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Preface paragraph 21 

As our climate undergoes significant shifts, both the Earth and human societies are increasingly 22 

exposed to disasters and stress. This situation underscores the critical need for robust Early 23 

Warning Systems (EWS), which are intricately designed to monitor, assess, and relay information 24 

about impending risks and hazards. EWS are vital in promoting resilient and sustainable 25 

development, yet they encounter substantial challenges in forecasting hazards and impacts, 26 

communicating risks, and in the efficiency of decision-making processes. In this perspective, we 27 

examine these challenges and explore the transformative role of integrated Artificial Intelligence 28 
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Foundation Models (AI FMs), especially focusing on the capabilities of Large Multi-Modal Models 29 

(LMMs). We discuss the power of these models in developing a Multi-Hazard Early Warning 30 

System (MHEWS), combining Meteorological and Geospatial FMs for impact prediction  in a 31 

comprehensive approach. Emphasizing a user-centric strategy, this paper highlights the 32 

importance of intuitive interfaces and incorporating community feedback to enhance crisis 33 

management. Given the complex nature of climate risks, we emphasize the need for causal 34 

representations in AI models, to avoid conclusions and predictions based on spurious 35 

correlations.  Additionally, we introduce the concept of decadal EWSs, which aims to provide 36 

longer term, yet spatially resolved forecasts. By leveraging climate ensembles and generative 37 

approaches, these advancements aim to provide proactive solutions for evolving climate 38 

dynamics and societal responses.  39 

 40 

1 Early-Warning Systems for Complex Climate Risks  41 

Early-warning systems (EWS) are an essential component of risk-reduction strategies for climate 42 

and environmental hazards and thus should be an central element of resilient sustainable-43 

development strategies1. The United Nations and the World Meteorological Organization 44 

recognize the importance of these EWS and installed efforts to develop them via the Early-45 

Warnings-for-All Initiative launched in 2022, also related to Target G of the UN Sendai Framework 46 

2015-20302. There are numerous past cases proving the value of EWSs for saving lives and 47 

livelihoods3-5. One key example is the investment in research and implementation in tsunami 48 

warnings following the Indian Ocean tsunami in 20046. Focused collaboration has resulted in more 49 

robust, international, and technologically advanced warnings that have saved many lives since 50 

2004, including during the 2011 Tōhoku tsunami7 . However, it is essential to recognize that 51 

complex risks from surging climate and weather extremes involving multiple hazards as either 52 

concurrent or cascading events pose significant additional challenges to developing effective 53 

EWSs8. Projected increases in severity and frequency under unmitigated greenhouse gas 54 

emissions on top of changing exposure and vulnerability will make these efforts even more 55 

important for future climate risk adaptation9, because relying on past norms and guidelines will 56 

prove inappropriate under non-stationary risks.   57 

The United Nations10 define EWS as ‘An integrated system of hazard monitoring, forecasting and 58 

prediction, disaster risk assessment, communication and preparedness activities systems and 59 

processes that enables individuals, communities, governments, businesses and others to take 60 

timely action to reduce disaster risks in advance of hazardous events’. Yet, current EWS tend to 61 
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emphasize the hazard prediction (e.g. weather) compared to impact prediction and 62 

communication (a recent example is the German 2021 flood, where weather forecast and warning 63 

was timely and correct, but the impact not anticipated11 and adequate preventive measures not 64 

taken. Lately, there has been more focus towards impact-based forecasts and warnings (IBFW). 65 

However, early studies suggest that these make little difference to outcomes as they still only 66 

provide the impact information rather than what actions to take in response12. Moreover, it has 67 

been proposed to design IBFWs for individual members of the public, which allows for a more 68 

fine-grained treatment of vulnerability and coping capacity, thus increasing the strength of future 69 

warnings13. 70 

The accuracy and effectiveness of EWSs depend not just on the quality of data gathered from 71 

sensors, process understanding, and the ability to predict hazards accurately and assess their 72 

potential impact, but also the speed and effectiveness of communication, and the ability to make 73 

timely and effective decisions, e.g. implemented as Anticipatory Action in the humanitarian 74 

domain14.. All of this requires preparedness to enable the EWS to be sustainable, effective, and 75 

enable the end users to take early actions to enhance their safety and reduce economic and social 76 

losses.  An important aspect for EWS is the relevant time-scale. Early warnings typically vary from 77 

seconds, to tens of thousands of years, but for climatic hazards time scales are generally on the 78 

hourly to weekly time-scale for more rapid onset hazards (e.g. storms), and have longer time-79 

scales for slow-onset hazards (e.g. drought, desertification). Longer-time scales beyond a year 80 

are not considered on classical EWS but are very relevant for conscious spatial and infrastructure 81 

planning and societal preparedness, especially in the context of climate change15. The diversity 82 

of relevant aspects for early warning results in tremendous complexity and challenges in 83 

implementing effective MHEWS, while some require a large collective effort to make progress, for 84 

others, AI can offer the necessary leap forward. 85 

2 Main challenges with Early-Warning Systems  86 

Weather-related EWSs operate along a warning chain involving observations, forecasts (weather, 87 

hazard, impact), communication and decision making16, and should be continuously evaluated 88 

(Figure 1). As in the case of a chain, the efficacy largely depends on the weakest link. 89 

Hazard forecasts to a large extent rely on numerical weather prediction (NWP), which have 90 

improved tremendously over the past decades17. However, challenges remain: For example, with 91 

fast-onset disasters such as storms and floods, accurate forecasting of precipitation is necessary, 92 

a fact that involves resolving convection, which is computationally slow in NWP models. Hence, 93 

for such disasters, lead times can be fairly short, sometimes too short for effective action18. For 94 
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instance, in late 2021 the tropical cyclone Rai struck the Philippines. It had undergone an 95 

unforeseen very rapid intensification in the hours before landfall, and hence early action 96 

mechanisms had not been triggered19. On the other hand, early warning for slow-onset disasters, 97 

e.g. droughts, builds upon sub-seasonal to seasonal forecasting20. At these time scales, 98 

predictability is driven by boundary conditions such as the sea-surface temperatures and the land-99 

surface soil moisture and with the chaotic nature of the atmosphere, seasonal forecasts suffer 100 

from a lot of uncertainty (cf. Table 1), although for large-scale extremes like the recent Horn of 101 

Africa drought years some predictive skill has been achieved21. Yet for more localized extremes, 102 

there is seldom enough certainty on spatio-temporal extents to enable effective early action more 103 

than two weeks in advance. 104 

Crucially, weather or hazard forecasts are not sufficient, because the same weather can have 105 

very different impacts. For instance, this was evidenced in Germany 2021 (Table 1), where a few 106 

weeks before the devastating Central European floods there was a similar meteorological event 107 

in North Eastern Germany with almost no impact22. The reason is a completely different 108 

landscape, which is less hilly and has more sandy soils, allowing for faster infiltration of rain. Yet 109 

predictions of impacts are challenging because they result from the interaction of the weather 110 

system with ecosystems/landscapes and societal systems23. This needs to consider sub km-111 

scale, often m-scale, local context, and variables that are outside the physical climate system. In 112 

addition, even hydrodynamic models partially failed in 2021 because, complexities such as debris 113 

flow and geohydromorphological dynamics have not been considered. Moreover, societal impact 114 

forecasts need to build upon maps of exposure and vulnerability4. Such maps are often coarse in 115 

resolution due to a general sparsity of gridded socioeconomic data, although down-scaling 116 

attempts have yielded promising results24. Combining them with the physical variables obtained 117 

from the hazard forecast is not trivial, especially since dynamic aspects of vulnerabilities are not 118 

often considered25.  119 

Another major challenge are concurrent, compounding and cascading events, hampered by the 120 

lack of connections across the various thematic, institutional and regional silos. This is particularly 121 

critical, as amplifying cross-border effects such as impacts on supply chains, water management 122 

and disaster response capacities are important. Even more broadly, teleconnections, e.g. due to 123 

trade, river systems and atmospheric transport, are barely integrated into EWS, as their inclusion 124 

requires advanced data sharing, real-time communication, and predictive models that can 125 

account for these long-distance relations, information sources and impacts26. 126 

 127 
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Furthermore, an ideal EWS strives to harness the full spectrum of available observations, yet 128 

present systems face notable limitations in achieving this. For instance, feeding satellite 129 

information to a physical model often requires an observational operator, as what is measured is 130 

only a proxy of what is modeled. This becomes increasingly challenging in regimes with low 131 

signal-to-noise ratio, uneven and sparse data sampling, scarcity of measurements, and wide 132 

diversity of quality, quantity and granularity of data. Hence, existing EWS rarely leverage all 133 

available data. For instance, EWS for floods and storms do not assimilate all locally available 134 

radar, gauge and satellite information, but instead focus on a few data modalities and resolutions 135 

27. Furthermore, potentially informative sources of data for food security EWS, e.g. from social 136 

media or economic factors, are not typically exploited in their entirety28 137 

Communication of warnings, especially to the affected population, i.e. the last mile29, is another 138 

critical aspect30. Numerous cases over history demonstrate that even if the EWS produces 139 

actionable forecasts, communication failed31. Most recently, the Mediterranean storm Daniel lead 140 

to severe rainfall and flooding in Libya with over 4,300 people dead and many more displaced32. 141 

While a lack of communication was certainly not the only reason for this devastating outcome, it 142 

surely contributed, given even TV weather reports predicted the landfall at least four days ahead33 143 

Global initiatives such as the Common Alerting Protocol have been useful to standardize warning 144 

data enabling media outlets and cell phone broadcasters to issues warnings34. Still, affected 145 

communities can have very different needs on EWS information, which can be best achieved by 146 

involving them already in the creation of the EWS35, yet doing that on a global scale is hard. Here, 147 

an additional opportunity arises, often local traditional or indigenous knowledge is overseen in 148 

EWS, but can be a useful source36, for instance when it comes to the challenge of inclusiveness. 149 

Warnings should be inclusive, not just for direct ethical reasons, but also because inclusive EWSs 150 

help to save more lives, preserve livelihoods and prevent greater economic losses, and impact 151 

longer-term equitable growth and prosperity. Designing inclusive EWSs requires to consider the 152 

peculiarities of diverse communities and their needs, ideally through their involvement from the 153 

beginning37. This is a challenge for current EWS, as adapting them to local conditions is costly, 154 

continuously iterating them through adaptive learning often restricted by rigid constraints and in 155 

contrast a one-size-fits-all model is cheap to implement and maintain (but not optimal for the local 156 

communities).  157 

Last but not least, an ideal EWS should also take the expected impact of decisions based on the 158 

warnings into account, i.e. the response itself as a risk factor38. This can lead to a highly non-159 

trivial decision-making feedback loop. In other words, based on the decisions that are taken upon 160 

a warning, vulnerabilities and impacts may change, which therefore would change the warning. 161 
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For example, an air pollution health impact forecast would be most useful if it considered not only 162 

the number of affected people if no action were taken, but also the same number under an 163 

evacuation plan in place. This requires the modeling of sociology and psychology, which, 164 

especially in combination with physical modeling, is challenging. Furthermore, after a disaster or 165 

an avoided disaster, the effect of interventions needs to be understood.  Essentially, this requires 166 

constructing models that can operate with counterfactuals to compare “what would have 167 

happened” with “what actually happened”. For example, the food security impact of droughts is 168 

often dampened by the markets through food imports. Given this mediating effect, it is challenging 169 

to estimate what the impact of an EWS and derived anticipatory action is. Here, Earth observation 170 

has been identified as useful to monitor, evaluate, account to and learn (MEAL) from anticipatory 171 

action39, but turning such ideas into real and operational practice is still needed. 172 

In summary, current EWSs face challenges including limitations in forecasting accuracy for fast 173 

and slow-onset disasters, difficulties in predicting impacts due to local environmental and societal 174 

variables, underutilization of diverse data sources, and challenges in effectively communicating 175 

warnings to varied communities. In addition, the complex task of incorporating societal and 176 

psychological aspects of potential warnings into the decision-making process is critical. In all of 177 

these challenges, developments in AI promise to advance the field.  178 

3 Addressing the current limitations with existing ML: opportunities and challenges  179 

 180 

Machine learning methods, especially deep neural networks (DNNs), have demonstrated to 181 

successfully tackle important limitations of existing EWS. So far, these efforts have nevertheless 182 

mostly focused on hazard forecasts, and have yet to trickle down the whole early warning chain. 183 

Weather forecasting with deep neural network emulators, known as Meteorological Foundation 184 

Models (FMs), has gained traction in recent years. Trained on extensive historical observations 185 

using self-supervised learning, these models predict the next time step, ensuring fast and 186 

accurate numerical weather prediction (NWP). Existing meteorological FMs may be classified 187 

broadly into two categories: global medium-range forecasting models 40-44 trained on the ERA5 188 

3D reanalysis dataset45 and regional precipitation nowcasting models46-48 49-51 trained on satellite 189 

radar observations. Meteorological FMs outperform traditional approaches on small-scale 190 

phenomena related to storms and rainfall: GraphCast52 and PanguWeather42 greatly reduce the 191 

tracking errors of tropical cyclones and NowCastNet51 is skillful also for extreme precipitation 192 

events, something which was previously considered intractable. Most meteorological FMs are 193 
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built on top of approaches from Computer Vision53: Convolutional Neural Networks or Vision 194 

Transformers 54,and recently Graph Neural Networks41,55 are also gaining traction. 195 

 196 

Moving forward, meteorological FMs need now take on a probabilistic perspective, which can 197 

enable the generation of large ensembles and thereby of sharp worst-case scenarios useful for 198 

early warning. They might transition to utilizing raw multimodal observations, moving away from 199 

depending on existing data assimilation for a coherent reanalysis dataset. Additionally, 200 

meteorological FMs should place more emphasis on the challenging yet important subseasonal-201 

to-seasonal time scale for predictability. So far, most work on seasonal forecasts with ML focuses 202 

on coarse indicators. Especially the ENSO phenomenon, which greatly influences agricultural 203 

weather in Africa and South America, can be predicted well with deep neural networks 56-59. Such 204 

phenomena are crude descriptions of the actual dynamics unfolding in the Earth system 60, which 205 

is why moving to dense meteorological FMs is both promising and necessary 21. 206 

On land, distinguishing between hazard and impact forecasts blurs. Consider the European 207 

Floods use case: traditional hydrological models for stream flow forecasts needed basin-specific 208 

tuning. However, treating stream flow forecasts as a time series, Long Short-Term Neural 209 

Networks (LSTMs) trained on cross-basin data outperform previous methods61,62. Google 210 

FloodHub operationalizes this, providing flood forecasts in over 80 countries, offering early 211 

warnings to large populations63. 212 

 213 

Traditional EWSs issue warnings based on administrative boundaries, which may not align with 214 

the disaster's actual spatial pattern. AI enables dense spatio-temporal predictions, a fact that has 215 

exhibited important implications for example in the Horn of Africa drought use case, where 216 

humanitarians can now transition from district-level vegetation health forecasts64 to using the 217 

EarthNet AI models 65-67, which provide predictions for individual fields and communities by using 218 

high-resolution satellite imagery. Further developments of such approaches may be called 219 

Geospatial FMs: They leverage the vast availability of satellite data through self-supervised 220 

learning. Here we posit that geospatial FMs, particularly those focusing on forecasting, can have 221 

a large impact on EWSs. For instance, like the EarthNet models 65-67, the EarthPT foundation 222 

model68 can out-of-the-box predict NDVI. Hence, this allows for highly targeted triggers for 223 

anticipatory action. Similarly, wildfire risk follows localized patterns, yet current risk maps are 224 

typically provided at regional level, a fact that has been heavily criticized for instance in Greece69. 225 

Now, deep learning-based approaches can deliver spatially explicit maps of wildfire danger70. The 226 
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upcoming geospatial FMs, like the Prithvi FM71 for burned area segmentation and the Presto FM72 227 

for fuel moisture estimation, show promise for prediction. However, the application of generative 228 

AI for dense spatio-temporal prediction remains under explored. As lead time increases, 229 

uncertainty in drought forecasting and wildfire risk estimation grows, and diffusion models73 may 230 

offer sharp and plausible predictions, avoiding unphysical mean predictions. 231 

Socio-economic variables, which are crucial for understanding vulnerabilities and impacts, are 232 

often limited to coarse administrative levels and infrequent sampling intervals. Nevertheless, ML 233 

can successfully leverage them to predict drought impacts in the Horn of Africa: the WFP 234 

HungerMap utilizes XGBoost regression-tree models74 to nowcast75 and forecast76 food 235 

insecurity. In socioeconomic models, interpretability is crucial to generate trust from decision 236 

makers. This has been commonly achieved through computing SHAP values77 after model 237 

training, for instance to discover drivers of displacement78. Now, causal machine learning is 238 

gaining traction with recent work leveraging causal inference methods79 to predict displacement 239 

in Somalia80, providing insights for humanitarian response and planning. Furthermore, symbolic 240 

regression is used to discover symbolic expressions directly from data, allowing for 241 

interpretatability81-84. Looking ahead, transformers, like the Perceiver-IO85 and 4M86 models, show 242 

promise in handling multiple modalities and long-range teleconnections. These models can 243 

combine diverse data, such as county-level agricultural data and high-resolution satellite imagery, 244 

for applications like crop yield prediction87. Transformers also demonstrate success in leveraging 245 

circulation-driven teleconnections to forecast global wildfire risk70, paving the way for improved 246 

EWS leveraging similar cross-boundary effects such as supply chains or streamflow. 247 

The impact of AI on communication and the last mile challenge in EWSs remains uncertain. While 248 

it becomes challenging to envision how AI could assist vulnerable communities struggling with 249 

basic needs, there are specific communication challenges where AI may excel. Adjusting 250 

warnings to the local context, providing interactivity, and doing so in native languages are areas 251 

where AI, especially ChatBots, could be beneficial. These large language models (LLMs) are now 252 

good at in-context learning88 meaning they can explain warnings in reasonable narratives and 253 

offer context-specific answers, as seen in flood disaster reporting89. Applying such models 254 

globally, especially in the global south with diverse languages, presents challenges 90. Yet, recent 255 

work on multilingual language models91,92 holds the potential to democratize EWS for historically 256 

under-served communities, facilitating easier communication of warnings in multiple languages 257 

at minimal cost. The next frontier lies in spoken language, where radio, identified by UN Global 258 

Pulse as a powerful tool for social listening93, can be leveraged by speech models supporting over 259 

1000+ languages94 as additional data, paving the way for user-centric EWS. 260 
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AI is not a silver bullet to solve all problems – rather the usage of AI comes with its own challenges. 261 

In particular supervised ML, which seems most promising for EWS, suffers from problems with 262 

biases. Most prominently, supervised AI methods are particularly strong if the testing scenario is 263 

as close as possible to the training data — that is if there is no distribution shift between training 264 

and testing data95. However, in Earth-related datasets there is a sampling bias towards certain 265 

time periods and locations96 and the climate extremes relevant for EWS are rare (though 266 

increasingly less so), hence distribution shifts are a common problem. Here, simulation97, climate 267 

analogues98, and space-for-time substitution99 may be useful to obtain additional data samples 268 

and dampen distribution shifts. Furthermore, the data sets seldom contain all relevant variables 269 

(omitted variable bias) and often have data impurities, be it low sensor precision for physical 270 

variables or privacy and representativity issues with socioeconomic data. The former can be 271 

approached with multifidelity models involving data uncertainty100, while the latter can be tackled 272 

through citizen science, that is involving volunteers in data collection, an approach that is 273 

successful in conservation ecology101 and humanitarian mapping102. 274 

 275 

Data-related challenges can sometimes be even further amplified by inductive biases in DNNs. 276 

Inductive biases are modeling assumptions (e.g. locality or recurrence) that are needed to make 277 

deep learning work103, but often cause unwanted side-effects. For instance most DNNs have a 278 

spectral bias — they prefer low-resolution features and omit high-frequency information104. This 279 

can lead to shortcut learning105: e.g. an image classification DNN may pick up non-causal 280 

features, such as using a green background to predict a cow, hence failing if a cow is in front of 281 

a blue background. Causal representation learning aims at building DNNs that are only using 282 

causal links in the data and thus capture the complex cause-and-effect relationships in the 283 

system106. While this area is still under active research, developing ML models and especially 284 

FMs for EWS should aim to observe causality. For instance, a causal model can evaluate the 285 

impact of interventions and thus understand the differences between the observed world and what 286 

might have occurred without humanitarian action. Additionally, causal modelsare interpretable by 287 

construction;, for example, a causal model for wildfires could disentangle complex driving 288 

relations beyond spurious correlations, and could reveal an increased wildfire danger if, in addition 289 

to high heat, there is also prolonged water stress and specific socioeconomic conditions. 290 

 291 

Moving towards FMs for EWS, an inherent property of generative models becomes a challenge: 292 

the generation of seemingly credible yet incorrect information termed hallucination107. In 293 
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particular, EWSs that process natural language are vulnerable to hallucinate. Recent large 294 

language models108,109 have tackled hallucination through scale and through Reinforcement 295 

Learning from Human Feedback (RLHF)110. The idea being larger data sets and expert knowledge 296 

can help improve correctness. Especially for a multimodal EWS FM, domain expertise ranging 297 

from meteorology, environmental sciences to sociology and politics is necessary to help refine 298 

the accuracy and relevance of generated information. Here, increasing the explainability of FMs 299 

by outputting intermediate results sequentially in a step-by-step manner is both necessary for 300 

validation and has been shown to decrease hallucination111,112. 301 

 302 

As it is, DNNs are frequently described as “black boxes”, due to their property of approximating 303 

an high-dimensional function that can not be easily interpreted by humans. This may hinder their 304 

applicability in policy where trust is necessary. Especially at the beginning of the deployment of 305 

an AI model, trust can be earned if the reasoning behind model predictions can be explained113. 306 

For instance, if one were to study the effects of different humanitarian interventions modeled with 307 

what-if scenarios, which requires considering both direct effects and feedbacks, it is hard to 308 

imagine high trust in the predictions, if underlying reasons are not understood. So far, most 309 

approaches to explainable AI focus on post-hoc explanations114 that are generated with a fully 310 

trained model. However, these models are not trained for generating faithful attributions, so it is 311 

not ensured that the post-hoc explanations are interpretable115. Hence, other ways of directly 312 

encoding interpretable parts into the model, for instance through hybrid modeling, may be more 313 

suitable116. An interesting approach here is building up agent-based modeling, where 314 

stakeholders are represented as independent agents interacting with each other. Each agent 315 

could be an AI, with learned behavior, allowing to model socio-economic systems directly from 316 

raw data117,118. 317 

 318 

On a more general note, and from a practical perspective, taking action is often hindered by 319 

political and administrative constraints, unrelated to scientific evidence and technological options. 320 

Furthermore, a lack of infrastructure and the prevalence of conflict in many of the most vulnerable 321 

areas limits the realized value of technological solutions. Even knowing these general limits, the 322 

range of opportunities for AI in EWSs is large. EWS need to be people-centric119, considering 323 

local context and ideally work for multiple different hazards. AI can help integrate multi-modal data 324 

streams, increase prediction capabilities, enable more targeted impact forecasts and help with 325 

the communication, which is particularly challenging, as it needs to consider the different 326 
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backgrounds of all users of an EWS. In order to succeed, involving stakeholders from many 327 

different disciplines, for example economists, social scientists, policy experts and psychologists, 328 

is probably a good starting point giving AI in EWS an edge over traditional approaches. 329 

 330 

4 Vision: Foundational EWS  331 

The early warning chain is a complex interconnected system with parts from different silos that 332 

build upon each other. Modern AI FMs may now offer the opportunity to overcome those silos and 333 

develop an integrated EWS. Such a system would be multi-hazard and multi-impact and span the 334 

whole warning chain including communication and decision making. In a first step, FMs that 335 

already exist (Meteorological FMs and Geospatial FMs), can be fine-tuned to improve individual 336 

pillars such as hazard or impact forecasting (Fig. 2). Second, they may be combined into Impact 337 

FMs, that can work with weather, geo-spatial and socioeconomic data to produce impact-338 

forecasts in an integrated way. Finally, Early Warning FMs interface the impact model with 339 

natural language, photos and videos, hence bridging all modalities involved in the warning chain 340 

and thus achieving a fully integrated MHEWS.  341 

 342 

Both Impact and Early Warning FMs need to work with multiple modalities. Initially, FMs were pre-343 

trained on large and diverse datasets of single modalities, and subsequently fine-tuned for various 344 

tasks. They demonstrate remarkable “zero-shot” generalization, often accurately predicting 345 

outcomes for tasks they were not explicitly trained for. Further, the representations learned by 346 

these models enable them to adapt to new tasks using a minimal amount of additional data, in a 347 

process called fine-tuning. A wide variety of models used in natural language 348 

processing108,109,120,121, computer vision122-124 and speech processing125 have provided empirical 349 

evidence for zero-shot generalization and fine-tuning across various data modalities. Recently, 350 

the pre-training approach has also seen success when combining multiple modalities126-129, 351 

resulting in large multi-modal models (LMMs) that exhibit rich joint performance over text, image 352 

and speech. This development signifies a step towards more holistic, integrated AI systems that 353 

can process and interpret diverse data types. Instead of bridging images, text and speech, LMMs 354 

for EWS (Early Warning FMs) primarily process time-series data and maps of diverse physical 355 

and socioeconomic variables, various sensors, many resolutions, alongside natural language and 356 

photos for interactivity. Techniques like feature-wise linear modulation130 and cross-attention73,131 357 

can be employed to fuse these modalities. Some of the geospatial FMs already use those 358 

methods to have first multi-modal capabilities72. 359 
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However, such a model system for Early warning will have to obey important characteristics listed 360 

in Box 1. The design which best fits those criteria will need to be researched in the coming years. 361 

Crucially, models should be capable of simulating what-if scenarios, providing foresight into 362 

potential outcomes and enabling proactive decision-making (e.g. what happens if a floodgate gets 363 

opened, or if a village is evacuated). To this end, in addition to merely representing statistical 364 

dependencies, the models should learn causal representations that support prediction under 365 

interventions and that have been argued to be more robust with respect to ubiquitous distribution 366 

shifts106. Causal representations structure problems in terms of mechanisms underlying the data-367 

generating process, and lend themselves well to building hybrid models or causal digital twins 368 

that combine components learned from data with other sources of knowledge, such as surrogate 369 

models or simulations132. This can be in conflict with the popular end-to-end learning, but it 370 

provides sequential “checkpoints” (e.g. prediction, then communication) which may additionally 371 

enhance model trust. Further considerations that may inform the design of those models is the 372 

level of explainability, transparency and recourse that they should provide. If decisions are taken 373 

by humans based on information provided by AI systems, it is crucial for a human to be able to 374 

understand the causes underlying a recommendation113.   375 

For the challenge of robustness, several training methodologies are promising. The "contrastive" 376 

learning technique is particularly prominent, aiming to harmonize data representations across 377 

varying modalities. It builds a latent space, where similar information is lumped closely together, 378 

irrespective of the underlying data modality, successfully integrating audio, images, text, and 379 

sensor data126-129. Alternatively, the latent space can also be build such that representations of 380 

complementary data inputs are predictive of each other, which enhances accuracy for uni-381 

modal133 and multi-modal134 models alike. In parallel with advancements in large language models 382 

108,121, reinforcement learning can be employed for further refinement. This process fine-tunes the 383 

pre-trained model through a rewards-based mechanism, focusing on the precision of its decisions 384 

and recommendations. In addition, this technique can be used to adapt the warning to the local 385 

cultural context and make it inclusive by thoughtful design under non-crises conditions, avoiding 386 

human biases readily occurring under stress135. Such a strategy is invaluable in crisis scenarios, 387 

leading to more effective and informed interventions.  388 

In addition, to fully realize the potential of AI systems in EWS, they should be context-specific and 389 

designed with user-friendly interfaces that can be readily deployed by front-line humanitarian 390 

workers with limited technical expertise. Ideally, such systems should be able to function as a 391 

contributing participant in crisis meetings, providing real-time data analysis, predictive modeling, 392 

and actionable insights to inform decision-making. Hence, the resulting system in its entirety 393 
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would comprise one or many FMs doing the heavy lifting, complemented with domain specific 394 

models and expertise for robustness, interpretability and intervention analysis and amended with 395 

text and image processing for user-centric communication, interactivity and active learning 396 

feedbacks (Fig. 3). 397 

 398 

However, one key limiting factor is the collection and management of training data for these 399 

models. Unlike for text or images, there are no large, harmonized datasets for multi-modal EWS. 400 

Instead, many different sources need to be combined. While some, such as ESA’s Sentinel 2 401 

satellite imagery136 or ECMWFs ERA5 meteorological reanalysis45 are large publicly available 402 

datasets in analysis-ready formats, others are not. An Impact FM will require gridded and tabular 403 

socio-economic data such as crop yield or hospitalizations, which are seldom standardized across 404 

administrative boundaries and also of much smaller quantity (Gigabytes instead of Petabytes). 405 

For Early Warning FMs, alongside standard text datasets, more specialized resources such as 406 

humanitarian reports or press articles, which are scattered across the internet and not always 407 

public, need to be collected. Hence, the multi-modal systems for EWS will largely rely on pre-408 

training with those large-scale datasets that do exist, and then careful addition of sparser data 409 

sources, e.g. using positional meta data or building upon natural language as a mediating 410 

modality. 411 

Validation and verification of EWSs for climate hazards pose important challenges. On the one 412 

hand, FMs present unique challenges in validation due to their unprecedented versatility. 413 

Traditional AI models in geoscience are often designed for specific tasks, such as predicting 414 

rainfall patterns or detecting signs of drought from satellite imagery. These models are validated 415 

against these specific use cases. However, FMs  are capable of performing a wide range of tasks, 416 

including those that might be specified by an end-user for the first time, like predicting the impact 417 

of an unforeseen climatic event. This broader scope makes it inherently more challenging to 418 

anticipate all potential failure modes. Developers and regulators will need to clearly communicate 419 

the tested use cases for which  FMs warning systems are validated and caution users against 420 

'off-label usage' that ventures into new, untested territories. The broad capabilities of such Early 421 

Warning FMs require regulatory foresight, necessitating adaptations in institutional and 422 

governmental policies, and may also influence insurance and liability frameworks. This complexity 423 

may require assessments by multidisciplinary teams including climatologists, meteorologists, 424 

environmental scientists, and other specialists, making the fact-checking process more 425 

challenging both during validation and post-deployment. On th eother hand, in order to facilitate 426 
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the verification of Early Warning FMs outputs, developers should ideally incorporate explainability 427 

techniques. For instance, outputs could include references or links to underlying data sources or 428 

scientific literature that support the model's predictions. This would allow experts to more 429 

efficiently verify the accuracy and reliability of Early Warning FMs predictions. Furthermore, it is 430 

crucial for Early Warning FMs to accurately express uncertainties in their predictions to prevent 431 

overconfident and potentially misleading statements. 432 

Last but not least, current early warning systems, which are based on impacts caused by concrete 433 

weather conditions in the next hours to weeks, should be complemented by decadal time-scale 434 

early warning systems. Developing a decadal time-scale EWS for climate and weather risks is 435 

essential due to the increasing variability and extremity of weather patterns caused by climate 436 

change. Decadal EWS should guide effective adaptation measure, more targeted than what can 437 

be inferred from general climate change metric and a general precautionary principle. This 438 

involves identifying vulnerable regions and sectors, planning infrastructure developments, and 439 

formulating policies that are resilient to long-term climatic changes. Effective communication 440 

strategies are needed to convey long-term risks and adaptations to governments, businesses, 441 

and communities, ensuring preparedness. Of course, reliable forecasts are a prerequisite, too. 442 

Hence, generally similar challenges as the ones mentioned above for short-term EWS need to be 443 

addressed, yet with an important addition: For this important challenge probabilistic forecasts are 444 

highly relevant. These forecasts present a range of possible outcomes with associated 445 

probabilities, offering a more nuanced understanding of long-term risks. In addition, there has 446 

been a trade-off between the spatial resolution of predictions and the time scale over which they 447 

are made – longer time scales typically meant broader, less detailed spatial predictions (Fig. 4). 448 

However, probabilistic AI may disrupt this norm, and generate high-resolution forecasts even for 449 

extended time scales. This can be possible, because AI can effectively model and account for the 450 

even aleatoric uncertainties inherent in long-term forecasts. This approach provides a more 451 

detailed and nuanced understanding of potential future scenarios, even at a granular spatial level. 452 

For instance, it can provide localized climate-risk assessments for specific regions or cities far 453 

into the future, something that was traditionally challenging due to the broad-brush approach 454 

required for long-term forecasts. In essence, probabilistic AI breaks the conventional link between 455 

spatial and temporal scales in forecasting, enabling more precise and detailed long-term 456 

predictions. This advancement is crucial for effective risk assessment and planning in the context 457 

of climate change and weather variability.  458 

 459 
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In summary, a multi-modal Early Warning FM holds promise for enhancing crisis response 460 

mechanisms. By processing and interpreting a diverse array of data types, these models can 461 

provide valuable insights and predictions in real time. To maximize their utility, it is essential to 462 

design Early Warning FMs with user-friendly interfaces that can be easily utilized by non-technical 463 

personnel. This would enable these systems to actively contribute to crisis meetings, offering real-464 

time data analysis, predictive modeling, and actionable insights. The ability to simulate potential 465 

scenarios further enriches their contribution, offering foresight into possible outcomes and aiding 466 

in proactive decision-making. Future research should focus on the practical implementation of 467 

these models in real-world EWSs, including the development of robust evaluation metrics, and 468 

potentially benchmark tasks and simulations to assess their performance and impact. Overcoming 469 

challenges related to acquisition and management of high-quality training data will be critical to 470 

realize the potential of EWS FMs. 471 

 472 

5 Further outlook  473 

The future of Early Warning Systems (EWSs) lies in their ability to incorporate the response, the 474 

societal feedback, as well asconsidering long-term systemic impacts as risk factors beyond the 475 

classical hazard-exposure-vulnerability paradigm38. Traditional EWSs often focus on immediate 476 

responses to crises, but there is a growing recognition of the need for systems that can predict 477 

and mitigate long-term consequences, especially those that might result in misguided or 478 

counterproductive responses. 479 

 480 

We foresee at least five important aspects that can help addressing this future challenge: 481 

1. Agent-based approaches: This involves simulating the actions and interactions of 482 

autonomous agents (individuals, groups, or entities) to assess their effects on the system 483 

as a whole. By modeling how different agents in society might respond to warnings and 484 

crises, EWSs can predict and plan for a range of human behaviors and their potential 485 

impacts over time. This can help in understanding complex social dynamics and in 486 

designing more effective warning messages and interventions. 487 

2. ML-Based inverse inference: Inverse ML modeling focuses on deducing the underlying 488 

causes, states or parameters from observed effects. Applied to EWSs, inverse modeling 489 

can help understand why certain crisis situations evolve as they do by analyzing the 490 

outcomes and working backward to identify the initial conditions or decisions that led to 491 
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them (avoiding assumptions like rational behavior). This can be crucial in identifying long-492 

term trends and systemic risks that might not be apparent from direct observation. 493 

3. Gamification and the data deluge:: Gamification involves using game-design elements in 494 

non-game contexts to engage people and encourage participation. In the context of 495 

EWSs, gamification can be used to gather data from the public, such as through apps that 496 

turn data collection into a game-like experience, e.g. with examples from previous 497 

disasters. In addition, the interactive EWS-FM chatbot can be used to gather a wealth of 498 

important, representative and high-quality data. This can lead to more comprehensive and 499 

real-time data collection, providing a richer dataset for predicting long-term effects and 500 

societal responses to warnings. 501 

4. Integration into policy for long duration warnings: Integrating EWSs with policy-making 502 

processes for long-term planning is crucial. EWS should not only be about immediate 503 

alerts but also about providing data and insights that can guide long-term policy decisions 504 

and planning. This means developing systems that can offer insights into how different 505 

policy decisions might play out over extended periods, helping policymakers to understand 506 

the potential long-term impacts of their decisions and plan accordingly. 507 

5. Towards collaborative efforts: Enhancing EWS requires global and interdisciplinary efforts 508 

among technical, domain knowledge, and community experts for understanding and 509 

validating the complex dynamics triggering displacement. Cooperation between national 510 

and international organizations, funding entities, and sectors like development and 511 

humanitarianism is vital for data collection, preservation, and innovative data-driven 512 

approaches. Encouraging collaboration among donors, humanitarian organizations, and 513 

academia can further transparency in cataloging predictive models, contributing to 514 

improved preparedness and response to hazards. 515 

6 Conclusion  516 

Integrated AI will lead to paradigm shifts in EWS. First, AI, especially Meteorological FMs, are 517 

already revolutionizing weather and hazard forecasts, leading to enormous improvements in lead 518 

times and resolution of warnings before disaster strikes. Second, multi-modal AI, materialized 519 

through Impact FMs, can leverage geospatial and socio-economic data to assess vulnerabilities 520 

and tear down previously existing silos impeding effective impact-based warnings. Third, multi-521 

hazard EWS, soon being implemented across the globe for the UN EarlyWarningsForAll initiative, 522 

should not miss the opportunities of multi-modal AI, circumventing the rigidity of existing systems, 523 

and incorporating the whole early warning chain, including communication, into an Early Warning 524 
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FM that allows users a ChatBot-like interactive experience with warnings. Finally, causal machine 525 

learning, once mature, will enable interpretable analysis of the Early Warning FM and lead to 526 

more effective decision making, as the effects of interventions can be predicted through What-If 527 

scenarios. The success of AI in EWS crucially depends on the availability and quality of training 528 

data and the careful development of responsible, accountable and trustworthy AI methods. These 529 

are too important aspects to be left solely to the private sector, but instead should be co-developed 530 

by humanitarians and AI experts in public institutions. Only this way, using AI will democratize the 531 

access to EWS and improve the livelihoods of all people, irrespective of their backgrounds. 532 
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Box: Essential Criteria for AI systems in effective early warning systems 

1) Accuracy and Timeliness:  

Scientific Challenge: Developing AI algorithms that can accurately and quickly detect 

and predict multiple hazards, considering their complex and evolving nature. Aspects 

of data latency (real-time) are similar as for classical EWS (and addressed in observation 

and analysis systems) 

2) Scalability and Integration:  

Scientific Challenge: Designing AI systems that can efficiently handle the large volume 

of data from diverse sources and integrate seamlessly with existing data-acquisition 

and communication networks. The multi-modal Early Warning FM approach (Fig. 2) is 

poised to address this. In addition, federated learning is emerging as a powerful 

technique for training models in decentralized environments with non-iid data, such as 

Earth system science datasets. It addresses challenges of bandwidth, cost, and data 

privacy by enabling collaborative model training while keeping data decentralized, 

offering advantages for handling heterogeneous data, optimizing non-iid data, and 

accommodating diverse environments. Consider the scalability of AI to provide 

warnings to regions or event individual needs.  

3) Adaptability, Reliability, and Robustness:  

Scientific Challenge: Building AI models and systems that can adapt to changing 

conditions, while ensuring reliability and robustness in the face of technical failures, 

network disruptions, or adverse environmental conditions. Developing algorithms that 

can dynamically update models based on new data and continuously learn from 

evolving hazards and human response patterns. Few-shot learning capabilities of FMs 

via in-context learning without re-training offer promise. Implementing redundancy 

and backup mechanisms, along with fault-tolerant architectures, can enhance system 

reliability and robustness. Additionally, exploring anomaly detection and anomaly 

response techniques can help identify and address system failures or abnormal 

behavior. As a back up, it would be vital to also explore what would happen if 

technology fails and automated actions do not trigger as expected (accommodating 

failure). Unprecedented versatility of EWS-FM present unique challenges for 

validation. 

4) Transparency, Explainability, and Ethical Considerations:  

Scientific Challenge: Developing AI models and algorithms that are transparent, 

explainable, and avoid biases in decision-making processes, ensuring ethical and fair 

early warning systems (human-value-based AI). Employing explainable AI techniques, 

such as rule-based systems or interpretable machine-learning models, to make the 

decision-making process more transparent and understandable. Incorporating fairness 

metrics and conducting regular audits can help identify and mitigate biases in the data, 

algorithms, and decision outputs. Developing systems that account for inclusiveness, 

and for those that have little data (asylums, migrants, persecuted etc.). Leveraging 

EWS-FMs ability to present complex climate impact data in accessible formats. 

5) User-Centric Design and Accessibility:  
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Scientific Challenge: Designing AI-based early warning systems that are user-friendly 

and accessible to all individuals subject to Early Warning, including those with diverse 

language preferences, disabilities, and educational and  socio-economic backgrounds. 

Applying user-centered design principles and conducting user studies to understand 

the needs, capabilities, and limitations of different user groups. Developing multi-

modal interfaces that cater to diverse communication channels, such as visual, 

auditory, or tactile, can enhance accessibility. Additionally, leveraging natural 

language processing techniques to support multiple languages and incorporating 

assistive technologies can improve inclusivity. 

6) Stakeholder Collaboration and Post-Event Analysis:  

Scientific Challenge: Facilitating effective collaboration among stakeholders and 

conducting comprehensive post-event analysis to understand the long-term 

consequences of hazards. Employing data analytics and visualization techniques to 

analyze post-event data, including damage assessments, recovery needs, and socio-

economic impacts. Implementing collaborative platforms and information-sharing 

mechanisms can enhance stakeholder engagement and knowledge exchange. 

Additionally, conducting interdisciplinary research and co-producing with social 

scientists, economists, and urban planners to provide holistic insights for post-event 

analysis and future mitigation strategies. 
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Table 1: Overview of early warning short-comings for past events and how AI could help to address the short-comings in the future.  1 

 2 

 EUROPEAN FLOODS 2022137-139 HORN OF AFRICA DROUGHT 2016-2017 AND 2019FF MIDWEST HEAT-FIRE-SMOKE DISASTER 2023  
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o July 2021 heavy rainfall in Germany, Belgium, 
France and UK 140 

o Flash floods afterwards 141 

o Biggest impact in small river Ahr: 196 dead 

o Five failed rainfall seasons 2019-2023 

o Devastating multi-year drought in Somalia, Ethiopia and 
Kenya 

o Over 36 Mio people affected (__REF__ 
https://reliefweb.int/report/ethiopia/horn-africa-drought-
regional-humanitarian-overview-call-action-revised-24-
august-2022 ) 

 

o Very warm and dry spring 
o Wildfires in Canada 142 
o June 2023 smoke travels to midwest: record-
shattering airpolution in NYC143 
o Large impacts on Health144 
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o EFAS european flood alerts were send out145 

o Warning chain included neighboring counties 
and the media 

o FEWSNet food security classification forecast based on 
ENSO forecasts 

o SPI forecasts from ICPAC & VCI forecasts from RCMRD 

o Anticipatory action based on those triggers + vulnerability 
data, e.g. by Kenya Red Cross on County level 

o Airnow.gov airquality forecast for 2 days in advance 
o Communication to public very late 
o Measures taken were canceling of public events etc. 
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Shortcomings: 

River Gauges were damaged by the high water 
levels 
Weather forecast was already quite good 2 
days in advance, not the main limiting factor 
 

Role of AI and challenges: 

Global Meteorological FM offer orders of 
magnitude higher speed allowing larger 
ensembles and thus better probabilistic 
estimates.  

Meteorological FM radar map forecasts are 
better at heavy rainfall events than weather 
models14  

Video gauges (not in contact with the water) AI 
calibrated to predict water levels and flows may 
be more robust (minor point), but calibration 
needed 

Shortcomings: 

Lack of hydrometeorological stations in parts of the area (e.g. 
Somalia) => insufficient precipitation data 
Biases in spatialized precipitation estimates (fusing station 
and satellite data) 
Lack of food insecurity data, i.e. vulnerability 
Because of longer lead times and the superposition of 
teleconnections (ENSO, IOD) forecasts are uncertain 
Local-scale forecasts for districts or villages a major 
challenge 
confidence levels are stated as one of the reasons the early 
decision making was delayed [23]. 
Because of inherent uncertainties, acting on seasonal 
forecasts is currently estimated to take up to a decade before 
a FbF system would generate value (due to false alarm cost 
etc)12 
 

Role of AI and challenges: 

Geospatial foundation models  may lead to better interpolation 
and fusion of satellite and station data by maximising data 
input and via generalization and transfer from other areas. 
This may include new anti-causal learning approaches. For 
instance, precipitation can be inferred anti-causally from soil 
moisture observation. 
Similarly, Martini et al.75 showed that vulnerability can be 
estimated from proxy data, using a global machine learning-

Shortcomings: 

Citizen science, especially cell phone data, is 
challenging to use in existing EWS. 
Weather forecast necessary for circulation, but 
ultimately it is the transport of smoke, that is relevant 
for air quality. Thus need integration of weather 
forecast with fire forecast for air quality forecasting. 
 

Role of AI and challenges: 

AI-based methods to integrate sparse and low quality 
sensor data, e.g. human mobility patterns to estimate 
health effects. 
AI-based airquality forecasts can leverage 
teleconnections —> longer lead times 
Meteorological FMs may be extended to include 
Chemical Transport Modeling, which offers order of 
magnitude speed ups in simulation of the dynamics of 
wildfire smoke.  
 

 
 

https://reliefweb.int/report/ethiopia/horn-africa-drought-regional-humanitarian-overview-call-action-revised-24-august-2022
https://reliefweb.int/report/ethiopia/horn-africa-drought-regional-humanitarian-overview-call-action-revised-24-august-2022
https://reliefweb.int/report/ethiopia/horn-africa-drought-regional-humanitarian-overview-call-action-revised-24-august-2022
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based model trained on primary data outside the area of 
consideration. 

Meteorological FMs may be extended towards both, seasonal 
forecast and local downscaling – research needed on both 
teleconnections and hyperlocal influence of soils and 
vegetation. 
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Shortcomings: 

Flood levels were not precisely and locally 
enough predicted, because of insufficient 
resolution and negligence of debris flow and 
morpho-dynamic processes. 
Impact forecast non-existent 
Detailed forecasts for smaller river basins were 
missing 
 

Role of AI and challenges: 

Machine learning–accelerated computational 
fluid dynamics146 can overcome computational 
limitations of hydro-morpho-dynamic modelling.  

AI-based stream flow forecasts to capture local 
circumstances and debris flow & scale to 
ungauged basins 

AI guided forensic analysis of exposure and 
vulnerability using multi-modal approaches, 
local fine-tuning of geospatial foundation 
models. 

Limitations include knowledge of high-
resolution morphology including bottlenecks 
such as bridges or channels and stochasticity 
of debris flow, and societal data for vulnerability 
assessment. Space-for-time generalization 
acceptable? 

Shortcomings: 

Current EWS are centered on weather only focus on single 
variables, e.g. rainfall, not compound or cascading events 
relatively coarse-grained information, struggling in low-
information and high-risk areas like pastoralist regions during 
2016 drought, timing of onset biased 
Impacts such as vegetation or crop conditions not explicitly 
addressed, often based on simple hazard thresholds, not 
accounting for ecological and socio-economic conditions 
Need for holistic multi-hazard approach, including complex 
cascading effects (drought, fire, flood, locust outbreaks) 
 
Role of AI and challenges: 

Localized impact forecasts help increase the efficiency of 
existing funding. Directly leveraging high resolution Earth 
observation to map impacts on vegetation and harvests 
conceivable, e.g. with the EarthNet models147. Text 
information successfully used as additional feature to predict 
food crises148 including socio-economic conditions. 

Language Foundation Models work without a notion of 
“scale”. For Hazard & Impact forecasting need to integrate 
data across many scales. Multi-modal transformer models like 
Perceiver IO15 hint at one possible avenue, but range of 
scales treated there is limited compared to scales in Disaster 
Early Warning chain. 

Impact foundation models can improve prediction skills by 
integrating, weather, land surface and socio-economic 
variables 

Shortcomings: 

Wildfire forecasts need to take into account memory 
effects, such as a previously very dry season, for fuel 
estimation. 
Airquality forecasts suffer from a lack of integration of 
teleconnections. There was room for predictability 
from the wildfire season in Canada, which was not 
leveraged in the midwest, as airquality warnings had 
only been issued 2 days in advance. 
PM2.5 values are still quite abstract for decision 
makers and the general public, hence could go one 
step further and make impact forecasts on health and 
economics. 
 

Role of AI and challenges: 

Wildfire modeling with recurrent neural networks and 
transformers to account for long-range memory effects 
Transformers for leveraging teleconnections, such as 
the circulation-driven pattern 
Impact foundation model for integrating weather -> 
socio-economic -> health 
But: This requires branching across Silos 
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Shortcomings: 

Warnings were issued 1-2 days in advance, 
but with numbers (mm of rain, flood levels), 
which are not always effective with respect to 
making timely decisions13 
 

Role of AI and challenges: 

Conditioned on flood levels and digital elevation 
models, expected inundation areas and 
expected damages can be visualized with 
(generative) AI based maps and photo-realistic 

Shortcomings: 

Issues with respect to interpretation of warning levels 
regarding the food security situation because of their abstract 
and coarse nature, resulting in disagreements over the 
appropriate response and course of action, and even leading 
to delays in funding and disengagement of some donors 
Status-quo bias in decision making with a tendency to resist 
action 
Lack of accessibility and transparency in early warning 
reports, mainly available in English rather than local 
languages, using complex scientific jargon, and neglecting 
information sharing with drought-affected communities, 

Shortcomings: 

Silo thinking lead to communication of warning very 
late, and to top down decisions such as last minute 
closing of events. 
Health impacts are often related to insufficient 
protection of vulnerable people, which could be 
improved by better communication. 
 

Role of AI and challenges: 

Early warning foundation model for communication to 
local decision makers, event organizers etc. 
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representations. In addition, generation of 
language based (written or audio for visually 
impaired) warnings are indicated. ChatBot for 
interactivity in these communications. 

Situation room: Early warning foundation model 
to enable local decisionmakers to have detailed 
access to relevant knowledge 

 

limited their usefulness in helping vulnerable populations take 
necessary precautions 
Quantifying the impact of the interventions missing 
Identification of the root causes of vulnerability 
Insufficient finance, especially 2021-2023 
Whole region is considered “high alert”, but lack of granularity 
Role of AI and challenges: 

AI based forecasts of impacts (see above) allow more 
tangible, interpretable and fine-grained forecasts of food 
insecurity (and related issues like WASH or migration). 

Causal analysis allows for estimating effectively measure 
cause-effect estimations and thresholds of impacts the effect 
of interventions (more research needed). 

Causal representation learning to discover causal pathways 
and enable what-if modeling for planning & evaluation of 
anticipatory action 

AI can assist in optimizing the dissemination of warnings 
based on factors like geographical location, population 
density, and vulnerability indices, ensuring that the right 
information reaches the right people at the right time. 

Large-language models may efficiently translate warnings to 
natural language including local languages and inclusivity. 

Early warning foundation models for informing front-line 
humanitarian workers in their local language —> enabling 
interactivity + democratization 

Longer-term AI-based risk assessments (decadal 
early warning) to understand the distribution of heat-
fire-smoke events in the future and enable adaptation, 
especially through better infrastructure and education 
 

 1 

 2 
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Figures and tables 1 
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 3 

Fig. 1: Early-warning chain from observation to decision. “All six bridges of death” (pers. comm. Brian Golding, HiWeather) have 4 

to be crossed for an effective early warning. Figure modified after ref 16 5 

  6 
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Fig. 2: From domain specific to cross-domain foundation models for early warning. While 

an Impact FM (c) integrates Meteorological FM (a) and Geospatial FM (b) elements, an effective 

Early Warning FM (d) needs to integrate unstructured human information in addition and needs 

to be integrated with a causal inference approach. 

 2 

 3 

  4 
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Fig. 3: Integrative, AI-enabled strategy for Early Warning of complex climate risks including an interactive component. The 

Early Warning FM leads to improved causal and data informed risk anticipation, followed by AI-based communication. Anticipating 

disaster Response as a risk factor38 should be addressed via Agent-based modelling embracing AI for parameter estimations. 

Information from the user-interaction should feed back to the model improvement. 
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Fig. 4: Spatial and temporal scales to be addressed with Early Warning systems. Probabilistic models can “escape” the typical 19 

correlation of temporal and spatial scale and can make and communicate more local probabilistic risk assessments also at long time-20 

scales. However, this also poses new challenges for robustness, explainability and communication. 21 


