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Synopsis
Many natural, living and engineered systems display oscillations that are characterized by
multiple timescales. Typically, such systems are described as slow-fast systems, where the
slow dynamics result from a hyperbolic slow manifold that guides the movement of the
system trajectories. Recently, we have provided an alternative description in which the
slow dynamics result from a non-hyperbolic and Lyapunov-unstable attracting sets from
connected dynamical ghosts that form a closed orbit (termed ghost cycles). Here we in-
vestigate the response properties of both type of systems to external forcing. Using the
classical Van-der-Pol oscillator and two modified versions of this model that correspond to
a 1-ghost and a 2-ghost cycle, respectively, we find that ghost cycles are characterized by
significant increase especially in the 1:1 entrainment regions as demonstrated by the corre-
sponding Arnold tongues and exhibit richer dynamics (bursting, chaos) in contrast to the
classical slow-fast system. Phase plane analysis reveals that these features result from the
continuous remodeling of the attractor landscape of the ghost cycles models characteristic
for non-autonomous systems, whereas the attractor landscape of the corresponding slow-fast
system remains qualitatively unaltered. We propose that systems containing ghost cycles
display increased flexibility and responsiveness to continuous environmental changes.

Keywords: non-autonomous systems, criticality, ghost attractors, ghost cycles,
slow-fast systems, relaxation oscillators

Oscillations in natural systems often exhibit multiple time-scales, characterized
by repeated switching between slow and fast motions. Such phenomena are
typically modeled as slow-fast systems, whose dynamics formally corresponds
to a type of stable limit cycle oscillators. We have recently proposed that similar
dynamics can also arise by connecting unstable objects called ghost attractors
forming a cycle, such that there is slow dynamics due to the ghosts, with fast
switching between them. We show here that ghost cycles exhibit a higher
flexibility in their response to periodic external inputs, allowing them to be
more easily entrained in to a broad range of frequencies of the external input,
but also to exhibit complex dynamics such as bursting and chaos. Our analyses
show that this flexibility results from an organization at criticality, such that
the ghost cycles can exploit different dynamical regimes present in the system
under the influence of time-varying external inputs. We validate the results for
different models and discuss the implications of these findings for information
processing tasks in biological systems.
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2 Forced ghost cycles and slow-fast systems

I. INTRODUCTION

Many natural, living and engineered systems display behavior that is periodic or os-
cillatory. Examples include respiration, circadian clocks1, pulsatile hormone secretion2,
neural and cardiac rhythms3,4, chemical and biochemical reactions5,6, population cycles of
predator-prey types7–9, insect-outbreaks10, climate phenomena11–14, lasers15, to name but
a few. One of the most common type of periodic behaviors are relaxation oscillations,
characterized by repeated switching between slow and fast motions. These processes are
generally modeled by singularly perturbed ordinary differential equations16,17 of the form

ẋ = f(x, y, λ), ẏ = εg(x, y, λ), (1)

where (x, y) ∈ Rn ·Rm, and 0 < ε ≪ 1 is a small parameter that determines the time-scale
separation. Considering the singular limit as ε → 0, the dynamics of such slow-fast systems
is characterized by the critical manifold, defined as C = {(x, y) ∈ Rn ·Rm∥f(x, y, λ, 0) = 0}.
A normally hyperbolic manifold S ⊂ C that fulfills the criteria of Fenichel theory16,18 is
denoted as a slow manifold and is typically used to describe the dynamical properties of
the system.

There is a growing recognition, however, that a multitude of naturally occurring pro-
cesses are characterized by quasi-stable dynamics with fast switching between them, that
cannot be fully described by the asymptotic dynamics captured by slow-fast systems. This
includes neuronal activity dynamics during rest and behavioral or sensory tasks19–21, coral
to macroalgae dominance in coral reefs22, long-transients in other ecological systems23 and
embryonic development24,25, among others. Thus, complementary to the idea of attractors
governing system’s dynamics, it has been proposed that long transients can emerge due to
the systems dynamics lingering near a dynamic saddle or is guided through heteroclinic
channels / cycles26–28. Complementing this description, we have recently suggested that
such sequential quasi-stable dynamics can additionally emerge when the system’s dynamics
is organized on scaffolds of ghost structures, particularly cyclic organization of ghosts3. This
is dynamically equivalent to an organization in a vicinity of one or multiple co-occurring
saddle node on invariant cycle (SNIC) bifurcations. In this case, the dynamics of the system
is organized around a set that is non-hyperbolic, and the flow in phase space is guided by a
phase-space structure that is not-stable in Lyapunov sense30,31. Thus, experimental obser-
vations of processes that have quasi-stable dynamics with fast switching between seemingly
stable periods can emerge from different dynamical mechanisms in autonomous systems
that are often indistinguishable based solely on the time-series characteristics.

Natural systems in particular, however, do not operate in isolation, but are rather sub-
jected to external signals that vary over space and time. This is true for cellular systems,
where the signals are produced by the neighbouring cells or tissues, neuronal systems that
are continuously exposed to non-stationary sensory signals as it is for ecological systems
that are influenced by the weather, climate or human-induced forces. The system’s response
to external forcing is therefore likely determined by the mechanism through which the au-
tonomous dynamics arises. To investigate whether attractor-governed slow-fast systems
and ghost cycles characterized by non-asymptotic transients dynamics differ with respect
to their response properties when driven by external signals, we study here the entrainment
and response dynamic characteristics of the Van der Pol oscillator (VdP) as a prototypical
slow-fast system and two modified Van der Pol systems which exhibit one-ghost (VdP1g)
and two-ghost (VdP2g) cycles, respectively. We show that under low-amplitude periodic
forcing, ghost cycles not only show a strong increase in the Arnold tongue area, i.e. in-
creased entrainability, but also qualitatively new behaviors such as bursting and chaos.
These features can be understood from the fact that ghost cycles emerge at criticality, al-
lowing the corresponding non-autonomous system to exploit different dynamical regimes as
a consequence of a continuous change of the attractor landscape.
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II. RESULTS

FIG. 1. Emergence of ghost cycles in a modified VdP oscillator. (a), left panel: phase space orga-
nization of the original VdP model. Black line: x-nullcline, dashed blue line: y-nullcline, continuous
blue line: system’s trajectory. The critical manifold of the VdP corresponds to the x-nullcline and
consists of three branches Sa,+, Sr, Sa,−, the slow flow along which is indicated by orange arrow-
heads. Right panel: the y-nullclines of VdP1g (purple dashed line) and VdP2g (red dashed line)
models for α = 1.01373 and α = 0.44431, respectively, leading to the emergence of ghost attractors
(arrows). Trajectories are shown in continuous purple (VdP1g) and red (VdP2g) lines. (b) Bifur-
cation analysis of the VdP1g (top) and VdP2g (bottom). Dashed black line: unstable spiral; grey
line: stable limit cycle; dotted black line: saddle; teal line: stable fixed point. SNIC bifurcations
at α = 1.01873 and α = 0.44931, respectively. (c) Simulated time-series of x- (continuous line) and
y-variables (dashed/dotted line) of the VdP (left), VdP1g (middle) and VdP2g (right) systems. (d)
Histograms of the velocity distributions along the systems’ trajectories. Indicated peaks are taken
as representative time-scales of the systems.

A. Introducing ghosts in the Van der Pol system: effect on oscillations and time-scales

Let us consider the Van der Pol (VdP) model32, a classical slow-fast system given by:

ẋ =
1

ε
(x− x3

3
− y)

ẏ = εx+A sin(ωt), (2)

where ε is the time-scale separation parameter, and A and ω are the amplitude and the
frequency of external periodic forcing, respectively. In the autonomous case (A = 0) and
for ε = 1

7 , the VdP oscillator exhibits a pronounced separation of the slow and fast time-
scales and oscillates with an intrinsic frequency ω0. The critical manifold in this system
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is the cubic curve y = x3/3 − x, which is the x-nullcline of the system, whereas the y-
nullcline is defined by the line x = 0 (Figure 1a, left). The critical manifold is normally
hyperbolic away from the local maximum (p+) and minimum (p-) of the cubic, and these
fold points decompose the critical manifold into two slow and attracting (Sa,-, Sa,+) and
one repelling branch (Sr). Thus, a trajectory starting on the slow manifold moves along the
slow branch before rapidly switching at the fold point to the second slow branch. This leads
to temporal dynamics (Figure 1c, left) characterized by two distinct trajectory velocities
indicative of a slow-fast system, which is further reflected in the bimodal histogram of the
velocity distribution (Figure 1d, left).

Ghost cycles, on the other hand, do not rely on a hyperbolic slow manifold. In fact, the
non-hyperbolicity of ghost dynamics results from an eigenvalue gradient from negative to
positive including zero eigenvalues within in the attracting set3. Rather, ghost dynamics
emerges when the nullclines of the system are close to each other but not intersecting, i.e.
when the system is close to a SNIC bifurcation, as noted above. Thus, by manipulating the
shape of the y−nullcline, it is possible to introduce ghost dynamics in the VdP system, in
addition to the slow-fast dynamics. Consider the following modifications:

(VdP1g system)

ẋ =
1

ε
(x− x3

3
− y)

ẏ = εx+ α

(
y + 0.7− (y + 0.7)3

3

)(
1 + tanh(y + 0.7)

2

)10

+A sin(ωt). (3)

and (VdP2g system)

ẋ =
1

ε
(x− x3

3
− y)

ẏ = εx+ αy − αy3

3
+A sin(ωt), (4)

For α = 0, both system (3), (4) are equivalent to the classical Van der Pol oscillator
(2). Setting α > 0, however, controls the shape of the the y-nullcline such that it bends
and approaches in the vicinity of the x-nullcline once (VdP1g) or twice (VdP2g), giving
rise to a single or two ghosts (Figure 1a, right). Formally, this corresponds to parametric
organization before single or multiple SNIC bifurcations that destroy the limit cycle at a
certain αcrit (Figure 1b).

Introducing a single ghost in the VdP dynamics effectively does not change the shape of
the oscillations. However, longer transients between the spikes are present, resulting from
the system’s dynamics visiting the ghost that is formed (Figure 1c, middle). The additional
slow time scale from trapping in the ghost is also visible in the velocity histograms (Figure
1d, middle). In the VdP2g system, however, a two-ghost cycle emerges and defines the
system’s dynamics: while rapid transitions along the x-direction still occur, the time during
which the trajectory is trapped in the ghost regions fully dominates the slow dynamics
(Figure 1c, right), rendering the influence of the original slow manifolds of the VdP system
insignificant. This is also visible in the velocity histogram which reveals the peaks of the
fast time-scale and the ghost-trapping time scale (Figure 1d, right).

As natural systems are inherently noisy, an important question is how the time-scale sep-
aration of a system is affected by noise. Previously, we have shown that the period of ghost
cycles remains unaltered by low and intermediate noise intensity, becoming progressively
more variable and decreasing for high noise intensity due to a loss of the slow time scale3.
Here, we find the equivalent dependencies of the period for the VdP1g and VdP2g for increas-
ing noise intensity, whereas the period of the VdP system remains generally unperturbed
(Figure S1).
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FIG. 2. Response to periodic forcing. (a) Arnold tongues indicating areas of n:m entrainment
for the VdP (left), VdP1g (middle) and VdP2g (right) systems as a function of the amplitude A
and frequency (ω; normalized to the frequency of the unforced system, ω0) of the forcing. Color
encodes the winding number ρ = Tout

Tin
; teal crosses indicate largest Lyapunov exponents > 0. (b)

Difference of the observed frequency Ω and the driving frequency ω at various noise intensities in
the parameter range indicated by the dashed red lines in (a). Plateaus correspond to cross-sections
through the 1:1 entrainment tongues. (c) Distribution of the interspike intervals (ISIs) as a function
of the forcing frequency for the VdP (left), VdP1g (middle) and VdP2g (right) system.

B. Response to periodic forcing

To investigate whether the different mechanisms through which the slow time-scale
emerges in the system are also reflected in differences of how the systems respond to
time-varying signals, we subjected the VdP, VdP1g and VdP2g systems to periodic forcing,
and numerically quantified the corresponding Arnold tongues33. Arnold tongues visualize
the entrainment behavior of forced oscillatory systems and represent areas in the forcing
amplitude-frequency space in which the system is mode-locked to the external forcing as
represented by a constant winding number ρ34. Typically, major entrainment areas where
the forced oscillator exhibits n periods for m periods of external forcing (n : m entrain-
ment) are highlighted. We focus here on low amplitude forcing (0 < A ≤ 0.2) and for
each system scanned an interval of forcing frequencies ranging from 0.1- to 10-fold of the
intrinsic frequency of the autonomous system (ω0).
The VdP system exhibits a typical response to periodic forcing, where 1:1 entertainment

is most prominent and n : m regions exist in narrow parameter regions (Figure 2a, left).
The single ghost introduced in VdP1g, in contrast, notably changes the response properties
of the system: the Arnold tongues are much wider already at low amplitude of the external
forcing compared to the classical VdP oscillator, and their width is only marginally affected
as the amplitude increases (Figure 2a, middle). For the VdP2g system, the difference in the
system’s responsiveness is even more pronounced: the majority of the two parameter plane
spanned by the amplitude and frequency of the driving signal is filled by the 1:1-entrainment
tongue, sided only by a narrow 3:1-tongue (Figure 2, right).
We therefore asked what is underlying these striking differences between the VdP os-
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FIG. 3. Phase-plane analysis at different intervals of periodic forcing (left). (a1-a3) In the original
VdP system, low amplitude external forcing leads to shifting of the y-nullcline back and forth
along the x-axis, without inducing major qualitative changes in the attractor landscape. (b1-
b3) In the VdP1g system, shifting of the y-nullcline back and forth along the x-axis leads to a
periodic disappearance of the ghost attractor either via creation of a new fixed point (b1) such
that the trajectory is trapped here, or via moving the nullclines further apart (b3), thereby loosing
the slow time-scale from the ghost. (c1-c3) In the VdP2g system, the external forcing leads to
alternate creation and destruction of fixed points, and thereby periodic disappearance of the ghost
attractors. Double arrowheads denote fast transitions of the trajectory.

cillator and its ghost cycle variants. Generally, in non-autonomous systems or systems
under the influence of time-varying inputs, the geometry (positioning, shape and size of
the attractors), or topology (number or stability of the attractors) of the underlying phase
space changes35,36. Thus, we performed next a phase plane analysis at different intervals
of the periodic forcing for the three distinct systems. For the VdP system, periodic forcing
leads to shifting of the y-nullcline back and forth along the x-axis, without inducing major
qualitative changes in the geometry or topology of the attractor landscape (Figure 3a1-a3).
Thus, the response of the forced oscillator is solely governed by the slow-fast dynamics of the
autonomous systems, explaining the typical entrainment response (Supplementary Figure
2 and Video 1).

In the VdP1g system, in contrast, the external forcing continuously remodels the attrac-
tor landscape. New fixed points (stable and saddle) emerge, such that the stable fixed
points traps the system trajectory (Figure 3b1), while at other times, the ghost attractor
is destroyed by moving the x- and the y-nullclines further apart (Figure 3b3). This creates
a gating mechanism in which the trajectory quickly cycles along the orbit of the VdP1g

system when the ghost attractor is absent, but is transiently captured by the emergence
of the stable fixed point at sufficient forcing strength, thus explaining the larger Arnold
tongues (Supplementary Figure 3 and Video 2).

In the VdP2g system, the periodic forcing results in a continuous alternation between the



Forced ghost cycles and slow-fast systems 7

creation and destruction of stable fixed points on the diagonal of the phase space (Figure
3c1-c3): when the input moves the y-nullcline to the left, a fixed point is created via a SNIC
bifurcation, while another one on the other side of the phase space is destroyed. Moving it
towards the right results to the equivalent situation in this phase-space area. This leads to a
situation in which the trajectory, whenever it is released from one corner of the phase space
after the destruction of the stable fixed point, is immediately captured by the stable fixed
point that is generated at the other side (Supplementary Video 3). Thus, the trajectory can
only move along half of the orbit at once, explaining the ultra-large range of 1:1 entrainment
of the VdP2g system (Supplementary Figure 4).

FIG. 4. Complex dynamics in the periodically
forced ghost cycles. (a) Bursting behavior in the
VdP1g system at low forcing frequencies (green),
independent of amplitude (here: A = 0.1, ω =
0.5·ω0). (b) Complex periods and high sensitivity
to initial conditions in the VdP2g system at high
forcing frequencies (here: A = 0.1, ω = 10 · ω0).
Exemplary time-series for different initial condi-
tions are shown. (c) Largest Lyapunov exponent
(LLE) as a function of the forcing frequency for
the VdP (blue), VdP1g (purple) and VdP2g (red)
system.

Considering the variability in the period
of VdP1g and VdP2g for intermediate noise
levels (Figure S1), we investigated next how
robust the observed entrainment properties
are in the presence of noise. Since Arnold
tongues are not defined in the presence of
noise, one can instead plot the difference
between the observed and the forcing fre-
quency as a function of the forcing fre-
quency at a given amplitude33. Plateaus in
these plots essentially correspond to cross-
sections through the Arnold tongues. Fo-
cusing on the 1:1 entrainment of the three
systems at an amplitude of A = 0.1 (cf.
dashed red lines in Figure 2a), we find
that the plateau corresponding to the 1:1-
tongue of the VdP system remains identical
to noise-free case (Figure 2b, left), consis-
tent with the system’s insensitivity to noise.
Similarly, even for noise levels at which high
variability in the period is observed, the
plateaus corresponding to the 1 : 1-tongues
of VdP1g and VdP2g reflect closely the char-
acteristics of the noise-free case (Figure 3b,
middle and right), suggesting that the ob-
served entrainment properties are robust in
the presence of noise.

Entrainment, however, is not the only dif-
ference in the behavior observed for peri-
odic forcing of the VdP, VdP1g and VdP2g

systems. Quantifying the distribution of
the interspike-intervals (ISIs) as a function
of forcing frequency at a fixed amplitude
(A = 0.1) reveals further differences in the
temporal dynamics between the three sys-
tems. In case of the classical VdP system,
the ISI distributions outside the entrain-
ment bands are broad and disperse, forming
patterns indicative of complex dynamics (Figure 2c, left). For the VdP1g system, however,
the ISI distributions are bimodal at low forcing frequencies, and transit to unimodality
above ω ≈ 1.6 ·ω0 (Figure 2c, middle). This bimodal ISI distribution result from the emer-
gence of bursting dynamics with trains of rapid spiking followed by quiescent phases in
between (Figure 4a and Supplementary Figure 3). As for the 1:1 entrainment region, phase
plane analysis revealed that the bursting behavior is caused by creating and destroying fixed
points while driving the system back and forth the SNIC bifurcations. Due to the low forc-
ing frequency, however, multiple cycles on the periodic orbit can be completed before the
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trajectory is recaptured by the emergence of the stable fixed point (Supplementary Video
4). This resembles the description of parabolic circle/circle bursting4, except that the role
of the slow variable driving the system back and forth the SNIC is played by the periodic
forcing signal.
In case of the VdP2g system, an unimodal distribution (with decreasing ISI duration for

increasing forcing frequency) is observed for most of the forcing interval, which is consistent
with the large Arnold tongue for the 1:1 entrainment regime for this system (Figure 2c,
right). In agreement with the robust catch-and-release mechanism between two fixed points,
no bursting is observed for the VdP2g system. For very high driving frequencies, however,
the ISI distributions become disperse (inset in Figure 2c, right) and the corresponding
time-series reveal that the system exhibits complex behavior with quick divergence of the
trajectories after small perturbations of the initial conditions (Figure 4b), indicative of
chaotic dynamics. Calculating the largest Lyapunov-exponents (LLEs) for all three systems
shows that only the VdP2g system exhibits chaotic behavior in the (A,ω)-space considered
here (Figure 4c and Figure 2a, cyan crosses). Together, these results demonstrate that the
response properties of ghost cycles are markedly different from the dynamics of conventional
slow-fast systems.

C. Slow-fast and ghost cycle dynamics in the Morris-Lecar model

To demonstrate that the observed response properties of ghost cycles and slow-fast sys-
tems are not peculiarities of the chosen model systems, we next validate the above obtained
results for the Morris-Lecar (ML) model37, another typical slow-fast system that features
both excitable and oscillatory dynamics. The ML system38 is given by:

CmV̇ = −gL(V − VL)− gCaM∞(V − VCa)− gKN(V − VK) + (Iext +A sin(ωt))

Ṅ =
N∞ −N

τN
,

(5)

where V is the membrane potential in mV, N is the dimensionless activation variable and

M∞ =
1

2

(
1 + tanh

(
V − V1

V2

))
N∞ =

1

2

(
1 + tanh

(
V − V3

V4

))
τN = 1/

(
ϕ cosh

(
V − V3

2V4

))
.

As before, A is the amplitude and ω the frequency of external periodic forcing. The ML
system is parameterized to display type-I neuronal activity (cf.37,38 for biophysical details):

Cm = 20 (µF/cm2), V1 = −1.2 (mV ), V2 = 18 (mV ), V3 = 12 (mV ), V4 = 17 (mV ),

gL = 2 (mS/cm2), gK = 8 (mS/cm2), gCa = 4 (mS/cm2), ϕ = 0.06667 (s−1),

VL = −60 (mV ), VK = −80 (mV ), VCa = 120 (mV ).

In type-I neurons, oscillations are initiated via a single SNIC bifurcation as a function of an
external input current Iext (Figure 5a), thus allowing the emergence of a 1-ghost cycle when
organized close to the SNIC. In this study we chose Iext = 55 µA/cm2 for the slow-fast
regime and Iext = 40.19345 µA/cm2 for the 1-ghost cycle regime.
Numerical analysis of the time-scales of the systems shows that the type-I ML neurons

feature several characteristic timescales corresponding to complex shape of the relaxation
oscillations (Figure 5b,c left). For simplicity, we consider τ2 − τ4 to constitute the fast
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FIG. 5. Slow-fast and ghost-cycle regimes in the Morris-Lecar (ML) model. (a) Bifurcation
diagram. Dashed black/gray line: unstable spiral/limit cycle; grey line: stable limit cycle; dotted
black line: saddle; teal line: stable fixed point. SNIC bifurcation at Iext = 39.69345 µA/cm2. (b)
Histograms of the velocity distributions from system’s trajectories in the slow-fast regime (left) at
Iext = 55 µA/cm2 and the 1-ghost cycle regime (right) at Iext = 40.19345 µA/cm2. Indicated
peaks are taken as representative time-scales of the systems. (c) Time-series of a single period of
the ML system in the slow-fast regime (left) 1-ghost cycle regime (right). (d-f) Response of the ML
system in the slow-fast (top row) and 1-ghost cycle regime (bottom row) to periodic forcing. (d)
Corresponding Arnold tongues indicating areas of n:m entrainment as a function of the amplitude
A and frequency ω of the forcing (normalized to ω0). Color encodes the winding number ρ = Tout

Tin
.

(e) Difference of the observed frequency Ω and the forcing frequency ω at various noise intensities in
the parameter range indicated by the dashed red lines in (d). Plateaus correspond to cross-sections
through the 1:1 entrainment tongues. (f) Distribution of the interspike intervals (ISIs) as a function
of the forcing frequency.

time-scale, since they define the shape of a single spike. As for the VdP1g system, however,
the additional slow timescale of the 1-ghost cycle, that emerges for organization close to
the SNIC bifurcation, dominates the dynamics of the ML oscillator (Figure 5b,c right).
While the slow-fast regime of the type-I ML neuron shows an almost constant period

with little variability for the full range of σ-values, the dependency of the ML period on
noise intensity when operating in the 1-ghost cycle regime are similar to the observations
in the VdP1g model (Supplementary Figure 5). Moreover, in the periodically forced ML
oscillator and its 1-ghost variant we find equivalent entrainment capabilities with robustness
to noise, bursting behavior and changes in the ISI distributions as described for the VdP
and VdP1g models (Figure 5d-f, see also Supplementary Figures 6-7 for representative time-
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series). These results therefore demonstrate that the response properties of fast-slow and
ghost cycle models are independent from the underlying model realization, but results from
the mechanisms of emergence of the systems’ dynamics.

III. DISCUSSION AND CONCLUSION

Oscillatory processes with multiple time-scales which are prevalent in natural systems
have generally been described as slow-fast systems, where the difference in time scales
results from the presence of a small parameter (ε) in the system’s equations. For the
VdP system, there is a single normally hyperbolic equilibrium point at the origin, and for
ε > 0 sufficiently small there exists a slow normally hyperbolic critical manifold, such that
the points on it can be viewed as hyperbolic points of the fast subsystem. Thus, stable
and unstable branches of the critical manifold can be defined that govern the dynamics of
the system. The period of the VdP oscillator is therefore not sensitive to noise, and the
response to external forcing displays a typical Arnold tongue distribution. In contrast, the
dynamics of a ghost cycle such as the modified VdP2g system is governed predominantly
by the trapping in the ghost states which determines the slow time-scale of the system,
with rapid switching among them. The ghost states are weakly attracting sets that are not
invariant31 and the response dynamics of the ghost cycles to external forcing are notably
different, e.g. the systems entrain 1:1 to a broad range of external frequencies in a fashion
that is robust to noise. Moreover, ghost cycles also exhibit additional dynamical responses
to forcing, such as bursting. Interestingly, we have observed bursting behavior mainly for
the one-ghost cycles of the VdP1g and ML systems.

These differences in the dynamics of slow-fast oscillators and ghost cycles can be under-
stood from the non-autonomous description of the systems. Whereas the external forcing
does not affect the qualitative organization of the phase space of the classical VdP system,
the criticality (closeness to one or more SNIC bifurcations) through which ghost cycles gen-
erally emerge enables that even small amplitude forcing creates and destroys fixed points
and ghost attractors, i.e. it continually reshapes the systems attractor landscape. The
response behavior therefore depends also on the number and the particular phase space
organization of the ghosts in the non-autonomous system (as exemplified by the release-
and-catch mechanism between two stable fixed points that emerge and disappear in an
alternating manner when the VdP2g system is periodically forced, underlying the ultra-
large 1:1 Arnold tongue), as it depends on the frequency of the forcing that leads to the
attractor landscape changes (resulting e.g. in 1:1 entrainment or to bursting for different
frequencies in the VdP1g system).

Recently proposed gene-regulatory network models that are characterized with three si-
multaneous SNIC bifurcations39–41 give rise to a three-ghost cycle3, and models of recurrent
neuronal networks42 suggest also the existence of cycles between four or more ghosts . Since
the response of ghost cycles to periodic forcing depends on the orientation of the phase flow
that is organized by the ghosts, it will be interesting to study the response properties if
multi-ghost cycles to periodic forcing. Given that many of the one- and multi-ghost cy-
cles seem to be typical for models of biological networks, we speculate that the flexibility
(being able to exploit different dynamics via the changes in the attractor landscape) and
robustness in the response to external forcing that emerges in these models could be a
feature that biological networks evolved to exploit for information processing or biological
computation. As ghost cycles emerge for system’s organization at criticality (closeness to
one or more SNIC bifurcations), biological systems may exhibit feedback mechanisms for
self-organization close to the critical point that enables them to utilize the computational
capabilities of ghost cycles36,43. Future studies are thus required to test these hypotheses
in the context of models for computational tasks in biological networks.
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SUPPLEMENTARY INFORMATION

Numerical methods

Deterministic simulations were performed with a 4th order Runge-Kutta scheme using
custom-made python code. Stochastic simulations were performed as described in3 by
modeling noise as a Wiener process where Gaussian white noise is introduced as an addi-

tive term at each time step, yielding a stochastic differential equation in Itô form, ˙X(t) =
f(X(t), t)dt+σdW (t), where dt denotes the step size, σ(t) describes the additive noise and
W (t) denotes a Wiener process whose independent increments follow a normal distribution

with (µ = 0, SD = 1) and amplitude
√
∆t. In both deterministic and stochastic simulations,

a stepsize of ∆t = 0.05 was used.
Bifurcation analysis was performed using the AUTO-module of XPPAUT2 (https://sites.
pitt.edu/~phase/bard/bardware/xpp/xpp.html).
Largest Lyaponuv exponents were calculated by the method described in1 using custom-
made python code.
Periods and interspike-intervals (ISIs) were determined from the peak-to-peak distance using
the signal.find peaks function from the python package SciPy either directly from the
the simulated timeseries (ML system) or its numerical derivative (VdP, VdP1g and VdP2g

systems).
Timescales were determined numerically from phase space trajectories by identifying the
peaks of their velocity distribution histograms and the time constants defining different
timescales were calculated as τi = v−1

pi
, where vpi

denotes the velocity corresponding to the
i-th peak of the histogram.
To study the response to external forcing we calculated the winding number ρ = Tout

Tin
,

https://doi.org/10.48550/ARXIV.2309.17201
https://sites.pitt.edu/~phase/bard/bardware/xpp/xpp.html
https://sites.pitt.edu/~phase/bard/bardware/xpp/xpp.html
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where Tout is the observed period of the system subject to external forcing and Tin = 1
ω is

the period of the forcing signal, using forcing frequencies ranging from from 0.1 to 10-fold
of the system’s intrinsic frequency (i.e. in absence of external forcing) ω0, low amplitudes
(up to A = 0.2 for VdP, VdP1g and VdP1g; up to A = 10 µA/cm2 for ML). Arnold tongues
corresponding to n : m entrainment (restricted to m,n ∈ {1, 2, 3, 4} in this study, where n
periods of the forced oscillator can be observed for every m periods of the external forcing
signal) can be identified as areas in (A,ω) ⊂ R2 where ρ = m

n , which was evaluated numeri-

cally via |ρ− m
n | < 0.01 using timeseries from a total simulation time of t = 60 ·T0, T0 = 1

ω0
.

Only Arnold tongues covering at least 1% of the considered (A,ω) subspace are shown in
this study.

All codes for reproducing the results and figures from this study will be available on GitHub
upon final publication at: https://github.com/KochLabCode/GhostCycles

The versions of the utilized python packages were as follows:

Package Version
Numpy 1.16.6
SciPy 1.7.1

Matplotlib 3.4.3
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Supplementary Figures

Supplementary Fig. 1. Oscillation period as a function of the additive noise intensity σ for the
autonomous VdP, VdP1g and VdP2g systems. Data are shown as mean±s.d. from 50 repetitions.
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Supplementary Fig. 2. Representative time courses from simulations of the forced VdP model
selected from the full range of forcing frequencies ω at amplitude A = 0.1. Forcing input shown in
green.
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Supplementary Fig. 3. Representative time courses from simulations of the forced VdP1g model
selected from the full range of forcing frequencies ω at amplitude A = 0.1. Forcing input shown in
green.
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Supplementary Fig. 4. Representative time courses from simulations of the forced VdP2g model
selected from the full range of forcing frequencies ω at amplitude A = 0.1. Forcing input shown in
green.
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Supplementary Fig. 5. Oscillation period of the autonomous ML system in the slow-fast or
1-ghost cycle regime as a function of the additive noise intensity σ. Data are shown as mean±s.d.
from 50 repetitions.
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Supplementary Fig. 6. Representative time courses from simulations of the forced ML model in
the slow-fast regime selected from the full range of forcing frequencies ω at amplitude A = 5 mV .
Forcing input shown in green.
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Supplementary Fig. 7. Representative time courses from simulations of the forced ML model
in the 1-ghost cycle regime selected from the full range of forcing frequencies ω at amplitude
A = 5 mV . Forcing input shown in green.
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