribution with mean y = 0 and variance W. The to-

tal Hamiltonian under which the system is time evolved then becomes
Hys =H+W.
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5.3 INTERPLAY OF NON-SPATIAL SYMMETRIES AND COORDINATION
NUMBER

The Hamiltonian in Eq. (5.11), can be rewritten in the following block form
in orbital ® site notation .
H=9%HY, (5.17)

T:<C> H:<M—tH AA )
D AN —(M —tH)
Here, C:(él,éz, ...,8NS)T and 15:(511,5[2, . LAiNS)T, where N; is the total num-
ber of sites. Aj = —ie " and Hjx =1, if j, k are nearest neighbors connected
by a bond as shown in Fig. 3.1, and otherwise zero. From Eq. (5.17), it is
easy to see that this model has a charge-conjugation symmetry for all values
of M,t, and A, given by

P~'HP = —H. (5.18)

Here P = 1,K, where K is the complex conjugation operator. A consequence
of this symmetry is the spectra being symmetric around zero energy. Apart
from this, the Hamiltonian has other non-spatial symmetries for certain
specific parameter values. So we break our results into three parts, specifi-
cally focusing on three particular parameter regimes, each belonging to a
different symmetry class.

5.3.1 Trivial case: t # A =0
For A = 0, the Hamiltonian in Eq. (5.17) becomes

H=1®(M-—tH) (5.19)

which is block diagonal and decouples into two single orbital tight-binding
models. This is well studied in the literature on the SG-4 [Dom+83; Kimg8§;
RT82]. The spectrum of the model (shown in Fig. 5.2) is symmetric about
E = 0, as expected, due to the charge-conjugation symmetry (5.18) of the
model. In this regime, by definition, the model has the symmetry that 7,
commutes with the Hamiltonian (5.19). As a result, even if P"1HP = —H,
the Hamiltonian is not considered to belong to class D of the symmetry
classification as the Hamiltonian block diagonalizes into sub-blocks, each of
them being belonging to class A due to absence of any other symmetries. It
is already known for SG-4 that the spectrum is self similar and has infinitely
many gaps in the infinite ¢ limit. We find that the spectrum of SG-3 is also
self-similar with infinitely many gaps in the infinite ¢ limit. We confirm
this numerically by computing the spectrum for different ¢ values, and
analytically by following the renormalization procedure done in [Dom+83;
Kimg8]. For M = 0, as seen in Fig. 5.2(b), we see a very high degeneracy at
zero energy in case of SG-3, which is not seen in case of SG-4. The symmetry
that 7, commutes with the Hamiltonian (5.19) only gives rise to a twofold
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Figure 5.2: Spectrum of H for A =0, M = 0, and t = 1 on (a) SG-4 with ¢ = 6 and (b) SG-3
with ¢ = 6. N = 2N; denotes the total number of eigenstates where Nj is the
total number of sites.

degeneracy. The large degeneracy is hence a consequence of the spatial
arrangement of the sites in the underlying structure and not due to any non-
spatial symmetry of the Hamiltonian. In this particular regime, however, the
Hamiltonian does not host any topological phases on either of the structures
as H does not host any topological phase. A nonzero mass term M, simply
opens up a trivial gap in the spectra.

5.3.2 Class DIII: A #t =0

Now we consider the case when we only have the on-site term, ¢ — d
hoppings, and d — c hoppings. Then the Hamiltonian matrix H in Eq. (5.17)
reduces to

o (5.20)

H = Mz, + A (O ﬁ) Y Mt + AHy,.
We start by studying H for M = 0. We see that every energy level is at
least doubly degenerate on both the structures. This is because H,y has
an additional orbital symmetry given by .Hy, 7, = —Hy, along with the
charge-conjugation symmetry (5.18). Hence, the system possesses time-
reversal symmetry given by T_leyT = Hyy, where T = ity K. So, Hyy then
belongs to the symmetry class DIII. The presence of time-reversal sym-
metry with T2 = —1 results in the Kramer’s degeneracy. If ) = (C,D)",
where C = (cl,cz,..,ch)T and D = (dl,dz,..,dNS)T, is an eigenstate of Hy,,
then T |p) = (—D*,C*)! is also an eigenstate of Hyy. As T> = —1, ¢ and
Ty distinct states which are orthogonal to each other ((¢|T¢) = 0), hence
leading to a two-fold degeneracy.
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Figure 5.3: Spectrum of Hy, on (a) SG-4 with ¢ = 6 and (b) SG-3 with ¢ = 6. N = 2Nj
denotes the total number of eigenstates where N; is the total number of sites.
For (a), the inset shows the highly degenerate levels (flat band) at E = 0. For (b),
the inset shows the whole range of edge-like states near zero energy.

We find that the spectrum of Hyy, on SG-4 hosts highly degenerate levels
at the Fermi energy (Fig. 5.3(a)), which is not present in the case of SG-3.
The Chern number for the collection of degenerate levels at Er turns out
to be zero, when computed using Eq. (5.14). On SG-3, Hyy hosts doubly
degenerate zero energy states. Interestingly, these zero energy states are
edge-like states, completely localized on the sites present on the triangle of
the 1st generation. In fact, we observe that all states close to zero energy,
shown in the inset of Fig. 5.3(b), are edge-like states. A few examples of
such states are shown in Fig. 5.5. In this case also, we find the Chern number
to be zero, when computed by projecting onto the filled states (half-filling).
However, looking at the dynamics of the edge-like states close to the Fermi
energy, we find two modes of opposite chirality being present in the system
(shown in Fig. 5.6). We also check the wave-packet dynamics in presence
of weak Anderson disorder (shown in Fig. 5.7) and find this characteristic
in the dynamics being robust to weak disorders. The presence of robust
edge-states is a signature of a topologically non-trivial phase. So, Hyy is
topologically non-trivial on SG-3 and the Chern number being zero is merely
a consequence of the time-reversal symmetry in the system.

We verify this by looking at the spectral flow by threading a flux tube
through the structures as was done in chapter 4. One such example of the
positions flux tube in the structures SG-3 and SG-4 is shown in Fig. 5.4(a,b).
For SG-3, we find that indeed the system undergoes spectral flow at half-
filling (Fig. 5.4(c)). In fact, we find that system is topological for a wide range
fillings around E = 0. The Kramer’s pair break their degeneracy as the flux
is threaded thorough the loop, resulting in the positive and negative spectral
flow for a states initially degenerate at ¢ = 0. This shows that the topological
classification here would correspond to that of the Z, classification which
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Figure 5.4: Spectral flow of the system in the regime = 0. The position of the flux tubes
are shown for 5G-3 and SG-4 are shown in (a) and (b) respectively. The spectral
flow for SG-3 for M/A = 0 and M/A = 0.05 are shown in (c-d). The spectral
flow for SG-4 for M/A = 0 and M /A = 0.05 are shown in (e-h).

one expects for gapped topological system of class DIII in both one and two
dimensional systems. For SG-4, we find that the states in the zero energy
manifold do not undergo any spectral flow showing that they are indeed
topologically trivial (shown in Fig. 5.4(e)). These states are gapped from the
rest of the spectrum. Interestingly, we find that the states in the rest of the
spectrum do undergo spectral flow as shown in Fig. 5.4(f).

Here, we would like to point out that H,, has a gapless spectrum on
the square lattice and the triangular lattice, with Dirac cones at the high
symmetry points of their respective Brillouin zones. Their corresponding
Bloch Hamiltonians are given by,

Hy} (k) = sin(ky)ox +sin(k,) oy
for the square lattice, and
HU(K) = 2(sin(ky) + sin(kx/2) cos (\/éky/z) )
+2v/3 cos(kx/2) sin(V3k,/2) 0y

for the triangular lattice. As these systems are not gapped, these do not fall
under the usual classification of gapped topological phases in terms of the

tenfold symmetry classes. The system has time-reversal symmetry (T2 = —1)
and hence has Kramer’s degeneracy, thus preventing chiral dynamics in the
system.

In 2-dimensional two band Chern insulators (absence of time-reversal
symmetry), the forward and the backward moving modes are localized on
edges which are spatially separated and this prevents the possibility of scat-
tering between them. However, in the presence of Kramer’s degeneracy, each
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edge-mode is accompanied by its Kramer’s degenerate counterpart which
moves in the opposite direction on the same edge. So the scattering between
the Kramer’s pairs cannot be prevented unless there is an additional spin (or
spin-like) degree of freedom to couple to the edge-modes, thus making them
helical. Considering Hy, on 2-dimensional translationally invariant systems,
H,y puts two orbitals on each lattice site, thus making it a two band model
if the underlying motif is a Bravias lattice. Hence, Hy, does not have any
additional spin (or spin-like) degree of freedom and no chiral or helical edge
dynamics can be observed for Hy, on square or triangular lattices. In this
context, the wavepacket dynamics of Hy, on SG-3 is particularly interesting.
Here, the two counter propagating edge-like modes shown in Fig. 5.6 do not
scatter among themselves even in the presence of disorder (Fig. 5.7). Notice
that the arguments used earlier to describe the edge-state dynamics of Hy,
on square and triangular lattices are no longer valid for self-similar systems
due to lack of an equivalent picture for the band structure in this case. The
fact that Hy, neither shows such dynamics on 2-dimensional lattices nor on
the other self similar structure, SG-4, but only on SG-3, suggests that such
dynamics is due to the interplay between the self-similarity and the local
coordination of SG-3.

The Mrt, term creates a gap in the spectra of H (shown in Fig. 5.8) on
both the structures. Spectral flows for SG-3 and SG-4 in the presence of
a non-zero M are shown in Fig. 5.4(d) and Fig. 5.4(g,h) respectively. For
SG-4, the flatband at zero energy splits into two flatbands with energies M
and —M. Addition of a MT, term breaks the time-reversal symmetry of H,
since T~ (Mt + Hyy)T = (—Mrt; + Hyy). However, we still find the spectra
of H on SG-3 to consist of doubly degenerate states as in the case of Hyy.
This double-degeneracy is independent of the fractal structure and is due to
non-spatial symmetries of Hy, as shown in subsection 5.3.2.1.

5.3.2.1  Two-fold Degeneracy in M, + Hyy

The two-fold degeneracy in Hy, is a consequence of the fact that T~ Hy, T =
Hyy. Adding a mass term, M, breaks this symmetry. However, eigenstates
of M1, + Hyy still form degenerate pairs. Consider an eigenstate [¢) of
H,y with eigenvalue €. Due to the symmetry 7.Hy,7; = —Hy,, we have
that 7, [¢) is also an eigenstate of H,, but with eigenvalue —e. Notice that
addition of the Mt, term also breaks this symmetry. Here, we analytically
show that the effect of the Mt, term is to hybridize |¢) and T |¢).

We assume an ansatz eigenstate of M, + Hy, of the form « |¢) + BT [),
with eigenvalue E. We have the following equation

(M + Hoy ) (a |9) + Bre ) =
(BM +ae) |p) + («M — e ) |9) = E(a |p) + BT |¢)). (5.21)
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Figure 5.5: Few examples of edge-like eigenstates of Hyy on SG-3 with ¢ = 6, close to zero
energy. The color bar represents the relative density per site of an eigenstate,
[}, defined by p(j)/max(pu(j))-
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Figure 5.6: Time evolution of a state (a—b—c—d—e—f), initially localised in the ¢ orbital
of one of the corner sites on SG-3 with g = 6, evolved under H (t =0, A = 1).
The initial state is projected onto a sector defined by —0.5 < E < 0. The color
bar represents the relative density per site of an eigenstate, |i,), defined by

pn(j) /max(pa(j)).
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Figure 5.7: Time evolution of a state (a—b—c—d—+e—{), initially localised in the ¢ orbital
of one of the corner sites on SG-3 with g = 6, evolved under Hy, (=0, A = 1)
with W = 0.1. The initial state is projected onto a sector defined by —0.5 < E < 0.
The color bar represents the relative density per site of an eigenstate, |},
defined by py (j) /max(pa ().
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Figure 5.8: Part of the spectra of M1, + Hyy as a function of M on (a) SG-4 and (b) 5G-3.
The M7, term breaks the time-reversal symmetry and opens a gap proportional
to M in the spectrum of Hyy.

For € # 0, we have that |) and T, |¢) are orthogonal because they are
eigenstates of ny with different eigenvalues. Defining €' =¢e/Mand E' =
E/M, and equating the coefficients of |¢) and t; |i) in Eq. (5.21), we get

B+ae =aE ; a—Be' =pBE. (5.22)

Solving the pair of equations in (5.22) for &, p and E, we get

g—ize':i:\/1+e’2 ; Ex =V M2+ €2 (5.23)
+

So we have shown that a+ |¢) + B+ T [{) are eigenstates of MT; + Hy, with
a+, B+ satistying Eq. (5.23).

Now, as P~ (Mt; + Hyy)P = —(MT; + Hyy), with P = 7.k, we have
that P |®) is an eigenstate of the Hamiltonian, M1, + Hy,, with eigenvalue
—¢, if |®) is an eigenstate with eigenvalue ¢. Hence, Y1) = ay |¢) +

Bit:|Y) and P|¥_) = P(fx, ¥) + BTz |q))) are both eigenstates of the

Hamiltonian, Mt; + Hyy, with the same eigenvalue E.. Notice that the
states, [¥,) and P [¥_), are orthogonal to each other, as |¢), P [¢), T |¢)
and Pt |¢) = —T |¢), are mutually orthogonal. The states |¢) and Pt |¢)
are orthogonal to the states P |¢) and 7; |¢) as they are eigenstates of Hy,, a
Hermitian operator, with different eigenvalues. P |¢) = =Tt |¢) and T |¢)
are orthogonal as |¢) and T |i) are orthogonal to each other as shown in
section 5.3.2. Hence [Y ) and P |¥_) cannot be the same state. This shows
the existence of degenerate pairs even after the addition of the symmetry
breaking term, M1,. However, for € = 0, which corresponds to the zero
energy modes of Hy,, the above argument no longer holds as |¢) and 7 |¢)
no longer need to be orthogonal. Instead |¢) and T, |¢) are eigenstates with
energies - M.
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5.3.3 ClassD:t=A#0

Switching on both [c — ¢, d — d] and [c — d, d — c] hoppings brings a lot
of interesting physics into the picture. From Fig. 5.9, we find that IH hosts
topological phases on both the structures. In the regime 0 < (M/A) < 2.5,
both SG-3 and SG-4 host topological phases with the same Chern number
v =1 and support edge-like states. For SG-4 with different boundary con-
ditions, similar edge-like states were reported [Aga19], which were robust
against random onsite disorder, and possessed a chiral nature. In our case
also, we find the same for both SG-3 and SG-4 in this regime.

To serve as a reference for studying the real space Chern number compu-
tations, we also compute the Chern number for the model on a triangular
lattice using Eq. 5.14, with a system size comparable to that of the fractals.
The results are shown as the green curve in Fig. 5.9(a) and (b). Due to the
strong dependence of Eq. 5.14 on the system size, the transitions from one
Chern number to the other is not very sharp. So the real space Chern num-
ber is only strongly quantized away from the transition region. A detailed
numerical computation on the strength of the quantization of the real space
Chern number on crystal lattices is presented in Fig. 4 in reference [BR11].

In the regime, —2 < (M/A) < —1.2, SG-3 and SG-4 host different topo-
logical phases, characterized by different Chern numbers. For SG-4, in the
regime, —1.6 < (M/A) < —1.3, where there are no level crossings, we find
the Chern number to be transitioning towards v = —2. Although we do
not see a good enough quantization of the Chern number numerically, we
do find edge-like states and chiral wave-packet dynamics in this regime,
suggesting that the phase is not trivial. Also, the localization pattern of
edge-like states in this regime is different from that of the regime with v =1
(see Fig. 5.10), suggesting v = —2 as opposed to v = —1 for this regime.
For SG-4, there are many level crossings in the regime —2 < (M/A) < —1.6
(Fig. 5.11). The number of level crossings increases with generation of the
fractal. Given that the Chern number is not well defined at level crossings,
the computation using Eq. (5.14) does not give a definitive value (Fig. 5.9(a)).

For SG-3, there is exactly one level crossing at (M/A) ~ —1.24, which
seems to be one of the transition points from a topological phase to a trivial
phase. In the regime, —2 < (M/A) < —1.24, we find a topologically non-
trivial phase with v = 1 on SG-3, which is different from what we found
for SG-4. Although the Chern number computation for smaller generations
shows a small dip around (M/A) ~ —1.24 (see the red and black curve
in Fig. 5.9(b)), this dip vanishes as we do the computation for higher gen-
erations (blue curve in Fig. 5.9(b)). This shows that for t = A # 0, SG-3
hosts a trivial phase and only one topological phase with v = 1 in the
thermodynamic limit.
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Figure 5.9: Real space Chern number for H in the regime A = t on (a) SG-4 and (b) SG-3.
The computation is done using Eq. (5.14), which strongly depends on the system
size. We do a system size scaling by looking at Chern numbers for different
generations g. The inset in each plot shows the first two energy levels closest
to the Fermi energy, for different generations. The legend for the insets are the
same as that for the main plots. The inset of (a) shows numerous level crossings
for SG-4, which increase with g. The inset of (b) shows a single level crossing
for SG-3.
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Figure 5.10: Edge-like states on SG-4. (a) and (b) are examples of edge-like states for
05 (M/A) £25and, (c) and (d) are examples of edge-like states for —1.6 <
(M/A) < —1.3 . Notice the difference in the localization pattern of edge-like
states in the two regimes. For 0 < (M/A) < 2.5, the states are localized on a
single layer of sites which enclose the triangles of a particular generation. In
contrast, for —1.6 < (M/A) < —1.3, the states are primarily localized on two
consecutive layers of sites which enclose the triangles of a particular generation.



5.3 INTERPLAY OF NON-SPATIAL SYMMETRIES AND COORDINATION NUMBER 73

d

Mass term [M/A]

Figure 5.11: Part of the spectra for H in the regime A =t on (a) SG-4 with g = 7, and (b)
5G-3 with g = 6. The regions of the spectra which host edge-like states are
pointed out for both the structures. These regions correspond to the topological
regions in Fig 5.9.
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5.4 SUMMARY

In this chapter, we have explored the properties of a geometry dependent
Hamiltonian on two different finite fractal structures (SG-3 and SG-4) which
only differ in the way the sites are coordinated. The Hamiltonian has dif-
ferent non-spatial symmetries for different parameter regimes. We study
the systems in each of these parameter regimes separately and find that
the topological properties of this Hamiltonian are significantly different on
the two structures. Since, the distinguishing factor between the two struc-
tures is their coordination number, we arrive at the conclusion that there
is a significant interplay of non-spatial symmetries and the way the sites
are coordinated, resulting in the topological properties being dependent
significantly on the way the sites are coordinated. Till now we have studied
topological phases on non-interacting self-similar systems. In the next part,
we go on to study an interacting model which hosts topological phases on
self-similar structures.



Part III

INTERACTING MODELS

This section focuses on exploring topological phases within interacting
models found on self-similar structures. The next chapter will delve
into our current research on chiral spin-liquids on the Sierpinski Gasket.
To wrap things up, we’ll conclude this document by summarizing our
overall understanding of topological phases in self-similar structures
and provide some thoughts on what future research avenues might
hold.






CHIRAL SPIN-LIQUIDS ON SELF-SIMILAR STRUCTURES

In the previous chapters, we generalized the notion of topological phases
in non-interacting systems on to self-similar structures. This raises the
question about the possibility of the existence of topologically ordered
quantum many-body phases on self-similar systems. Topologically ordered
many-body phases exemplify exotic states of matter that defy conventional
symmetry breaking and exhibit unique topological properties. Quantum
spin liquids (QSL), in particular, represent a subclass of these phases. They
are characterized by a lack of conventional magnetic order, harboring highly
entangled quantum states of spins. The interest in the study of quantum
spin liquids lies in their potential to reveal emergent phenomena, including
long-range entanglement and fractionalized excitations. The Kitaev model
on the honeycomb lattice [Kito6] provides an exactly solvable model whose
ground state is a QSL where the spin degrees of freedom fractionalize into
static Z2 gauge field and Majorana fermions, featuring both abelian and non-
abelian anyons [BMSo7; Lah+08; LPog]. In this chapter we construct an exact
chiral quantum spin liquid model on a Sierpinski Gasket demonstrating the
presence of a topologically ordered quantum many-body phase on a fractal.

6.1 MODEL

We consider the implementation of the Kitaev like Yao-Kivelson model
[YKo7] on a 3-coordinated structure defined on the Sierpinski Gasket. This
structure has been referred to as SG-3 in the previous chapters. Each site has
a spin-1/2 degree of freedom. The Hamiltonian of the system is given by

H= Y Lo+ Y, ]yajya,fik Y, Loicf

x—links y—links z—links 6.1)
1
b Y hooit ¥ telel+ ¥ koie,
x' —links y' —links z' —links

where j, k represents the labels for the sites and ¢} (« = x, y, z) denotes the
Pauli matrix on site j. The links are always between the sites which are
nearest neighbors; we denote < jk > as the link between j and k. They are
uniquely defined to be either of type-x, or type-y, or type-z. The uniqueness
comes from the condition that, for all sites of SG-3, all links connected to
a site must be of different types. The x’-links (x-links), y/-links (y-links),
and z'-links (z-links) respectively denote the links of type-x, type-y and
type-z which are (are not) on the smallest triangles of SG-3. Fig. 6.1(a)
shows a representation of the model by marking different types of links
with different colors and labelling different links with their corresponding
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(a)

Figure 6.1: (a) Yao-Kivelson model on SG-3 with ¢ = 3. The red, green and blue bonds
represent the links of type-x, type-y, and type-z, respectively. Each a-link («a'-
link) is labelled with its corresponding link strength, J, (t4). (b) Schematic
representation of the Jordan-Wigner transformation of the Yao-Kivelson model
on SG-3. The path highlighted in yellow, which covers all the type x and type
y links in the structure, represents the Jordan-Wigner (JW) string. Each site
represents a fermion given by the Jordan-Wigner transformation of the original
spin-1/2 degrees of freedom. The majorana fermions, f; + f]T and i( f;f — fj), on
each site are represented by the triangles (brown) and the inverted triangles
(orange) respectively. All majorana fermions connected by the dashed line in (b)
are named ¢ majoranas and all majorana fermions connected by the dotted lines
are named b majoranas.

interaction strengths. t,(J,) are the link strengths for the links which are (are
not) on the smallest triangles of SG-3 (shown in Fig. 6.1(a)).

6.1.1  Conserved quantities

Similar to the original Kitaev model [Kito6], the Hamiltonian in Eq. (6.1) also
has an extensive number of conserved quantities when defined on the SG-3.
To demonstrate this, we follow the notations used by Kitaev in reference
[Kito6] and define link operator for a given link < jk > as

oiop, if <jk>isatype-x link

Kjx = U}'ya'g, it < jk > isa type-y link (6.2)

U]T"a,f, it < jk > is a type-z link.
We note that [K]-k, Kun| = 0, when the links < jk > and < mn > do not
share any common sites, or are identical, and {Kj, Ky} = 0 when the links
< jk > and < kI > share a common site k. We define a loop operator for
every loop on SG-3 as the product of link operators present on the loop,
given by

Wi = K12K3K34 - - - Ky 1)nKn1 (6.3)
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where the sites on the loop L are indexed as 1,2, --- , N in anti-clockwise
direction from some starting site on the loop, and N is the number of sites
present on the loop. For a given loop L, [WL,Kjk] = 0, if the link < jk >
is not a part of the loop as Kj; commutes with all the link operators in
WL. If < jk > is a part of loop L, then Kj; anti-commutes with exactly two
link operators and commutes with every other link operator on the loop,
resulting again in [Kj;, W] = 0. Also, [Kj, W] = 0 if one of the sites j or k is
a part of the loop L but < jk > is not, as K, will anti-commute with exactly
two link operators and commute with every other link operator on L. So,
[Wr, Kjx] = 0 for all links < jk > and all loops L in SG-3. This immediately
leads to the conclusion that [W;,, Wy,] = 0 for any two loops L; and L.
Hence [H, W] = 0 for all loops L on SG-3. This means that the Hamiltonian
given in Eq. (6.1) has a set of integrals of motion or conserved quantities in
the form of the loop operators. Notice that (W;)? = 1(—1) for any loop L of
even (odd) lengths; so the eigenvalues of the loop operator is w; = +1(=i).

The number of such independent conserved quantities can be obtained
by finding out the number of independent loops on the structure. A loop
L is said to be independent of a set of loops {L1, Ly, - - - L;}, if Wy cannot
be expressed as a product of loop operators of any loops from the set.
The number of sites, links, and independent loops in SG-3 of generation g
are 3%,3(3%5 —1)/2, and (3% — 1)/2 respectively. So we clearly see that the
system has an extensive number of conserved quantities as the number of
independent loops in SG-3 scale linearly with the number of sites. In the
subsequent sections, we show that extensive number of conserved quantities
help in reducing the Hamiltonian in Eq. (6.1) to an exactly solvable quadratic
Hamiltonian.

6.1.2  Fractionalization through Hilbert space expansion

The model defined in Eq. (6.1) is exactly solvable. To see this, we follow
Kitaev’s approach and expand the onsite Hilbert space by placing 2 fermions
on each site. Then we identify the physical Hilbert space as both fermionic
states on a given site being occupied or both being empty. The two fermions
in any given site, j, can be represented by 4 majorana fermions, {b]’-‘, b]y , b]'?, c]-}.
In majorana language, the condition to represent the physical Hilbert space

hence translates to D; = b}“b}l./b]?cj = 1. So, a state in the physical Hilbert

space is obtained by projecting a state in the expanded Hilbert space with
the projection operator
(1+Dj)
pP= Hij (6.4)

79



8o

CHIRAL SPIN-LIQUIDS ON SELF-SIMILAR STRUCTURES

We construct operators 7;" = ib}?‘cj. Notice that, in the physical Hilbert space

{&*,5Y,5%} follow the same algebra as the Pauli matrices, i.e 7*0F = ieyg,07
and 7*0Y5* = i. Hence, the operator

H= 2 ]x‘T T+ 2 ]yUy + Z ]zUUk

x—links y—links z—links

+ Y, WO+ ) tyaak+ Y oo,

x' —links y' —links z'—links

(6.5)

becomes the Hamiltonian in Eq. (6.1) in the physical Hilbert space. We will
soon see that A will become quadratic in terms of the {c;} operators, making
it exactly solvable.

Writing in terms of majorana fermions, we get

H= —1 Z ta(ib;?‘b,‘i‘)cjck —1 Z ]a(ib;‘b;?)c]'ck
<jk> <jk>
, A , . (6.6)
=—i) tallcicy — i ) Jaftficjck.
<jk> <jk>

Given a link < jk >, the type of the link, «, is uniquely defined. So, we chose
to suppress the superscript « from now on. We see that [il, i;,,] = 0, for
every link < jk > and < Im >. Hence, all il = (ib;‘bl‘i‘) commute with each

other and with the Hamiltonian . This is essentially the same condition
that the loop operators commute with the Hamiltonian, as Kjx = —iiljxcjck
in the expanded Hilbert space and all the ¢ majoranas cancel out going
around a loop. Also, (ﬁjk)z = 1 for all links; the eigenvalues, ujp = £1, for
any operator, i ;. Plugging the eigenvalues of il in H, we get the effective
Hamiltonian

Hygj({uj}) = ) iAucick (6.7)

<jk>

where {u} is the set of uj values over all links < jk > on SG-3, and
Ajk = tallj (Jallji) if the link < jk > is an (is not an) edge of the smallest
triangles of SG-3. Clearly, from Eq. (6.7), we see that Hmaj has now become
quadratic in terms of the Majorana operators {c;}. We can think of u as
Z, gauge fields. So, essentially what we have achieved is that the original
interacting Hamiltonian in Eq. (6.1) is effectively reduced to a solvable
quadratic Hamiltonian in Eq. (6.7) by fractionalizing the original spin-1/2
degrees of freedom into majorana degrees of freedom and Z, gauge fields.

6.1.3  Fractionalization through the Jordan-Wigner transformation

The Hamiltonian in Eq. (6.1) can also be brought to a quadratic form with
Jordan-Wigner transformation. The advantage of doing a Jordan-Wigner
transformation is that in this one need not expand the Hilbert space and
project it back to get the physical Hilbert space. To do the Jordan-Wigner
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transformation, we first identify a path which passes through all the sites
of SG-3 and covers all type x and type y links on SG-3 and name it Jordan-
Wigner (JW) string (shown in Fig. 6.1(b)). This allows us to label linearly all
the sites on SG-3 using a single numeric label, by going along the Jordan-
Wigner string from one end to the other. The transformation maps the
spin-1/2 on to fermionic degrees of freedom, given by

X Y
(o7 +io7)

f])‘ — P Lkej(1405) /2 5 (6.8a)
x _ ;Y
fi= o k< (1405) /2 sz—wj) (6.8b)
(1 +07)
f]f] (6.8¢)
The inverse of this transformation is glven by

(oF +io?) .

‘Tj+ _ > I pmin i fife .f].+ (6.92)
(X —io?) ,

o = j . 17 i e £ (6.9b)

of =2ffj—1 (6.9¢)

Given that the ]ordan—W1gner string covers all the type x and type y 11nks in
SG-3, the (7}‘(7,? (O'y ) terms in Eq. (6.1) can be written as 0,0, 4 (07, o, le)
by re-labelling the sites going along the Jordan-Wigner string. Using the
inverse Jordan-Wigner transformation given in Eq. (6.9), we get

OOt = (O + 0 ) (O g+ 0piy)
= (fm j<m€ i + fm j<memﬁj)'
(f;;r1+1nj<m+1€_mﬁj + fm+1Hj<m+1einﬁj)
= fin (1= 200) frr1 + fin(1 = 2ftm) fonsa (6.10)
- fin (1= 2fm) f 1 + fin(1 = 28m) foni1
= fufmsr + ffoer = fnfnr = fiufosn
= (f;:g - fm)(f;Lrl + fmi1)

where 71, = f} fm. We have used the following identities for fermions
in getting Eq. (6.10); e — 1 — 271, to go from line 2 to line 3, and
(1 —=2f) = ff, fu(1 —271,) = — fu to go from line 3 to line 4. Following
a similar procedure as Eq. (6.10), one can also show that

0'7%10— (fm +fm)(fm+1 fm+1)- (6.11)

It is also straight forward to see that

oFof = (20— 1)(20 — 1) 6o
= (ff = HUT+HU = FH + f) '
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Also, notice that the links of type x and type y appear alternately in succes-
sion if one follows the Jordan-Wigner string. Taking this into account and
using the results of Egs. (6.10), (6.11), and (6.12), the Hamiltonian in Eq. (6.1)
becomes

H= ) Jofog+ Y, Jyolo{+ ), Joicf

x—links y—links z—links
+ ) to o + Y. tycr o+ Y to7 0%
x!' —links y' —links z/ —links
= Y (Ax03y 103 + Ay}, 00, )+ Y Az070%
m type—z links
= Z(Ax(f;m—l - f2m—1)(f2+m +f2m) - Ay(ferm +f2m)(f2+m+1 - f2M+1))
m
+ Y AT - AU+ = O+ R
type—z links

(6.13)

where A, = Ju(t) if the link is an a-link (a’-link). Each complex fermion
can be decomposed into two majorana fermions, (f; + f;r) and i( f; — fi)-
We denote the different majorana fermions by

Com = (f;m + fom);  bom = l(fgm — fom)
Comi1 = i (Fpst — fams1); bams1 = (Famss + foms1);

where m denotes the labels of the indices based on the Jordan-Wigner string.
As a result, the Hamiltonian in Eq. (6.13) becomes

H= Z(—iAxcszlczm + 1Ay ComComs1) — Z 1Az ljkcicy (6.15)
m type—z links

(6.14)

where i, = ib;br. We choose to use the same notation (ilj) for ib;b; as we
have used for ib;‘b,‘f as both have the same properties and can be interpreted
in the exact same way as we will see ahead. We note that u; on all the type-z
links commute with each other and with the Hamiltonian as no two type-z
links share a common site. This results in an extensive number of conserved
quantities for the Hamiltonian making it possible to find an exact solution.
These are essentially the same conserved quantities which we described in
section 6.1.1, as the loop operators, Wy, can be expressed in terms of L.
To see this, we note that every loop operator can be always expressed as
the product of successive type-x and type-y links along the Jordan-Wigner
string, along with some type-z links. And

—icjcy, if < jk > isa type-x link

jk = 9 icjck, if < jk > is a type-y link (6.16)
—ifljcjck, if < jk > isa type-z link.

So going along a loop, the ¢ majoranas get cancelled out resulting in

Wp = =Tl j g, > (=il ) (6.17)
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where < jrkr > is a type-z link on the loop. The number of type-z links is
exactly equal to the number of independent loops in SG-3, showing that
set of the commuting operators, {i}, does not add any other conserved
quantities different from those arising from the loop operators. We notice
that (ﬁjk)z =1, so its eigenvalues, uj; = +1 which can be interpreted as
a Z; gauge field. Plugging it in Eq. (6.15), we get the effective quadratic
Hamiltonian for each set of {u}

—Ay, if < jk > isa type-x link

Huaj({uj}) = Zk iAjcjck;  Aji = Ay, if < jk > is a type-y link

7 —Azuj, if <jk>isa type-zlink
(6.18)
where {uj; } is the set of u; values over all type-z links on SG-3. So, using the
Jordan-Wigner transformation, we have successfully been able to reduce the
original Hamiltonian in Eq. (6.1) into a quadratic Hamiltonian (Eq. (6.18)) by
fractionalizing the original spin-1/2 degrees of freedom into majorana and
Z, gauge fields. However, unlike in section 6.1.2, we can extract the physical
quantities for the original spin model by directly using the Hamiltonian in
Eq. (6.18) as no expansion of Hilbert space is involved in the fractionalization

process in this case.

6.2 MANY-BODY GROUND STATE

We can now use the quadratic majorana Hamiltonian given in Eq. (6.7) or
Eq. (6.18) to determine the many-body ground state and the ground state
energy. This has been explained in detail in reference [Kito6]. Here, we use
the majorana Hamiltonian obtained from the Jordan-Wigner transformation
(Eq. (6.18)) as one can directly infer the information about the degeneracy
from this.

We first bring H,,,; into the canonical form in terms of complex fermions.
This can be obtained by diagonalizing the matrix iA, whose elements are
given by the A ;s mentioned in Eq. (6.18). Note that A is a skew-symmetric
N x N matrix as cjcp = —ck¢j. Let iA be diagonalized by matrix Q, which

means iA = Q'DQ where D is a real diagonal matrix. Under this basis
transformation, we have

Hygj({ujr}) = Zen(zch}!—n)(; Quick) = )_€n(} QZC]’)(; Qukck)
n ] n ]
= Zen(ZRe(an)cj - iIm(an)cj) (ZRe(an)ck + iIm(an)Ck)
n Ji ]

)
(6.19)

where €, = Dy, is dependent on the set of Z, gauge fields {u]'k}. The
particle-hole symmetry ((iA)* = —iA) in the majorana Hamiltonian implies
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Figure 6.2: Finding the ground state flux sector. Top: The ground state energies per site
obtained from the exact diagonalization of the many-body spin Hamiltonian
(labeled by “ED’) and those from the quadratic majorana Hamiltonian H,,,; in
the Lieb’s flux sector, as a function of the tuning parameter . We find that
for all values of , the ground state lies in the Lieb’s Z; flux sector. Bottom:
Number of flux sectors (‘Flux sector multiplicity’) having the same minimum
energy E,;;, as the Lieb’s flux sector. We find that only 1 other flux sector, the
time-reversal partner of the Lieb’s flux sector, has the same minimum energy
E,uin as the Lieb’s flux sector. The system size is N = 3$; the calculations are
shown for ¢ =2 and g = 3.

that if ¥, is an eigenvector of iA with eigenvalue €,, then ¢;, is also an
eigenvector of iA with eigenvalue —e¢;,. This means that for every n < N,
there exists some n’ < N such that ¢,, = —¢, and Quwj = ;‘lej. Hence,
we can construct canonical majorana modes defined as ¢}, = Yi Re(Quj)c),
"n = L;Im(Qpuj)cj, and the corresponding complex fermion operators
defined as a} = (¢’ —ic”,)/2 and a, = (¢, +ic",)/2. So, H,y4j can be
written in the canonical form as

ma] {u]k} Z €n( ic'nc n) = Z €n(2a;an — 1) (6.20)

n:€,>0 n:€,>0

The minimum energy state for a given set of {u;} is given by a, [¢) =
0,Vn and the corresponding energy is given by Eyui({Ujk}) = — e, >0 €n-




6.2 MANY-BODY GROUND STATE

The ground state is obtained by minimizing E,;,({u}) over all possible
sets of Z; flux configurations, the ground state energy is given by

Eo = min(Epin ({uji}))- (6.21)
The corresponding ground state is given by
Yo) = [¥0) @ [¥0') (6.22)

where |lp6‘> represents the wavefunction for the gauge degrees of freedom
in the flux configuration which minimizes E,j, ({ujx}), and |f') represents
the ground state of Hy,,; (the wavefunction for the matter degress of free-
dom) in the same flux configuration. The degeneracy of the ground state
can then be inferred from two factors: (i) the number of states |¢"*) which
lead to same E,;;;, given a particular flux configuration, and (ii) number
of Z; flux configurations which minimize E,,;,. The first factor is depen-
dent on the number of majorana zero modes in the spectrum of Hy,j;
ny majorana zero modes result in a 2" degeneracy in the ground state.
The second factor is typically dependent on symmetries and spontaneous
symmetry breaking. In this case, the Hamiltonian H has time-reversal sym-
metry. So the time-reversal operator 7 commutes with H and W} for all
loops. This implies that if we have a state such that Wy |¢) = wr |¢), then
TWLT T |¢) = Tw, T IT |p) = WLT |¢) = wiT |¢); the action of T
changes the wy to w}. As T commutes with H, the flux sector with {w; } and
{w} } would lead to the same E,,;,. For structures where all the independent
loops of even length, this has no consequence as w; = =£1 for all loops
and {w} and {wj] } are the same flux sector. However, for SG-3 which has
triangles (loops of odd length), {wy } and {w]} are different flux sectors as
wy = =i for triangles, resulting in at least a two-fold degeneracy.

We study the parameter regime t, = t, =t, =t = |sina|, and Jy = J, =
J. = ] = | cosa|. Although Lieb’s theorem is not rigorously applicable for
SG-3, for all values of t/], we still find that the many-body ground state lies
in the flux sector which agrees with the Lieb’s principle; for a loop L, wy
has a simple form given by

ws = — (i)™, (6.23)

where 1, is the number of type-z links on the loop. We call this flux sector
as the Lieb’s flux sector. This is equivalent to uj = 1 whenever < jk >
is a type — z links. To verify this, we compare the ground state energies
obtained from H,,,; in the Lieb’s flux sector with that obtained from the
exact diagonalization of the many-body spin Hamiltonian H (see Fig. 6.2).
The many-body ground state is at least two-fold degenerate due to the
spontaneous breaking of the time-reversal symmetry as mentioned in the
previous paragraph. This has been verified numerically by checking the
number of flux sectors which result in the same E,;;, (also shown in Fig.
6.2). In the thermodynamic limit, we see a change in the ground state
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Figure 6.3: (a) Density of states (or) of Hyqj as a function of a. (b) Low energy spectrum
of Hy,; as a function of a. The orange, red, and green dashed lines mark three
values of x whose spectra and some characteristic wave functions are shown in
Fig. 6.4, Fig. 6.7, and Fig. 6.8 respectively. The calculations have been done for a
system with N = 37 sites with ¢ = 1073,

degeneracy due to a change in the number of majorana zero modes. The
number of majorana zero modes changes from three to one across o == 0.2 as
t/] = |tana] is increased (shown in Fig. 6.3). This results in a change in the
degeneracy of the many-body ground state; the ground state is sixteen-fold
degenerate for & <5 0.187 to a four-fold degenerate for « 2 0.2277. We discuss
this in detail in the following sections.

6.3 MAJORANA SPECTRA AND TOPOLOGICAL PHASES

We study the ground state properties of H by studying the spectrum of H,,,;
in the Lieb’s flux sector in the parameter regime t, = t, = t, =t = |sing|,
and Jy = J, = ] = ] = |cosa|. H,;,; can be interpreted as a standalone
tight-binding model defined on a self-similar graph. So, we expect it to
have the general features of the tight-binding models defined on self-similar
graphs. To verify this, we look at the normalized density of states (o) (given
in Eq. (3.8)) as a function of a (shown in Fig. 6.3(a)). We index the states
according to increasing energies. The presence of particle-hole symmetry
due to the majorana fermions makes the spectrum of Hy,,; symmetric about
¢ = 0, which implies &5 = —€[n/2)+ ([--] represents the floor function,
N is the number of eigenvalues in the spectrum). As a result, the state with
index [N /2] has zero energy being protected by the particle-hole symmetry.
We also find that the spectrum is self-similar in nature away from a = 0 and
« = 71/2 which is characteristic of the tight-binding models on SG-3 as seen
in previous chapters. One of the consequences of the self-similar spectra is
that the spectra is primarily dominated by low regions of pg (shown in Fig.
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Figure 6.4: Spectrum and wavefunctions of Hy,,j for « = 71/10 (t < ]). (a) Spectrum of H,,,;
and a zoomed in version of the same in the inset, showing the gap opening
and the presence of triply degenerate zero modes. (b) Localization of the zero
modes on the corner sites. (c) Localization of the states at the edges of the gap.
Arrows are drawn from the inset of (a) to (b) and (c) to show the corresponding
energies the states whose localization has been shown in (b) and (c). (d) Local
Hall conductivity at half-filling. The position of the cross-hair for the local Hall
conductivity calculation is shown with the dashed lines in (d). The calculation
has been done for N = 3° sites.

6.3 (a)).

H,nej has different properties for different regimes of a. Fig. 6.3(b) shows
the low energy part of the spectra as a function of a. Given that H,,,; is in
principle a tight-binding model on a self-similar structure, we use the tools
we developed in the previous chapters to study the properties of H,,;. Fig.
6.3 shows a quantum phase transition as a function of the tuning parameter
« as we clearly see a transition from a gapped phase (« S 0.2) to a seemingly
gapless phase (¢ 2 0.2). We study these phases in detail by looking at the
localization of the single particle wave functions. Like in chapter 4, for the
numerics, given a state [¢) = }; 9 |r]->, the localization is shown by com-
puting the normalized onsite density, p; = |i;]*/max(|1;|?). We also study
the topological aspect by looking at the local Hall conductivity as defined
in section 4.3 by defining a Chern number similar to that in Eq. (4.14). The
only difference in this case is that we sum €(7;) over an additional layer of

87



88 CHIRAL SPIN-LIQUIDS ON SELF-SIMILAR STRUCTURES

(a) 0.00
—0.251
© —0.50
—0.75

—1.00-
(b)

100<

10—1 ]

10—2 i

10—3<

10—12<

10-16L & T IRy | | | |
0.0 0.1 0.2 0.3 0.4 0.5
alm

Figure 6.5: Scaling with system size of properties of the majorana spectrum in the Lieb’s
flux sector as a function of «. (a) Chern number as a function of & which shows
a trivial to non-trivial transition in between a ~ 0.187 to & ~ 0.227 as « is
increased. (b) Gap at zero energy in the majorana spectrum. The scaling as
a function of system size also changes in between a ~ 0.187 to & ~ 0.227,
indicating a transition from a gapped to a gapless phase in the thermodynamic
limit. (c) The difference between the energies of the two states, e = €| /241
and e = ¢[y/7)—1 as a function of a. This is an indicator of the change in the
degeneracy in the majorana spectrum showing a transition from a three-fold
degenerate zero energy state for a« < 0.187 to a non-degenerate single zero
energy majorana mode for & 2 0.2271.
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sites adjacent to those which immediately enclose the cross-hair. The reason
for this would be clear in subsequent paragraphs.

6.3.1 The gapped phase: t < |

For a < 0.271, the spectrum has a gap with the presence of three degenerate
majorana zero modes. These zero modes are found to be localized on the
corner sites (sites with coordination number 2) of SG-3 as shown in Fig.
6.4(b). The states close to the edge of the gap are found to be bulk-like in
nature. An example of such a state is shown in Fig. 6.4(c). The local Hall
conductivity shows (Fig. 6.4(d)), the lack of any transverse charge transport
signifying the lack of any first Chern character of the fermions in this phase.
Given the spectrum in Fig. 6.4 is for a finite system, we study the scaling
of the Chern number, gap and degeneracy as a function of system size (see
Fig. 6.5). To measure the three-fold degeneracy, we calculate e —¢_, where
€+ = €[Ny2)+1 and e— = g/ 1. €+ — € going to zero would indicate a
threefold degeneracy as €[y /7] = 0 due to the particle-hole symmetry. The
gap can then be studied by computing A = €[y /212 — €[n/2)—2- The gap is
found to persist in the thermodynamic limit as shown by the system size
scaling in Fig. 6.5(b). Similarly, the degeneracy of the majorana zero modes
in the gapped phase becomes even more clear as one goes to higher system
sizes (Fig. 6.5(c)).

Given that the three corner modes are separated by a gap, it is natural to
wonder about the fate of these corner modes as a function of the disorder.
Here, we study the effect of adding a disorder which randomly changes the
interaction strength between the sites on SG-3. The disordered Hamiltonian
for the original spin system is then defined as

HY = H+ Y wjKy, (6.24)
<jk>

where wj; is a random number distributed uniformly between [-W /2, W /2].
Given that the disorder only changes the interaction strength and not the
form of the interaction itself, we can still perform the Jordan-Wigner trans-
formation to fractionalize the spins into fermions and Z, fluxes. H dis can
then be brought into a quadratic form in terms of fermionic degrees of
freedom in exactly the way in which H,,; is obtained from H. Then the
corresponding majorana Hamiltonian in the presence of disorder is given by

Hiifj({ujk}) = ) i(Aj+wi)cjc. (6.25)
<jk>

Notice that introducing such a disorder does not break the particle-hole
symmetry of the system. This means that we can check the presence or ab-
sence of three-fold degenerate majorana zero modes by computing e, —¢_,
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Figure 6.6: Robustness of the zero modes and the gap to disorder in the gapped phase.
(a) Disorder average of the difference between the energies of the two states,
€4 = €N/2)41 and € = g[y/2-1 as a function of disorder strength W, for
different values of a, which shows the degeneracy to be fairly robust up to
W ~ A(W = 0). (b) Disorder average of the gap A as a function of the disorder
strength W. The inset shows the same data but in linear scale. The gap is
found to decrease almost exponentially with W beyond W ~ A(W = 0), finally
approaching the same order of magnitude as e — e_ indicating a gap closing.
All calculations for this figure are done with SG-3 of generation g = 7 (N = 37
sites). Disorder averaging has been done over 1000 disorder realizations. The
error bars show the standard deviation of the disorder averages.

and the gap by computing A. Fig. 6.6 shows the changein e, —¢_ and A as
a function of the disorder strength W, for various tuning parameters a.

We find that the three-fold degeneracy and the corner localization of the
three majorana zero modes are robust to disorder, up to disorder strength
of the order of the disorder-free gap (Fig. 6.6(a)). A however shows an in-
teresting behaviour as a function of disorder strength. We find that the A
shows approximately linear decrease with the disorder strength for small
disorders (inset of Fig. 6.6(b)). This however still preserves the gap as A still
remains orders of magnitude higher than e —e_. Around W ~ A(W = 0),
A decreases exponentially as a function of disorder strength, finally reaching
the same order of magnitude as ¢, — ¢_. This signifies a gap closing. At
such high disorder strengths, the threefold degeneracy of the zero mode is
lost and the localization of the zero mode at the corner sites is lost as well.

The robustness of the zero energy triply-degenerate majorana corner
modes to particle-hole symmetric disorder shows the presence of a non-
trivial topological character in this phase. However, as determined by the
Chern number calculation (Fig. 6.5(a)), the first Chern character in this
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phase is trivial. This means that the topological character in this phase must
be of a higher order. The physical origin of the corner zero modes is also
analogous to that of the boundary modes in the topological regime of the
Kitaev chain. In the t = 0,] = 1(a = 0) limit, the system decomposes into a
bunch of disconnected majorana links and 3 dangling corner majoranas. For
every remaining link < jk >, the two majoranas c¢; and ¢, form a complex
fermion giving rise to a degenerate spectrum with energy £1. For SG-3 of
generation g, this degeneracy is 3(3¢~! — 1)/2. The three dangling corner
majorana modes remain at zero energy being gapped out from the rest
of the spectrum. As t/] = |tana| is increased slightly, the system can be
treated perturbatively around a = 0 limit. It turns out that the first order
perturbation is enough to replicate the spectral features of the system. In
this limit, the links with strength | can be shrunk to sites representing
complex fermions; the links with strength t result in inducing effective
superconducting coupling between the complex-fermionic sites, similar to
that obtained in the Kitaev chain. The corner modes however are not affected
being protected by the gap similar to that in the Kitaev chain.

6.3.2 The gapless phase: t > |

For a 2 0.27, the zero energy gap starts to close with the presence of low
energy states (shown in Fig. 6.3(b)). In this regime, the three-fold degeneracy
of the majorana zero modes breaks leaving only one majorana zero mode
which is protected by the fact that the system always has odd number of sites
by definition and possesses particle-hole symmetry. We also find that the
spacing between the energy levels near zero energy reduces exponentially
as function of the generation of SG-3 (shown in Fig. 6.5(b)), suggesting a
gapless phase in the thermodynamic limit. The local Hall conductivity shows
presence of transverse charge transport (Fig. 6.7(d) and Fig. 6.8(d)) and is
almost quantized to 1 (Fig. 6.5(a)), which shows a topologically non-trivial
tirst Chern character. The majorana zero modes and the low-energy states
are edge-like in nature. A few examples of the low-energy states are shown
in Fig. 6.7(b-c) and Fig. 6.8(b-c).

However, the localization of the edge-like states and the local contribution
to the Hall conductivity in the case of t > | is different from the conven-
tional localization (the t = | case) of edge-like states which we have seen so
far (compare Fig. 6.7 (b-d) with Fig. 6.8(b-d)). This is interesting in the first
glance. However, this is simply a result of the interplay of self-similarity and
the scale dependent link strengths (¢ being the link strength for the smallest
triangles and | being the strength of the links connecting these triangles at all
other scales). This behaviour can again be understood by looking at system
perturbatively around ¢ > J or &« — 71/2 limit. Inthe t =1,] = 0(a = 71/2)
limit, the system decomposes into 3§~! disjoint majorana triangles. Each of
the triangles have three modes with energies {\/5, 0, —\/§} The effect of
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Figure 6.7: Spectrum and wavefunctions of H,,,; for « = 7t/4 (t = ]). (a) Spectrum of H,,;
and a zoomed in version of the same in the inset, showing the majorana zero
mode and the low-energy edge-like modes. (b)-(c) Localization of the zero mode
and a low-energy edge-like state. Arrows are drawn from the inset of (a) to
(b) and (c) to show the corresponding energies the states whose localization
has been shown in (b) and (c). (d) Local Hall conductivity at half-filling. The
position of the cross-hair for the local Hall conductivity calculation is shown
with the dashed lines in (d). The calculation has been done for N = 3° sites.
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Figure 6.8: Spectrum and wavefunctions of Hypgj for « = 0457 (t > ]). (a) Spectrum of

Hjngj and a zoomed in version of the same in the inset, showing the majorana
zero mode and the low-energy edge-like modes. (b)-(c) Localization of the zero
mode and a low-energy edge-like state. Arrows are drawn from the inset of (a)
to (b) and (c) to show the corresponding energies the states whose localization
has been shown in (b) and (c). (d) Local Hall conductivity at half-filling. The
position of the cross-hair for the local Hall conductivity calculation is shown
with the dashed lines in (d). The calculation has been done for N = 3° sites.
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switching on the links with link strengths | can then be treated perturba-
tively. A first order perturbation results in an effective model in which the
smallest triangles (link strength t) are shrunk to sites and are connected to
another with link strength J. This is nothing but the same model as H,,,;
with t = | but defined on an effective SG-3 with generation ¢ — 1. As a
result, the spectrum, which was previously degenerate at energies —/3, 0,
and /3 in the a = 0 limit, now takes a self-similar nature around each of
the energies (notice the similarity in the inset of Fig. 6.8(a) and the Fig. 6.7(a)).

The topological character of the system in this regime can thus be con-
sidered to be the same as that in the t = | case. The edge-like states in the
effective model have exactly the same localization as the of the edge-like
states shown in Fig. 6.7(b-c). But, given that sites of the effective model
are essentially the triangles of the original model, the edge-like states in
t > ] regime are localized on all the sites of the triangles that immediately
enclose a given ’'hole” in SG-3. This explains the unconventional nature
of the localization of the edge-like states and the local contribution to the
Hall-conductivity in this regime. And in order to account for exactly this
in the Chern number computation, we have defined the Chern number to
be € = Y ;cp €(7}), where P’ is the set of all sites on the triangles which
immediately enclose the cross-hair. Notice that this definition is slightly
different from that defined in Eq. (4.14) as here the sum is over an additional
layer of sites adjacent to those which immediately enclose the cross-hair. The
Chern number given in Fig. 6.5(a) is computed using the above definition
instead of Eq. (4.14).

6.4 ANYONIC EXCITATIONS

In the previous sections, we studied the ground state of the system. We
found that the ground state of the system lies on the Lieb’s flux sector and
the system undergoes a phase transition from a gapped phase to a gapless
phase as we increase t/]. The system can be excited in two ways: (i) by
exciting only the fermionic degrees of freedom, and (ii) by exciting the flux
degrees of freedom. The properties of fermionic excitations can easily be
studied from the spectrum of H,,,; in the Lieb’s flux sector. In this section,
we focus on studying the properties of the flux excitations. We study these
excitations by studying the majorana Hamiltonian, H,;, away from the
Lieb’s flux sector. Starting from the ground state (Lieb’s flux sector), we
introduce excitations or vortices in the system by changing w; — —w; on
some of the loops. This is done by setting uj = —1 for some type-z links
in the system. Notice that there are some type-z links in the system which
are present in only one loop and the rest of the type-z loops are shared by
shared by two loops. This means setting uj = —1 on the latter would result
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in the simultaneous creation of a pair of vortices.

6.4.1 Majorana spectra for excitations

We find that creating well-separated vortices in the gapped phase does not
affect the low-energy part of the spectrum of H,,,;. Specifically, zero energy
corner modes remain unaffected as they are protected by the gap. However,
in the gapless phase, creating vortices results in the significant change in
the low-energy part of the majorana spectrum. We find that creating 2n
well-separated vortices results in the creation of 2n additional majorana
zero-modes, increasing the overall ground state degeneracy. The localization
of these majorana zero modes varies for even and odd loops. At t = ],
when vortices are created on loops of even length, the additional majorana
zero modes are found to be strictly localized on the sites of the vortices
irrespective of the distance between the vortices. A couple of examples are
shown in Fig. 6.9(c,e). However, when vortices are created on the triangular
plaquettes, the localization of the majorana zero modes has a non-trivial
pattern and is dependent on the precise location of the vortices. We find that
in this case, the zero modes are not only localized on the triangular plaquette
carrying the vortex, but also on the sites which forms a loop with the least
area enclosing all the nearest-neighbors of the vortex carrying plaquette.
The nearest neighbors of the vortex carrying plaquette are nodes of the
majorana zero modes. One such example has been shown in Fig. 6.9(h).
Away from t = | limit, the additional majorana zero modes are still found
to be localized, but not strictly localized as the examples shown in Fig. 6.9

The non-trivial localization of the majorana zero modes in the presence of
vortices in triangular loops is an artifact of the underlying structure of the
graph. To see this, let us assume that H,,,; can support strictly localized zero
modes on a set of sites, say P. To bring H,,,; into canonical form, we need
to find eigenvectors of the matrix iA whose elements Aj are given by Eq.
(6.18). From Eq. (6.18), it is clear that the zero energy eigenvector of matrix
A would basically be the majorana zero mode. The eigenvalue equation can
then be decomposed into P and compliment of P, say Q resulting in

Ax = |APp ArQ xl’] —0, (6.26)
Agp Aol | 0
where x = [xp,0]T is the zero energy eigenstate localized on sites in P.

For this to hold, App and Agp must simultaneously annihilate xp for
xp # [0,0,---]T. As App is anti-symmetric, so xp = [1,1,--- |7 is the only
state which satisfies Appxp = 0, up to normalization. In order to have
Agpxp = 0, given any site 4 € Q, we must have }_, (AQp)qp = 0, where
p € P is a nearest neighbor of g ((Agp) pq is non-zero only when g and p
are nearest neighbors). This condition fails if P is the set of sites only on a
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Figure 6.9: Majorana spectrum and localization of the majorana zero modes in the presence
of vortices for t = J(a = 0.25). The spectrum of H,y,j and localization of the
zero modes for 2 vortices on even loops, 4 vortices on even loops, and 2 vortices
on odd loops are shown in (a-c), (d-f), and (g-i) respectively. The loops which
carry the vortices have been marked with a green star in (b,c,e f,gh). The low
energy part of the spectrum of H,,; has been shown in (a), (d) and (g). The

calculation has been done for N = 3° sites. In the legend of (a,d,g), ‘GS flux
sector stands for the ground state flux sector or the Lieb’s flux sector, and “ES
flux sector” stands for excited state flux sector where the loops marked in (b,e h)
with a star carry vortices respectively.
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triangular plaquette as in that case, we have at most one non-zero (AQp)qp

for any g € Q. The strict localization of the additional zero modes in the
presence of vortices on loops of even length is also a consequence of the
above. In that case, any g € Q has either o or 2 nearest neighbors in P. For
g € Q which has two nearest neighbors in P, the corresponding matrix
elements of Agp have opposite sign satisfying ), (AQp)qp = 0. We note
that the above arguments also hold true in the case of the Yao-Kivelson
model [YKo7] on decorated honeycomb lattice and one also finds such strict
localization of the majorana zero modes for parameters t = J.

6.4.2 Braiding

The appearance of additional majorana zero modes in the presence of vor-
tices leads to the increase in the many-body state degeneracy and signifies
the possibility of anyonic statistics. In the previous section, we saw that
the additional majorana modes in the presence of vortices are localized. So
we ask the what phase does the many-body wavefunction gain when we
switch the position of the vortices. Consider a many-body wavefunction
|'¥(z1,22)) where z1, z; are the positions of the vortices. Under an exchange
of vortices, the new wavefunction |'¥(z;, z1)) must be related to the previous
one by |¥(z,21)) = U|¥(z1,22)), where U is phase if the wavefunction is
non-degenerate. U is said to determine the characteristic quantum statistics:
U = 1 gives bosonic statistics, U = —1 gives fermionic statistics, and U = el
for —t < ¢ < 71,¢ # {0, 71} gives anyonic statistics. In the case when the
wavefunction belongs to a degenerate manifold, then it is possible that the
exchange of vortices can take the system to a different state of the degenerate
manifold. In this case, U becomes a unitary matrix. In this case, it is also
possible for the statistics to have non-abelian nature when U has off-diagonal
elements. One example of such a case is the presence of non-abelian Ising
anyons in the Kitaev Honeycomb model in the presence of a magnetic field
[Kito6; LPog].

We study the quantum statistics of the system by studying the braiding
the vortices in the system following Ref. [LPog]. To perform the braiding, we
make use of the following fact that changing the sign of interaction strength
Ji(tjx) on one of the links of, say < jk >, of the system is equivalent to
wy, — —wr, for the loops which contain the link < jk>. This results in either
creation of a pair of vortices or transfer of a vortex through the link < jk >,
given that < jk > is does not lie on the outermost loop of SG-3. Once we
have created the vortices, to perform the braiding, we make sure to flip the
interaction strength of only those links which does not create additional
vortices. In the numerics, we obtain the matrix U using the Berry holonomy
(see Eq. (6.29)). So to ensure adiabaticity, this process of changing the sign
of the interaction strength of a given link < jk > is done linearly in N; in-
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Figure 6.10: Braiding paths for the (a) 2-vortex (C;) and (b) 4-vortex (C4) configuration.
The paths are marked by combination of directed arrows. For the 2-vortex
configuration, the order of the path is given by [green, red, blue, green, red,
blue]. For the 4-vortex configuration, the order of the trivial path (Cff":”) is given
by [green, blue, red, orange] and the order of the topological path (Cy)is given
by [green, red, blue, orange]. In the numerics, the order in which the links
which cut the path were flipped is determined by the direction of the arrows
together with the order of the arrows mentioned above.

finitesimal steps such that at the s step, Aj(s) = Aj - (1 — 25/ N;s), where
Ay = Ji(ti)-

Consider a vortex configuration which such that the corresponding majo-
rana Hamiltonian has M zero modes. Using the degenerate majorana zero
modes, we can create a degenerate manifold of many-body states, {|¥4)},
given by

N +M-1 £
Yo) = ), Y @O P (6.27)
(kA=A i) V (N + M —1)!
where iArpf = iekrpf, ac{l,2,...,M}, N_ =(38—-1)/2,and ¢_; is a
fully anti-symmetric tensor of rank N_ + M — 1. Now imagine the states |¥,)
to be time-dependent. For such a case the inner-product between |¥,(s))
and |¥4(s')) can be computed as

(Fals)[Fp(s")) = det( ;j;,) (6.28)

where [B;Sé]k, = w_,t(s)q)l_(s’). Now consider the system to depend on
a parameter A (the interaction strengths on the links in this case). Upon
varying A along a closed path C, the evolution of degenerate subspace is
given by the Berry holonomy I'c, for a path named C [PZo1; LPog]

N; M
I'c =Pexp ;!C AF(A)dA, = lim 7911 (; [¥a(A(3))) (Fa(A(9))]

—>00

(6.29)
where [A#(A)]yp = (¥u(A)|d/dA*[¥g(A)). The second equality in Eq. (6.29)
is obtained by discretizing the path C into N; infinitesimal intervals of length
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5A where A(s) denotes the value of the parameter at s'* step. The discrete

holonomy is the suited for numerics as it can be well approximated by
[LPog]

s,s+1 s,s+1
Ns—1 Bll BlM
Te~PJ] : : (6.30)
s=1 s,5+1 s,5+1
BMl BMM

We have done some preliminary computations of I'c for a 2-vortex and
4-vortex configuration at t = | = cos /4 for all links not crossing the
braiding paths. The corresponding paths C, and C4 are shown in Fig. 6.10.
For the 2-vortex configuration, we have M = 3 (see Fig. 6.9(a)). In this case,
we obtain the Berry holonomy

0.0001 + 0.98261 0 0
Ic, = 0 —0.0001 — 0.9826i 0
0 0 0.0001 + 0.9826i
. (6.31)
exp{in/2} 0 0
~ 0 exp{—im/2} 0
0 0 exp{irt/2}

This shows that excitations in the 2-vortex configuration is anyonic and
abelian in nature. The above computation was done with SG-3 with g =5
and with different Ny = 500. For the g4-vortex configuration, we obtain the
Berry holonomy,

[—0.0001 0.0
00  —0.0001
Re(Tc,) = | —0531 0.0
04877 0.0
|—0.2055 0.0
[—0.5855 0.0
00  —0.9826
Im(Tc,) = | -0.1048 0.0
—0.0858 0.0
|—02054 0.0
[ —05 —0.25
—0.7501 —0.5
Im(log(T'c,)) = | —0.938 0.2955

—0.0554 0.1812
| —0.7501 0.5

0531 —0.4877 0.2055]
0.0 0.0 0.0
0.0 0.2638  0.2055
—0.2639 0.0 0.3918
—0.2054 —0.3917 0.0001 |
—0.1049 —0.0857 —0.2054]
0.0 0.0 0.0
—0.2426 —0.653 0.2745
—0.653 0.0884  0.2507
0.2746  0.2508  0.7396 |
—0.0621 —0.9446 —0.25]
0.7045  0.8187 0.5
-05 —0.3778 0.2955| 7
—0.6223 0.5 0.1812
0.7045  0.8187 05 |

99



100

CHIRAL SPIN-LIQUIDS ON SELF-SIMILAR STRUCTURES

The numerical results presented above have been rounded upto 4 digits.
Similar to the 2-vortex configuration, the above computation was also done
with ¢ = 5 and N; = 500. This preliminary computation reveals some
interesting features. First of all the presence of non-zero elements reveals
non-abelian nature. We look at Im(log(T¢c,)) (element-wise operation) to
get an idea about the phases appearing in I'c,. We find that the phases
appearing in the off-diagonal elements differ a lot from what is expected
from Ising non-abelian anyons [LPPog]. This hints towards the presence of
fundamentally new anyons in this systems. However, one needs to verify
these preliminary computations by checking its convergence as function of
N;.

6.5 SUMMARY

In this chapter, we demonstrate the existence of a topologically ordered chiral
spin liquid within self-similar systems. We present an exact, solvable model
on a self-similar system by generalizing the Kitaev model to the Sierpinski
Gasket. Our approach involves a specialized Jordan-Wigner transformation,
rendering the model exactly solvable. This system displays a fractionalization
of particles into Majorana fermions and Z, fluxes, exhibiting a fractal density
of states for Majorana modes. We find that the ground state of the system can
be tuned from a gapped phase to gapless phase. The gapped phase features
symmetry-protected Majorana corner modes, while the gapless phase hosts
robust zero-energy and low-energy self-similar Majorana modes.

Furthermore, we investigate vortex excitations, revealing their intriguing
localization properties, even for small fractal generations. These localized
excitations exhibit anyonic behavior. Our preliminary calculations show
that the anyons in the gapless phase in this system might be different from
the Ising anyons which is obtained in the Kitaev model on Honeycomb
lattice. These findings open up exciting possibilities for exploring unique
topological phenomena within self-similar systems.
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In conclusion, we have presented a microscopic understanding an of the
topological phases in self-similar structures from the perspective of adiabatic
charge pumping and spectral flow. We have numerically investigated the
spectral flow and the associated charge pumping when a flux tube is inserted
through the structure and the flux through the tube is varied adiabatically.
We have shown the nature of the spectral flow in the case of self-similar
structures to be qualitatively different from that of translationally invariant
non-interacting systems with a perpendicular magnetic field. We have es-
tablished a correspondence between local Hall conductivity contributions
and spectral flow in edge-like states, which have been approximated as
eigenstates of the angular-momentum operator, exhibiting chiral properties.

We expect our results to generalize to a wider variety of self-similar struc-
tures and finite systems embedded in two dimensions, given that the systems
are able to support eigenstates which are localized on sites which form loops
in the graph of the Hamiltonian. More specifically, if a finite system, em-
bedded in two dimensions, is able to support at least two different sets of
eigenstates, localized on two different loops such that one loop completely
encloses the other and are spatially separated from each other, then we
expect the system to show spectral flow when the flux through the inner
loop is varied adiabatically. As a result, we expect such systems to show
quantized Hall response. The presence of edge-like states and spectral flow
in self-similar systems of different Hausdorff dimension shown in Chapter.
4 supports this expectation.

Based on the understanding which we have presented, we come to the
conclusion that the way in which the sites are coordinated in the structure
in a primary determinant of whether or not the structure can host topolog-
ical phases. A trivial example to this would be to consider a self-similar
structures which lacks loops. To verify this, we have studied a geometry
dependent non-interacting model on two different finite fractal structures
(SG-3 and SG-4) with same Hausdorff dimension, which only differ in the
way the sites are coordinated. In the presence of additional non-spatial
symmetries, we have found that the interplay of local coordination and
the non-spatial symmetry becomes an important determining factor for the
presence of topological phases in the system.

However, it is still unclear what kind of self-similar structures or finite

systems, in general, would support such states localized on loops. Also,
among self- similar structures, every structure has an unique fundamental
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self-similar repeating unit which is iteratively used to generate the structure
of higher generations. The relation between the structure of such funda-
mental self-similar repeating units and the ability of the system to support
localized states on loops is not known yet. Form the perspective of non-
interacting systems, these can be some ares of future research.

We have demonstrated the existence of a topologically ordered chiral spin
liquid in non-integer dimensions by generalizing the Kitaev model to the
Sierpinski Gasket. By defining a special Jordan-Wigner transformation, we
have shown exact fractionalization of spins into Majorana fermions and Z2
fluxes, exhibiting a fractal density of states for Majorana modes. We have
found that the ground state of the system can be tuned from a gapped phase
to a gapless phase. The gapped phase is found to host symmetry-protected
Majorana corner modes, while the gapless phase hosts robust zero-energy
and low-energy self-similar Majorana edge-like modes. We have also inves-
tigated vortex excitations which are found to be highly localized even for
small fractal generation. These localized excitations have exhibited anyonic
behavior.

With the experimental realization of quantum fractals, the implications
of this work extend beyond the theoretical realm, offering a foundation for
future research in this domain. The open questions surrounding the support
of localized states on loops and the relationship between fundamental self-
similar repeating units and localized states are enticing directions for further
exploration. Moreover, the realization of non-trivial topological order in
fractals opens the door to the several possible fascinating studies. Two key
differences of these systems from their lattice counterparts are the self-similar
nature of the majorana spectra and possible exotic non-abelian anyons. The
effect of the self-similar character of the majorana spectra would be reflected
in the finite temperature physics. So it would be very interesting to study
the finite temperature physics of these system. Another research direction
is to study interacting models which are experimentally more accessible
but are not exactly solvable on self-similar systems. Perhaps one way of
studying such models on self-similar systems would be to use the toolbox of
tensor-network states as the inherent self-similarity of these structures can
come in handy for exact contraction of the tensors.
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