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ABSTRACT: Reanalysis datasets show wintertime storminess in the Southern Hemisphere (SH)

has significantly increased since 1979. Previous work reported a reanalysis-model discrepancy

whereby coupled and prescribed sea surface temperature (SST) models in CMIP6 were unable

to reproduce the trend. Here we revisit the reanalysis-model trend discrepancy in SH winter

storminess focusing on the impact of observational uncertainty, model ensemble size, a like-for-like

comparison, and mechanisms underlying the discrepancy. A large spread is found across available

reanalyses indicating observational uncertainty. When the storminess trends in reanalysis and

model datasets are quantified on the same time and spatial grids, the reanalysis trends decrease, and

a discrepancy between reanalyses and prescribed SST models is unlikely. However, a discrepancy

between reanalyses and coupled models is still likely, particularly in the South Pacific. We

test the importance of SST trend discrepancies in coupled models using Southern Ocean and

tropical Pacific pacemaker simulations. Under Southern Ocean pacemaking, a zonal-mean trend

discrepancy between reanalyses and coupled models is unlikely and the improvement is due to

the coupled models capturing surface energy flux trends. However, a discrepancy is still likely

in the South Pacific. Under tropical Pacific pacemaking, a trend discrepancy between reanalyses

and coupled models in the South Pacific is unlikely due to the coupled models capturing the La

Nina-like teleconnection trend. Our results show that reanalysis-model trend comparisons should

involve all reanalysis and model datasets and like-for-like calculations. Furthermore, regional SST

trend discrepancies can lead to non-local reanalysis-model circulation trend discrepancies.
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1. Introduction30

The extratropical circulation in the Southern Hemisphere (SH) is characterized by a strong storm31

track related to tracks of cyclones and anticyclones (Hoskins and Hodges 2005; Shaw et al. 2016).32

The intensity of the storm track, hereafter the storminess, is tightly connected to surface weather33

in the SH (Pfahl and Wernli 2012; Pepler 2020), and understanding how storminess will change34

in the future is important (Shaw et al. 2016). Climate models project that the SH storm track will35

intensify by the end of the 21st century under climate change, (O’Gorman 2010; Chang et al. 2012;36

Shaw et al. 2016, 2018), bringing increased precipitation (Yettella and Kay 2017) and stronger37

surface winds (Chang 2017).38

Recent work has shown that SH storminess has increased significantly in the satellite era in the39

reanalysis data from 1979 to present (Chemke et al. 2022; Shaw et al. 2022). However, the trends in40

reanalysis data were 2–3 times larger than the multi-model mean trends from models participating41

in the Coupled Model Intercomparison Project Phase 5 and Phase 6 (CMIP5 and CMIP6; Taylor42

et al. 2012; Eyring et al. 2016). Thus, recent work concluded that climate models significantly43

underestimate the storminess trend in the reanalysis datasets during the observed period. This44

reanalysis-model trend discrepancy in the SH winter storm track calls into question the ability of45

climate models to predict future weather in the SH.46

A discrepancy between the climate model and observed trends can have multiple causes that47

can be categorized into three factors (Schmidt 2013): (I) The observations are in error, (II) The48

observation-model comparison is flawed, (III) The models are deficient.49

For (I), the trends can differ substantially across observational datasets (Deser et al. 2010) and50

lead to observational uncertainty. The use of up-to-date observational data can be important in51

reconciling observation-model trend discrepancies (Santer et al. 2008; Grise et al. 2019). For52

storminess, the observed trend is quantified using reanalysis datasets, which involve uncertainties53

arising from data assimilation techniques, physical parameterizations, and evolution of observa-54

tional systems (Bengtsson et al. 2004; Fujiwara et al. 2017). The reanalysis uncertainty can be55

particularly important in the SH where ground-based observations are limited and thus reanalysis56

trends can exhibit considerable spread (Guo and Chang 2008; Guo et al. 2009; Martineau et al.57

2024). To account for this, previous work quantified trends across multiple reanalyses (Manney58

and Hegglin 2018; Grise et al. 2019; Dong et al. 2022a; Martineau et al. 2024).59
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For (II), there are two important aspects to consider. First, reanalysis trends involve a single60

realization of internal variability whereas model simulations reflect a distribution of realizations.61

Thus, it is important to properly sample the internal variability by using a large number of model62

simulations (Deser et al. 2020; Jain et al. 2023). Second, a like-for-like comparison whereby the63

observations and climate models are compared with the same temporal and spatial sampling has64

been important for reconciling previous discrepancies (Po-Chedley et al. 2015; Santer et al. 2017).65

A like-for-like comparison is especially important for storm tracks, which sample specific time66

and spatial scales (Chang et al. 2002). Finally, it is important to note that there is currently no67

agreed-upon method for comparing observed and modeled trends. Previous work, for example,68

used a rank metric (Suarez-Gutierrez et al. 2021) or similarly evaluated the percentile of reanalysis69

trend in the model trend distribution (Grise et al. 2019).70

For (III), the models can be deficient in either the forced response or the internal variability71

because they are incapable of simulating the physical mechanism responsible for the observed72

trend. For example, CMIP6 models fail to simulate recent sea surface temperature (SST) trends in73

the tropical Pacific and Southern Ocean (Wills et al. 2022; Lee et al. 2022; Seager et al. 2022; Kang74

et al. 2023a). The tropical SST trends in CMIP6 models are characterized by an El Nino-like trend75

in the tropical Pacific, as opposed to a La Nina-like trend in the observations (Seager et al. 2022;76

Wills et al. 2022; Lee et al. 2022). The observed cooling trend in the Southern Ocean is also not77

well captured by the CMIP6 models (Wills et al. 2022) and it has been suggested that this is also78

related to the SST trend difference in the tropical Pacific (Dong et al. 2022b; Kang et al. 2023a).79

Previous work concluded that coupled models exhibit a systematic bias in the representation of80

SST trends and that differences between observed and modeled trends are very unlikely to occur81

due to internal variability (Wills et al. 2022). Many mechanisms have been proposed to explain the82

observation-model SST trend discrepancy (Lee et al. 2022; Seager et al. 2022), and it is not fully83

understood how these SST trend discrepancies impact the storminess trend during the SH winter.84

The impact of the SST trend discrepancy on storminess trends has not been quantified and should85

be investigated further given that SST trends are related to other large-scale circulation trends in86

the SH (Purich et al. 2016; Wills et al. 2022; Cox et al. 2024).87

Here we revisit the reanalysis-model discrepancy in the Southern Hemisphere winter storm track88

trends and examine the impact of (I)–(III). We begin by outlining the data and methods in section 2.89
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For (I), we quantify the impact of doubling the number of reanalysis datasets compared to previous90

work in section 3. For (II), we quantify the impact of expanding model ensemble size and like-for-91

like comparison in section 3. For (III), we quantify the impact of the SST trend discrepancy on92

storm track trends, including the mechanisms connecting them, using the pacemaker simulations93

in section 4. We provide summary and discussions in section 5.94

2. Data and Methods95

a. Methods96

We quantify storminess in the SH winter (June–August) using vertically integrated eddy kinetic97

energy (hereafter EKE), which is defined as98

𝐸𝐾𝐸 =
1
𝑔

∫ 𝑝𝑠

𝑝𝑡

𝑢′2 + 𝑣′2𝑑𝑝, (1)

where 𝑔 is the gravitational acceleration, 𝑝𝑠 is the surface pressure, 𝑝𝑡 is the pressure at the highest99

vertical level (Table 1), and 𝑢 and 𝑣 are zonal and meridional winds, respectively. Here, the100

primes denote 2.5–6 day bandpass-filtered anomalies. To produce the bandpass-filtered anomalies,101

timeseries of 𝑢 and 𝑣 with 92 days of SH winter padded with 10 days at both ends are first created.102

This equals 112 and 448 data points for daily and six-hourly data, respectively. We then apply103

a first-order Butterworth filter to the time series to obtain 2.5–6 day bandpass-filtered anomalies.104

We use 𝑝𝑠 data that has the same time frequency as 𝑢 and 𝑣 for most datasets, but monthly-mean105

𝑝𝑠 when high-frequency data is not available.106

After quantifying storminess each year, the long-term trends are calculated using the least-squares107

linear regression. The statistical significance of the trend is evaluated as the 95% confidence level108

using a two-sided t-test.109

b. Reanalysis datasets110

Storminess trends are quantified in six reanalysis datasets (observation-based products) that span111

the time period from 1979 to 2018: NCEP2 (Kanamitsu et al. 2002), ERA-Interim (Dee et al.112

2011), JRA-55 (Kobayashi et al. 2015), CFSR/CFSv2 (Saha et al. 2010, 2014), MERRA2 (Gelaro113

et al. 2017) and ERA5 (Hersbach et al. 2020). Only the first three reanalysis products were used114
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in Chemke et al. (2022). We focus on the 40-year time period following previous work. We115

use six-hourly instantaneous variables, which is the highest frequency common to all reanalysis116

datasets, although ERA5 and MERRA2 data are available at higher frequency. The CFSR trend117

is obtained by merging CFSR (1979–2010) and CFSv2 (2011–2018) datasets. MERRA2 starts in118

1980, so its trends are calculated from 1980.119

c. CMIP6 and AMIP6 simulations120

Storminess trends are quantified in 26 CMIP6 model simulations (Eyring et al. 2016) using125

the historical (1979 to 2014) and SSP5-8.5 (2015 to 2018) scenarios (Table 1). We use the126

SSP5-8.5 scenario following previous work (Chemke et al. 2022). Scenario uncertainty is a small127

contributor since the scenarios begin in 2015. In addition, we quantify storminess in 32 AMIP6128

model simulations (Table 1) with observed SSTs prescribed from 1979 to 2014. We refer to the129

CMIP6 and AMIP6 model simulations as multi-model ensembles. The difference between the130

CMIP6 and AMIP6 multi-model ensembles quantifies the impact of discrepancies in SST trends131

in the CMIP6 models (Lee et al. 2022; Seager et al. 2022) on storminess trends. We quantify the132

statistical significance of the difference between trend distributions in the multi-model ensembles133

using the Mann-Whitney U test (hereafter MW test; Mann and Whitney 1947) at the 95% level134

(𝑝-value < 0.05), which is a non-parametric statistical test. The number of models used in each135

ensemble is based on the availability of daily-mean zonal and meridional wind data on pressure136

levels. We use the ‘r1i1p1f1’ ensemble member for all models to equally weight the structural137

uncertainty across different models.138

d. Like-for-like comparison139

For reanalyses, CMIP6, and AMIP6 models, we calculate the EKE on the unprocessed spatial140

and time grids similar to previous work (Chemke et al. 2022). The unprocessed time grid refers141

to daily-mean for the models and six-hourly instantaneous for the reanalysis. The unprocessed142

spatial grid refers to different horizontal and vertical grids listed in Table 1. We also perform a143

like-for-like comparison. This is needed because the time frequency and spatial grids (Table 1)144

are very different across the different datasets. In order to perform a like-for-like comparison, we145

time-average six-hourly reanalysis 𝑢 and 𝑣 data into daily-mean. Next, we linearly interpolate both146
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Table 1. Summary of unprocessed time frequency and spatial grids of the datasets used in the study. For

datasets with unevenly spaced horizontal grids, the horizontal resolution represents an average grid spacing in

the longitude and latitude directions. The models that are only included in the CMIP6 and AMIP6 multi model

ensemble are superscripted in 𝑐 or 𝑎, respectively.

121

122

123

124

Dataset Time frequency Number of pressure levels (𝑝𝑡 ) Horizontal resolution
[longitude×latitude]

Reanalysis
ERA-Interim Six-hourly 37 (1 hPa) 1.5o × 1.5o

JRA-55 Six-hourly 37 (1 hPa) 1.25o × 1.25o

NCEP2 Six-hourly 17 (10 hPa) 2.5o × 2.5o

MERRA2 Six-hourly 42 (0.1 hPa) 0.625o × 0.5o

ERA5 Six-hourly 37 (1 hPa) 0.25o × 0.25o

CFSR/CFSv2 Six-hourly 37 (1 hPa) 0.5o × 0.5o

CMIP6 and AMIP6 models
ACCESS-CM2 Daily-mean 8 (10 hPa) 1.875o × 1.25o

ACCESS-ESM1-5 Daily-mean 8 (10 hPa) 1.875o × 1.25o

BCC-CSM2-MR Daily-mean 8 (10 hPa) 1.125o × 1.125o

CAMS-CSM1-0𝑎 Daily-mean 8 (10 hPa) 1.125o × 1.125o

CESM2𝑎 Daily-mean 8 (10 hPa) 1.25o × 0.938o

CESM2-FV2𝑎 Daily-mean 8 (10 hPa) 2.5o × 1.875o

CESM2-WACCM Daily-mean 8 (10 hPa) 1.25o × 0.938o

CESM2-WACCM-FV2𝑎 Daily-mean 8 (10 hPa) 2.5o × 1.875o

CMCC-CM2-HR4𝑎 Daily-mean 8 (10 hPa) 1.25o × 0.938o

CMCC-CM2-SR5 Daily-mean 8 (10 hPa) 1.25o × 0.938o

CMCC-ESM2𝑐 Daily-mean 8 (10 hPa) 1.25o × 0.938o

CanESM5 Daily-mean 8 (10 hPa) 2.812o × 2.812o

EC-Earth3 Daily-mean 8 (10 hPa) 0.703o × 0.703o

EC-Earth3-CC Daily-mean 8 (10 hPa) 0.703o × 0.703o

EC-Earth3-AerChem𝑎 Daily-mean 8 (10 hPa) 0.703o × 0.703o

EC-Earth3-Veg Daily-mean 8 (10 hPa) 0.703o × 0.703o

EC-Earth3-Veg-LR Daily-mean 8 (10 hPa) 1.125o × 1.125o

FGOALS-f3-L𝑎 Daily-mean 8 (10 hPa) 1.25o × 1.0o

FGOALS-g3 Daily-mean 8 (10 hPa) 2.0o × 2.25o

GFDL-CM4 Daily-mean 8 (10 hPa) 2.5o × 2.0o

IITM-ESM Daily-mean 8 (10 hPa) 1.875o × 1.915o

INM-CM4-8 Daily-mean 8 (10 hPa) 2.0o × 1.5o

INM-CM5-0 Daily-mean 8 (10 hPa) 2.0o × 1.5o

IPSL-CM6A-LR Daily-mean 8 (10 hPa) 2.5o × 1.268o

KACE-1-0-G𝑐 Daily-mean 8 (10 hPa) 1.875o × 1.25o

MIROC6 Daily-mean 8 (10 hPa) 1.406o × 1.406o

MPI-ESM-1-2-HAM𝑎 Daily-mean 8 (10 hPa) 1.875o × 1.875o

MPI-ESM1-2-HR Daily-mean 8 (10 hPa) 0.938o × 0.938o

MPI-ESM1-2-LR Daily-mean 8 (10 hPa) 1.875o × 1.875o

MRI-ESM2-0 Daily-mean 8 (10 hPa) 1.125o × 1.125o

NESM3 Daily-mean 8 (10 hPa) 1.875o × 1.875o

NorESM2-LM Daily-mean 8 (10 hPa) 2.5o × 1.875o

NorESM2-MM𝑐 Daily-mean 8 (10 hPa) 1.25o × 0.938o

SAM0-UNICON𝑎 Daily-mean 8 (10 hPa) 1.25o × 0.938o

TaiESM1 Daily-mean 8 (10 hPa) 1.25o × 0.938o
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reanalysis and climate model data onto a common 1.5o×1.5o grid. Then, vertical integration is147

performed over 8 pressure levels (1000, 850, 700, 500, 250, 100, 50, and 10 hPa), which are the148

standard model output levels for CMIP6 daily data. Note that for reanalysis data, we subsample149

the vertical grid by extracting the 8 CMIP6 pressure levels.150

e. CESM2 large ensemble and pacemaker simulations151

In order to quantify the impact of internal variability on the SH winter storminess trend dis-152

crepancy, we use the Community Earth System Model version 2 Large Ensemble (CESM2-LE)153

simulations (Danabasoglu et al. 2020; Rodgers et al. 2021). The CESM2-LE simulations are an154

initial condition ensemble with a nominal 1-degree spatial resolution in both atmosphere and ocean.155

We use the first 50 simulations from this ensemble that are forced with historical radiative forcing156

and standard biomass burning from 1850 to 2014 consistent with CMIP6 simulations. The SST157

trends in the CESM2-LE simulations during this period fail to capture the observed SST trends in158

the tropical Pacific and Southern Ocean (Wills et al. 2022; Kang et al. 2023a) consistent with the159

CMIP6 multi-model ensemble.160

To investigate the impact of SST trend discrepancies on the reanalysis-model trend dis-161

crepancy in the SH winter storm track, we also use the Southern Ocean pacemaker sim-162

ulations (hereafter called SOPACE; Kang et al. 2023a) and Pacific pacemaker simulations163

(hereafter called PacPACE, see https://www.cesm.ucar.edu/working-groups/climate/164

simulations/cesm2-pacific-pacemaker for details). The SOPACE and PacPACE simula-165

tions have 21 and 10 ensemble members, respectively. The same CMIP6 historical forcing is used166

for SOPACE (1979–2013) and PacPACE simulations (1880–2014). They have the same horizontal167

resolution as CESM2-LE. They are fully coupled except in the regions where SST anomalies (rel-168

ative to observed 1880–2019 climatology) are nudged to observed SST anomalies from ERSSTv5169

(Huang et al. 2017). More specifically, in SOPACE, SST anomalies are nudged to observations170

poleward of 40oS. In PacPACE, SST anomalies are nudged to observation within a wedge-shaped171

area of 20oS–20oN from the American coast to the western Pacific. We quantify the impact of172
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pacemaking on the simulated trends as173

Δ𝑆𝑂 = [SOPACE] − [CESM2-LE],

Δ𝑃𝑎𝑐 = [PacPACE] − [CESM2-LE],
(2)

where the squared brackets denote the ensemble mean (Kang et al. 2023a).174

Finally, we utilize AMIP-style CESM2 simulations, namely Global Ocean Global Atmosphere175

(GOGA) simulations, with 10 members. The GOGA simulations are forced with the same CMIP6176

historical forcing from 1880 to 2014 and take observed SSTs from ERSSTv5 as boundary conditions.177

We quantify the impact of SST trend discrepancy by comparing the trend distributions in CESM2-178

LE and GOGA simulations using the MW test.179

f. Comparing storminess trends in reanalysis and models180

As mentioned in the introduction, our goal is to revisit the reanalysis-model discrepancy of SH181

winter storminess trends. Our starting point is to use the same reanalyses and models used in182

previous work (Chemke et al. 2022). We then perform the following steps. First, we double the183

number of reanalysis datasets in order to quantify the impact of observational uncertainty. Second,184

we expand the model ensemble size to include a broader range of internal variability and structural185

uncertainty. Third, we calculate reanalysis and model storminess trends on the same time and186

spatial grids, to ensure a like-for-like comparison.187

At each step, we quantitatively compare reanalysis and model trends and evaluate the likeliness188

of a discrepancy using a rank metric (e.g., Hamill 2001; Suarez-Gutierrez et al. 2021). The rank189

metric assesses the ranking of reanalyses within the model distribution and the null hypothesis is190

that the reanalysis is interchangeable with the model simulations and represents a random draw191

of a single realization from the model distribution. If the models correctly represent the forced192

trend and the range of internal variability, we expect the reanalysis to have a rank that sits squarely193

within the model distribution. The rank quantifies the probability of sampling a storminess trend194

as large as found in reanalysis from the model distribution. For example, a rank of 20% would195

indicate that there is only a 20% chance of obtaining storminess trends larger than the reanalysis196

trend. The closer the rank is to 0%, the more the models underestimate the reanalysis trend,197

indicating a reanalysis-model trend discrepancy. The rank method is consistent with evaluating198
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whether reanalysis trends fall within certain percentiles of the model trend distributions (e.g. Grise199

et al. 2019).200

To evaluate where trends of reanalyses sit on average within the model trend distribution, metrics201

such as the average of reanalysis ranks and rank of average reanalysis trends can be considered.202

While both are useful, we focus on the average of reanalysis ranks (hereafter average rank), a203

non-parametric approach, to prevent an overly strong influence from outliers. This is particularly204

important for the SH where reanalysis trends exhibit a large spread.205

In order to summarize our reanalysis-model trend comparison, we use the following verbal206

expressions that loosely follow the IPCC language (Mastrandrea et al. 2010). If the average rank207

of reanalysis trends is < 5% (or > 95%), a discrepancy is “very likely”. If the average rank is ≥ 5%208

and < 20% (or > 80% and ≤ 95%), a discrepancy is “likely”. If neither conditions are met (i.e.,209

average rank is between 20% and 80%), then a discrepancy is “unlikely”.210

Table 2. Rank of individual reanalysis in the multi-model or large ensemble simulations in percentage. The

rightmost column shows the likeliness of a discrepancy expressed loosely following IPCC language, according

to the average rank. See text for details.

211

212

213

Rank (%) ERAI JRA55 NCEP2 ERA5 MERRA2 CFSR Average Discrepancy
All reanalysis (Fig. 1a)
CMIP6 0.0 0.0 0.0 0.0 6.3 12.5 3.1 very likely
AMIP6 23.1 0.0 0.0 7.7 46.2 53.8 21.8 unlikely
All models (Fig. 1b)
CMIP6 3.8 0.0 0.0 3.8 15.4 23.1 7.7 likely
AMIP6 18.8 0.0 0.0 6.3 43.8 46.9 19.3 unlikely
All datasets & Like-for-like (Fig. 1c)
CMIP6 3.8 3.8 0.0 3.8 38.5 23.1 12.2 likely
AMIP6 25.0 0.0 0.0 18.8 75.0 53.1 28.6 unlikely
South Pacific (Fig. 4)
CMIP6 11.5 0.0 0.0 7.7 19.2 46.2 14.1 likely
AMIP6 53.1 12.5 0.0 50.0 68.8 90.6 45.8 unlikely
CESM2 zonal mean (Figs. 5a and 9a)
CESM2-LE 2.0 0.0 0.0 0.0 56.0 56.0 19.0 likely
GOGA 20.0 0.0 0.0 10.0 80.0 80.0 31.7 unlikely
SOPACE 14.3 0.0 0.0 9.5 71.4 71.4 27.7 unlikely
PacPACE 10.0 0.0 0.0 10.0 60.0 60.0 23.3 unlikely
SUM 20.0 0.0 0.0 12.0 86.0 86.0 34.0 unlikely
CESM2 South Pacific (Figs. 5b and 9b)
CESM2-LE 10.0 2.0 0.0 8.0 26.0 62.0 18.0 likely
GOGA 70.0 20.0 0.0 50.0 100.0 100.0 56.6 unlikely
SOPACE 0.0 0.0 0.0 0.0 23.8 85.7 18.3 likely
PacPACE 40.0 10.0 0.0 30.0 80.0 90.0 41.7 unlikely
SUM 48.0 20.0 0.0 40.0 72.0 96.0 46.0 unlikely
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3. Impact of observation uncertainty, model ensemble size, and like-for-like comparison on214

the storminess trend discrepancy215

We quantify the impact of observation uncertainty, model ensemble size, and like-for-like com-216

parison on the SH winter storminess trend discrepancy. We start by comparing reanalysis and217

CMIP6 model trends, focusing on the impact of these three factors, and then assess the AMIP6218

trends.219

Fig. 1. (a) Linear trends of SH JJA EKE (40–70oS) in 6 reanalysis datasets (blue colors, 1979–2018) and 16

CMIP6 (1979–2018) and 13 AMIP6 (1979–2014) model simulations (diamonds). Statistically significant trends

at the 95% confidence level are filled. The box represents the full spread of reanalysis trends and the 10–90%

percentile of model ensemble trends. The horizontal line inside the box shows the median trend in the model

ensemble. (b) Similar results to (a), but for 26 CMIP6 and 32 AMIP6 models. (c) Similar results to (b), but after

performing a like-for-like calculation.

220

221

222

223

224

225

a. Reanalyses-CMIP6 comparison226

We start with 16 CMIP6 models and 3 reanalysis datasets used in previous work (Chemke et al.227

2022) but add 3 more modern reanalysis datasets (CFSR, ERA5, and MERRA2), which extend228

to 2018 and have been used in other previous work (Manney and Hegglin 2018; Martineau et al.229

2024; Cox et al. 2024). The EKE is calculated on the unprocessed time and spatial grids for230

each dataset. The trends are calculated from 1979 to 2018 in the reanalysis datasets (except for231

MERRA2) and CMIP6 models following previous work (Chemke et al. 2022). The storminess232

trends in the reanalysis datasets show a large spread from 0.56 kJ m−2 yr−1 to 2.29 kJ m−2 yr−1,233

and not all trends are statistically significant (MERRA2 and CFSR, Fig. 1a). For the 16 CMIP6234
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model ensemble, 4 reanalysis trends have zero ranks, and MERRA2 and CFSR trends have small235

non-zero ranks (Table 2). According to the average rank (3.1%), a reanalysis-model discrepancy236

is very likely for the CMIP6 ensemble after accounting for observational uncertainty.237

It is important to note previous work documented a climatological bias in SH storminess in238

NCEP2 (Fig. 2, see also Guo and Chang 2008; Guo et al. 2009; Martineau et al. 2024). If NCEP2239

is excluded for this reason, we obtain similar results (average rank is 3.8%). If ERA-Interim is also240

excluded because it is a direct predecessor of ERA5, we also get similar results (average rank is241

4.7%). Thus, we proceed with using all 6 reanalysis datasets and include their ranks in Table 2.242

Fig. 2. (a) Time series of SH JJA EKE (40–70oS) for 6 reanalyses datasets (blue colors), CMIP6 (black) and

AMIP6 (brown) multi-model mean. The 10–90% percentile of the 26 CMIP6 models is shown in gray shading.

Note that EKE is calculated using the like-for-like method.

243

244

245

Next, we assess the impact of expanding the model ensemble size from 16 to 26 CMIP6 models246

(Fig. 1b). Increasing the number of models in the ensemble increases the ranks of all reanalysis247

trends, and the resulting average rank is 7.7% (Table 2). Some newly added CMIP6 models248

show a statistically significant trend, with one model (EC-Earth3) having a greater trend than four249

reanalysis datasets (Fig. 1b). However, further examination of the storminess trends in the 14250

ensemble members of the EC-Earth3 model family reveal the trend is an outlier within the model251

family (not shown). Thus, according to the average rank (7.7%), a reanalysis-model discrepancy252

is likely after accounting for the model ensemble size.253
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Lastly, we examine the impact of the like-for-like comparison by calculating EKE trends in the254

6 reanalyses and 26 CMIP6 models in the same time and spatial grids (see section 2d). The like-255

for-like reanalysis trends exhibit a noticeable decrease in amplitude (Fig. 1c), which is mostly due256

to calculating EKE using daily-mean instead of six-hourly data (not shown). Interestingly, there257

still exists a significant spread across reanalysis trends (0.36–1.86 kJ m−2 yr−1), which is larger258

than the model ensemble spread (compare boxes in Fig. 1c). After accounting for the like-for-like259

trend comparison, according to the average rank (12.2%, Table 2), a reanalysis-model discrepancy260

is likely for the CMIP6 ensemble.261

The results show that accounting for observation uncertainty, model ensemble size, and like-for-262

like comparison reduces the discrepancy between reanalysis and CMIP6 model trends. However,263

a reanalysis-coupled model trend discrepancy is still likely after accounting for these factors. In264

general, the CMIP6 model trends are a combination of internal variability and forced response. We265

find using CMIP6 Detection and Attribution Model Intercomparison Project simulations (DAMIP,266

Gillett et al. 2016) that the forced response to greenhouse gas emissions (hist-GHG) dominates the267

trends (Fig. S1).268

b. Reanalyses-AMIP6 comparison269

We start by comparing trends in 13 AMIP6 models (1979–2014) used in the previous study270

(Chemke et al. 2022) and 6 reanalyses (Fig. 1a). The EKE is calculated on the unprocessed271

time and spatial grids. According to the average rank (21.8%, Table 2), a reanalysis-model trend272

discrepancy is unlikely after accounting for observational uncertainty.273

Next, we quantify the impact of increasing the AMIP6 model ensemble size to 32. The reanalysis274

ranks decrease slightly (Table 2) as a consequence of some newly added models showing negative275

trends (compare Figs. 1a and b). According to the average rank (19.3%), a reanalysis-model276

discrepancy is likely for the expanded AMIP6 ensemble. The different result from the case with277

13 AMIP6 models reveals the sensitivity of reanalysis-model discrepancy to the model ensemble278

size.279

Lastly, we quantify the impact of a like-for-like comparison by calculating EKE trends in the 6280

reanalyses and 32 AMIP6 models on the same time and spatial grids (Fig. 1c). After a like-for-like281

calculation, the ranks increase for all reanalyses, resulting in an average rank of 28.6% (Table 2).282
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According to the average rank (28.6%), a reanalysis-model trend discrepancy is unlikely for the283

AMIP6 ensemble. This highlights the importance of like-for-like comparison when evaluating284

reanalysis and model trends.285

Fig. 3. Spatial pattern of SH JJA EKE trend during 1979–2014 for (a) reanalysis mean (CFSR, ERAI, ERA5,

JRA55, MERRA2, NCEP2), (b) CMIP6 and (c) AMIP6 multi-model mean. Stipples indicate where reanalysis-

mean or multi-model mean trends are significant at the 95% level. The green dashed lines indicate the South

Pacific sector (40–70oS, 180–60oW).

286

287

288

289

4. Impact of SST trend discrepancies on storminess trends290

The results thus far show observational uncertainty, model ensemble size, and a like-for-like291

comparison significantly impact the reanalysis-model trend discrepancy in the SH winter stormi-292

ness. After accounting for these three factors, a reanalysis-model trend discrepancy is unlikely for293
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AMIP6 but likely for CMIP6, according to the average rank. Consistently, the AMIP6 trends are294

significantly larger than the CMIP6 trends according to the MW test (𝑝-value = 0.01). Our EKE295

trend results are consistent with Cox et al. (2024), who showed trends in annual-mean atmospheric296

energy transport from transient eddies in coupled models did not agree with reanalyses (see their297

Fig. 2).298

We further examined the sensitivity of our results to different start and end years. When the299

trend calculation is repeated for different start years from 1979 to 1985, we find the results are300

robust (Fig. S2a). When we only consider reanalysis trends from 1979 and 2014 to match those301

in AMIP6 models (additional factor for like-for-like comparison), the average rank increases to302

38.0%, further supporting the conclusion that a reanalysis-AMIP6 trend discrepancy is unlikely.303

The results are also robust to extending the time series from 2018 to 2022 (Fig. S2b). Overall, our304

results are not sensitive to the specific start and end years used to calculate storminess trends.305

The spatial pattern of the storminess trends from 1979 to 2014 (common period for reanalyses and306

CMIP6 and AMIP6 models) provides additional insights into understanding the different results for307

CMIP6 and AMIP6 (Fig 3). The storminess trend in reanalysis is significant across all longitudes308

including high latitudes of the Indian Ocean, South Pacific, and South Atlantic (Fig 3a and Fig. S3).309

However, the CMIP6 multi-model mean storminess trends in the South Pacific are negligible (Fig.310

3b). The AMIP6 multi-model mean better captures the reanalysis trend, especially in the South311

Pacific, where CMIP6 models show no trends (compare Figs. 3b and 3c). More quantitatively, in312

the South Pacific, according to the average rank (14.1%, Table 2), a reanalysis-model discrepancy313

is likely for the CMIP6 ensemble (Fig. 4). In contrast, according to the average rank (45.8%, Table314

2), a reanalysis-model trend discrepancy is unlikely for the AMIP6 ensemble (Fig. 4).315

Since the reanalysis-model trend discrepancy in the SH winter storminess is now strictly only316

for coupled models and not for prescribed-SST models, we hypothesize it is related to SST trend317

discrepancies (Fig. S4). The SST trend can be connected to the storminess trend through different318

mechanisms. Shaw et al. (2022) suggested the SH storminess trends in CMIP6 are weaker than319

reanalyses because CMIP6 models do not capture surface energy flux trends across the SH which320

is related to SST trends across the Southern Ocean (Armour et al. 2016). Furthermore, the SST321

trend discrepancy in the tropical Pacific likely impacts the SH through teleconnections. More322
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specifically, a La Nina-like SST trend would be expected to strengthen the South Pacific storminess323

(Seager et al. 2003; Nakamura et al. 2004; Ashok et al. 2007).324

Fig. 4. Similar results to Fig. 1c, but for the South Pacific (40–70oS, 180–60oW). The trends are calculated

from 1979 to 2014.

325

326

In order to test the hypothesis that SST trend discrepancies contribute to the reanalysis-CMIP6327

model SH winter storminess trend discrepancy, we utilize the Southern Ocean (SOPACE) and328

tropical Pacific (PacPACE) pacemaker simulations. The pacemaker simulations allow us to quantify329

how SH storminess trends in the coupled simulations would change if the coupled models simulated330

the observed SST trend. To connect the CESM2 pacemaker simulations to the CMIP6 model331

ensemble, we use the CESM2-LE simulations that are forced with the same radiative forcing as332

CMIP6 models. Similar to the CMIP6 and AMIP6 model ensemble comparison, we also compare333

CESM2-LE and GOGA simulations.334

For the CESM2 models, EKE is calculated using the monthly-mean kinetic energy output due to335

data availability (e.g., Kang et al. 2023b):336

𝐸𝐾𝐸 =
1
𝑔

∫ 𝑝𝑠

𝑝𝑡

(
𝑢2 + 𝑣2 −𝑢2 − 𝑣2

)
𝑑𝑝, (3)

where the 𝑢2 and 𝑣2 are the monthly averages of the square of 𝑢 and 𝑣 at each model time step337

(every 30 minutes). As such, this EKE represents the kinetic energy due to sub-monthly variations.338

For most reanalysis datasets except ERA5, 𝑢2 and 𝑣2 at model time step is not provided and it has to339

be calculated from six-hourly data. However, for ERA5, we find that the difference of calculating340
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𝑢2+𝑣2 at model time step versus six-hourly time step is negligible (about 0.1%, Fig. S5). As in the341

previous section, we extract the 8 pressure levels from all reanalysis datasets. The CESM2 data are342

interpolated from model levels to the 8 pressure levels. Then, both reanalysis and CESM2 data are343

linearly interpolated onto a common 1.5o×1.5o grid and vertically integrated over the 8 pressure344

levels (𝑝𝑡 = 10 hPa). Here we focus on the trend from 1979 to 2013, which is the common period345

for the CESM2 simulations.346

Fig. 5. (a) Linear trends of zonal-mean SH JJA EKE (40–70oS) in 6 reanalysis datasets and CESM2-LE and

GOGA simulations (1979–2013, diamonds). Statistically significant trends at the 95% confidence level are filled.

The box represents the full spread of reanalysis trends and the 10–90% percentile of model ensemble trends. The

horizontal line inside the box shows the median trend in the model ensemble. (b) Similar results to (a), but for

the South Pacific (40–70oS, 180–60oW).

347

348

349

350

351

When zonal-mean storminess trends in the CESM2-LE simulations are quantified and compared352

to those in reanalyses (Fig. 5a), a reanalysis-model discrepancy is likely, according to the average353

rank (19.0%, Table 2). Note that while the average rank is close to 20%, 4 reanalyses have ranks354

smaller than 5%. The CESM2-LE simulations also show negligible ensemble-mean storminess355

trends across the South Pacific similar to the CMIP6 models (compare Figs. 3a and b, Figs. 6a356

and b). More quantitatively, a reanalysis-model discrepancy is likely according to the average357

rank (18.0%, Table 2) in the South Pacific (Fig. 5b). Additionally, the SST trend discrepancies358

in the CESM2-LE simulations are similar to those in the CMIP6 models (compare Figs. 7a and359
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b and Figs. S4a and b). Thus, trends in the 50-member CESM2-LE simulations indicate internal360

variability is unlikely to be the reason for the reanalysis-model trend discrepancy.361

Fig. 6. Spatial pattern of SH JJA EKE trend during 1979–2013 for (a) reanalysis mean (CFSR, ERAI, ERA5,

JRA55, MERRA2, NCEP2), (b) CESM2-LE and (c) GOGA ensemble mean. Stipples indicate where reanalysis-

mean or ensemble-mean trends are significant at the 95% level. The green dashed lines indicate the South Pacific

sector (40–70oS, 180–60oW). Note the EKE is defined differently from Fig. 3.

362

363

364

365

When zonal-mean storminess trends are compared between GOGA simulations and reanalyses366

(Fig. 5a), a reanalysis-model discrepancy is unlikely, according to the average rank (31.7% Table367

2). The GOGA simulations show significant ensemble-mean storminess trends in the South Pacific368

(Fig. 6c). Consistently, a reanalysis-model trend discrepancy is unlikely for the South Pacific (Fig.369

5b) according to the average rank (56.6%, Table 2). Moreover, trends in the GOGA simulations370
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are significantly larger than trends in the CESM2-LE simulations in the zonal mean (MW test371

𝑝-value= 0.00) and South Pacific (MW test 𝑝-value= 0.00).372

Fig. 7. Spatial pattern of ensemble-mean JJA SST trend from 1979 to 2013 for (a) CESM2-LE, (b) GOGA,

(c) SUM= CESM2-LE +Δ𝑃𝑎𝑐 +Δ𝑆𝑂, (d) Δ𝑆𝑂 = [SOPACE] − [CESM2-LE], and (e) Δ𝑃𝑎𝑐 = [PacPACE] −

[CESM2-LE] simulations. Stipples indicate where ensemble-mean trends are significant at the 95% level. In

(d) and (e), the dashed black lines represent where the SST anomalies are nudged to observation.

373

374
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376

The similarity of CESM2-LE and GOGA simulations to CMIP6 and AMIP6 models justifies the377

use of CESM2 pacemaker simulations to further quantify the impact of SST trend discrepancy on378

the reanalysis-coupled model discrepancy found more generally in CMIP6 models. The pacemaker379

simulations can also be used to test the hypotheses discussed above regarding mechanisms con-380

necting SST trend discrepancies to storminess trends. In the following, we separately investigate381

the impacts of the Southern Ocean and tropical Pacific SST trend discrepancies on the storminess382

trend discrepancy in the zonal mean and South Pacific using the pacemaker simulations.383

a. Impact of Southern Ocean SST trend discrepancy on storminess trends384

When CESM2 simulations are forced with historical forcings and SST anomalies are nudged to385

observations in the Southern Ocean, there is a significant storminess intensification in all longitudes386

in the SH (Fig. 8a). In particular, the storminess trend is larger in the Southern Ocean compared387
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to CESM2-LE simulations (Δ𝑆𝑂 , Fig. 8b). The zonal-mean storminess trends in the SOPACE388

simulations (green, Fig. 9a) are significantly larger than those in the CESM2-LE simulations (MW-389

test 𝑝-value = 0.02). According to the average rank (27.8%, Table 2), a discrepancy is unlikely for390

the SOPACE simulations.391

Fig. 8. Spatial pattern of ensemble-mean SH JJA EKE trend during 1979–2013 for (a) SOPACE (b) Δ𝑆𝑂, (c)

PacPACE, (d) Δ𝑃𝑎𝑐 and (e) SUM simulations. Stipples indicate where ensemble-mean trends are significant at

the 95% level.
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Shaw et al. (2022) hypothesized that the reanalysis-CMIP6 zonal-mean SH storminess trend395

discrepancy was due to an underestimated surface energy flux trends in models across the SH,396

which is connected to Southern Ocean SST trends. The connection between storminess and397

surface energy flux is made through the moist static energy budget with the atmospheric energy398

transport implied from surface energy flux. They are related as follows:399

∇ ·𝐹𝑆𝐹𝐶 = 𝑆 (4)

(Kang et al. 2008; Shaw et al. 2018, 2022), where 𝑆 is the zonal-mean surface energy flux (in400

W m−2) with the global average removed (defined as positive downward), and 2𝜋𝑎 cos𝜙𝐹𝑆𝐹𝐶 (in401

PW), where 𝑎 is the Earth’s radius, represents the atmospheric energy flux induced by surface402

energy flux gradient at latitude 𝜙. The surface energy flux in ERA5 is obtained by subtracting403

mass-consistent atmospheric total energy flux divergence and energy tendency from the top-of-404

atmosphere radiation (Mayer et al. 2021). Note that other reanalyses do not have mass-consistent405

energy flux datasets available for this calculation. The surface energy flux can be directly obtained406

in the CESM2-LE and SOPACE simulations. The surface energy flux trend (2𝜋𝑎 cos𝜙𝐹𝑆𝐹𝐶) in407

the SOPACE simulations is significantly larger than those in the CESM2-LE simulations (MW test408

𝑝-value = 0.00). In addition, the SOPACE surface energy flux trends are closer to that in ERA5409

(Fig. 10). The ERA5 rank is 0.0% in the CESM2-LE and 28.6% in the SOPACE simulations.410

Thus, the storminess trends are larger in SOPACE consistent with a larger surface energy flux411

trends that better capture reanalysis trends.412

While nudging SST anomalies in the Southern Ocean indicates that reanalysis-model storminess415

trend discrepancy in the zonal mean is unlikely, a discrepancy in the South Pacific is still likely416

according to the average rank of 18.3% (Table 2). Moreover, SOPACE and CESM2-LE trends417

in the South Pacific (Fig. 9b) are not significantly different according to the MW test (𝑝-value418

= 0.26).419

b. Impact of tropical Pacific SST trend discrepancy on storminess trends420

When CESM2 simulations are forced with historical forcings and SST anomalies are nudged421

to observations in the tropical Pacific, there is a significant storminess trend in the South Pacific422

(180o–60oW, Fig. 8c). Nudging tropical Pacific SST anomalies to observations (Δ𝑃𝑎𝑐) increases423
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Fig. 9. Same as Fig. 5, but for SOPACE (green), PacPACE (red), and SUM (maroon) simulations in the (a)

zonal mean and (b) South Pacific. Note that reanalysis trends are repeated from Fig. 5.

413

414

the storminess trend in the South Pacific but weakens it elsewhere (Fig. 8d). The South Pacific424

storminess trends in PacPACE simulations (red, Fig. 9b) are significantly larger than those in the425

CESM2-LE simulations (MW-test 𝑝-value = 0.01). According to the average rank (41.6%, Table426

2), a reanalysis-trend discrepancy in the South Pacific is unlikely for the PacPACE simulations.427

Fig. 10. Linear trends of SH JJA 2𝜋𝑎 cos𝜙𝐹𝑆𝐹𝐶 (40–70oS) in ERA5 and CESM2-LE and SOPACE simulations

(1979–2013, diamonds). Statistically significant trends at the 95% confidence level are filled. The box represents

the 10–90% percentile of model ensemble trends. The horizontal line inside the box shows the median trend in

the model ensemble.
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We hypothesized the La Nina-like SST trend in the tropical Pacific induces a Rossby wave432

teleconnection trend to the South Pacific, characterized by weaker subtropical jet and strengthened433

storminess in the South Pacific consistent with previous work (Seager et al. 2003; Nakamura434

et al. 2004; Ashok et al. 2007). The 200-hPa zonal wind and eddy geopotential height trends in435

the PacPACE simulations show a clear La Nina-like teleconnection pattern that is absent in the436

CESM2-LE simulations (Fig. 11). In particular, the South Pacific subtropical jet trends (averaged437

over 15o–30oS, 180o–60oW: magenta box in Fig. 11) are significantly different between PacPACE438

and CESM2-LE simulations (Fig. 12) according to the MW test (𝑝-value= 0.00). According439

to the average rank (41.7%), a reanalysis-model subtropical jet trend discrepancy is unlikely for440

the PacPACE simulations. In contrast, for CESM2-LE simulations, the average rank is 98.3%.441

According to this, a discrepancy is very likely. This confirms that PacPACE simulations exhibit442

stronger South Pacific storminess by capturing La Nina-like teleconnection trends in reanalysis.443

Fig. 11. Spatial pattern of South Pacific JJA 200-hPa zonal wind (shading) and eddy geopotential height

(contours, deviation from zonal mean) trends during 1979–2013 for (a) reanalysis mean (CFSR, ERAI, ERA5,

JRA55, MERRA2, NCEP2), (b) PacPACE and (c) CESM2-LE ensemble mean. The positive and negative eddy

geopotential height trends are respectively depicted in solid and dashed contours in 0.3 m yr−1 intervals (zero

contour is suppressed). Stipples indicate where reanalysis-mean or ensemble-mean trends are significant at the

95% level. The magenta box (15–30oS, 180–60oW) indicates the domain where the South Pacific subtropical jet

is quantified.
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c. Combined impact of tropical Pacific and Southern Ocean SST trend discrepancies on storminess451

trends452

The results above suggest that simulating the observed SST trends both in the Southern Ocean and453

tropical Pacific is necessary to capture the reanalysis SH storminess trend and its spatial structure.454
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To investigate the combined impact of both pacemakers (Δ𝑃𝑎𝑐 +Δ𝑆𝑂) on the coupled simulations,455

we create a synthetic large ensemble named SUM with 50 members, which is defined as:456

SUM = CESM2-LE+Δ𝑃𝑎𝑐 +Δ𝑆𝑂 (5)

Note that we are adding ensemble-mean impacts (Δ𝑃𝑎𝑐 +Δ𝑆𝑂) to individual ensemble members of457

CESM2-LE. This synthetic large ensemble is meant to estimate the results for ensemble simulations458

that nudge the Southern Ocean and tropical Pacific SST simultaneously. It assumes the ensemble-459

mean impacts of pacemaker simulations are combined with the forced response and internal460

variability in the CESM2-LE simulations. A similar approach was taken in Kang et al. (2023a) to461

create synthetic ensemble simulations using SOPACE simulations.462

Fig. 12. Linear trends of JJA South Pacific subtropical jet (200-hPa zonal wind averaged over 15–30oS,

180–60oW) in reanalysis datasets and CESM2-LE and PacPACE simulations (1979–2013, diamonds). Statis-

tically significant trends at the 95% confidence level are filled. The box represents the 10–90% percentile of

model ensemble trends. The horizontal line inside the box shows the median trend in the model ensemble.
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The SUM ensemble provides valuable insights since it captures the observed SST trend in the467

ensemble mean (compare Figs. 7b and c). This is due to the remote impacts of the pacemaker468

simulations on SST trends outside the nudged area (see dashed lines in Figs. 7d and e). The469

SOPACE simulations affect the SST trend in the Southeast Pacific and around Antarctica (Fig. 7d,470
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see also Kang et al. 2023a) while the PacPACE simulations reverse the trend in the tropical Pacific471

and enhance the warming in the Southwest Pacific (Fig. 7e).472

The SUM ensemble shows significant storminess trends across the SH (Fig. 8e), and the trends473

are larger than individual pacemaker simulations both in the zonal mean and South Pacific (Fig. 9).474

According to the average rank for both the zonal mean (34.0%, Table 2) and South Pacific (46.0%,475

Table 2) trends, a reanalysis-model trend discrepancy is unlikely. This confirms that the SST trend476

discrepancies impact the reanalysis-coupled model storminess trend discrepancy.477

5. Summary and Discussion478

a. Summary479

Our study revisits the reanalysis-model SH winter storminess trend discrepancy and examines480

the impact of observational uncertainty, model ensemble size, and a like-for-like comparison.481

We address these aspects by doubling the number of reanalysis datasets to 6, using all available482

model simulations, and calculating storminess on the same time and spatial grids. The assess-483

ment of observational uncertainty reveals substantial spread in reanalysis trends of SH winter484

storminess. When accounting for model ensemble size and a like-for-like comparison, storminess485

trends in reanalysis are reduced in amplitude, and a discrepancy is unlikely between reanalyses and486

prescribed-SST (AMIP) model trends, according to the average rank of reanalysis trends. Even af-487

ter accounting for observational uncertainty, model ensemble size, and a like-for-like comparison,488

a discrepancy between reanalyses and coupled (CMIP) models is likely, especially in the South489

Pacific. The comparison between CMIP and AMIP simulations suggests well-known observation-490

model SST trend discrepancies across the Southern Ocean and tropical Pacific may impact the491

storminess trend.492

We use Southern Ocean and tropical Pacific pacemaker simulations to test the hypothesis that the493

reanalysis-coupled model storminess trend discrepancy is connected to the SST trend discrepancies.494

When the SST anomalies in the Southern Ocean are nudged toward observation, the reanalysis-495

coupled model storminess trend discrepancy in the zonal mean becomes unlikely, but it is still496

likely in the South Pacific. Consistent with our hypothesis, the improvement of zonal-mean497

storminess trends involves simulating surface energy flux trends closer to reanalysis, which are498

consistent with increased storminess. When the SST anomalies in the tropical Pacific are nudged499
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toward observation, the reanalysis-coupled model storminess trend discrepancy in the South Pacific500

becomes unlikely. As hypothesized, the improvement of South Pacific storminess trends is a result501

of capturing trends in teleconnections to the South Pacific induced by a La Nina-like SST trend,502

consistent with previous work (Seager et al. 2003; Nakamura et al. 2004; Ashok et al. 2007). Thus,503

the pacemaker simulations show when SST trend discrepancies are removed, the reanalysis-coupled504

model storminess trend discrepancy becomes unlikely. This confirms the importance of SST trend505

discrepancies on the reanalysis-coupled model discrepancy in the SH winter storminess trends.506

b. Discussion507

Our results emphasize that it is important to address observational uncertainty, model ensemble508

size, and a like-for-like comparison when comparing trends in reanalysis and models. By addressing509

these aspects, we arrived at a conclusion that a reanalysis-model trend discrepancy is unlikely for510

AMIP6 models. Since the SH exhibits a significant observation uncertainty (large spread in511

reanalyses trends), it is important to use all available reanalysis data as in previous work (Manney512

and Hegglin 2018; Grise et al. 2019; Martineau et al. 2024). The large spread in reanalyses513

trends, which is comparable to that in the large ensemble simulations, also poses a challenge for514

reanalysis-model comparison in the SH. Efforts that can try to rule out or verify the fidelity of515

individual reanalysis trends could be beneficial for similar future work.516

The pacemaker simulations show that when the SST trend discrepancy is removed the reanalysis-517

coupled model trend discrepancy becomes unlikely. It is thus important to understand the SST trend518

discrepancy and its underlying mechanisms. For the tropical Pacific, many mechanisms have been519

proposed (Lee et al. 2022; Seager et al. 2022). For the Southern Ocean, one proposed mechanism520

involving Antarctic meltwater which does not flux to the Southern Ocean in the coupled models521

seems to be important (Bronselaer et al. 2018; Roach et al. 2023). Understanding the mechanisms522

underlying the emergent responses is important for having confidence in climate model projections523

and future work should test the proposed mechanisms (Shaw 2019).524

Model resolution is another factor that can impact the fidelity of the climate model trends.525

In particular, recent work shows that there is an improvement in the high-resolution (0.25o in526

atmosphere and 0.1o in ocean) CESM1 simulations in simulating observed SST trends in the tropical527

Pacific and the Southern Ocean (Yeager et al. 2023, DiNezio et al., personal communication). An528
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examination of the SH storminess trends in this three-member high-resolution simulations shows529

they underestimate the reanalysis trends and simulate trends similar to low-resolution (1o in both530

atmosphere and ocean) CESM1 simulations (Fig. A1). This may suggest that the improvement of531

SST trends in the high-resolution simulations is not sufficient for capturing observed SH storminess532

trends. However, the ensemble size of the high-resolution simulations is small, and thus future533

work should further investigate the impact of model resolution on reanalysis-model SH storminess534

trend discrepancy.535

27



Acknowledgments. JMK and TAS are supported by the National Oceanic and Atmospheric Ad-536

ministration award NA23OAR4310597. IRS is supported by the National Center of Atmospheric537

Research, which is a major facility sponsored by the National Science Foundation under the Co-538

operative Agreement 1852977. We acknowledge the World Climate Research Programme, which,539

through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank540

the climate modeling groups for producing and making available their model output, the Earth541

System Grid Federation (ESGF) for archiving the data and providing access, and the multiple542

funding agencies who support CMIP6 and ESGF. We also acknowledge the Community Earth Sys-543

tem Model, version 1, Large Ensemble Community Project; the Community Earth System Model,544

version 2, Large Ensemble Community Project; and supercomputing resources provided by the545

IBS Center for Climate Physics in South Korea (https://doi.org/10.5194/esd-2021-5). We546

acknowledge the Climate Variability and Change Working Group at the National Center of Atmo-547

spheric Research for running the Pacific pacemaker simulations and making them available. The548

Southern Ocean pacemaker simulations are supported by the high-performance computing cluster549

of State Key Laboratory of Satellite Ocean Environment Dynamics. This research is completed550

through the International Laboratory for High Resolution Earth System Prediction—a collabora-551

tion among the Qingdao National Laboratory for Marine Science and Technology, Texas A&M552

University, and the U.S. National Center for Atmospheric Research.553

Data availability statement. The CFSR reanalysis data are available at https://www.ncei.554

noaa.gov/data/climate-forecast-system/access/reanalysis/ and https://www.555

ncei.noaa.gov/data/climate-forecast-system/access/operational-analysis/.556

The ERA5 reanalysis data are available at https://cds.climate.copernicus.eu/557

cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form. ERA-Interim558

reanalysis data are available at https://www.ecmwf.int/en/forecasts/dataset/559

ecmwf-reanalysis-interim. JRA-55 reanalysis data can be downloaded from https:560

//rda.ucar.edu/datasets/ds628.0/. MERRA-2 reanalysis data can be downloaded from561

https://disc.gsfc.nasa.gov/datasets?project=MERRA-2. The NCEP2 reanalysis data562

is obtained from https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html.563

The CMIP6 and AMIP6 model data are downloadable from the CMIP6 data search interface564

https://esgf-node.llnl.gov/search/cmip6/. The CESM2-LE simulations are accessible565
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online at https://www.cesm.ucar.edu/community-projects/lens2. The CESM1-LE566

simulations are available at https://www.cesm.ucar.edu/community-projects/lens.567

The GOGA and PacPACE simulations are available at https://www.cesm.ucar.568

edu/working-groups/climate. The SOPACE simulation data are archived at569

https://github.com/yuyuyaoyao/CESM2_SOPACE. The IHESP simulations are ob-570

tained from https://ihesp.github.io/archive/products/ds_archive/Datasets.571

html#global-datasets.572
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APPENDIX A573

Impact of model resolution on the storminess trends574

To evaluate the impact of model resolution on the reanalysis-coupled model storminess trend575

discrepancy, we use the high-resolution CESM version 1 simulations from the International Lab-576

oratory for High-Resolution Earth System Prediction (Chang et al. 2020, hereafter called IHESP577

simulations). These simulations are compared with the CESM version 1 Large Ensemble simula-578

tions (Kay et al. 2015, hereafter called CESM1-LE) with lower resolutions. The IHESP simulations579

have nominal 0.25o and 0.1o resolution in the atmosphere and ocean, respectively. The CESM1-LE580

simulations, in contrast, have a nominal 1o resolution in both atmosphere and ocean. The IHESP581

and CESM1-LE simulations have 3 and 40 ensemble members, respectively. We analyze the time582

period from 1979 to 2013 in both simulations, during which is forced by historical (1979–2005)583

and RCP8.5 (2006-2013) forcing following CMIP5 protocol. We quantify the storminess trends in584

the CESM1-LE and IHESP simulations in the same way as CESM2 simulations in section 4 using585

Eq. (3). These trends are compared with reanalysis trends shown in Fig. 5.586

The CESM1-LE simulations, which feature observation-model SST trend discrepancy in the587

tropical Pacific and the Southern Ocean (Wills et al. 2022), underestimate the storminess trends in588

the reanalysis similar to the CESM2-LE simulations (compare Fig. 5 and Fig. A1). The average589

rank is 11.2% in the CESM1-LE simulations suggesting that a discrepancy is likely.590

The three members of IHESP simulations also underestimate the reanalysis storminess trend,591

although they simulate SST trends closer to observations (DiNezio et al., personal communication).592

Only one member has a trend (1.68 kJ m−2 yr−1, Fig. A1) larger than the smallest reanalysis trend593

(MERRA2, 0.71 kJ m−2 yr−1, Fig. 5a). Moreover, the trends in IHESP simulations are not594

statistically different from CESM1-LE trends (MW test 𝑝-value= 0.84).595
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Fig. A1. Linear trends of zonal-mean SH JJA EKE (40–70oS) in CESM1-LE and IHESP simulations

(1979–2013, diamonds). Statistically significant trends at the 95% confidence level are filled. The box represents

10–90% percentile of CESM1-LE simulation trends. The horizontal line inside the box shows the median trend

in the model ensemble.

596

597
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