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SUMMARY

Necroptosis is a form of regulated necrosis that re-
sults in cell death and content release after plasma
membrane permeabilization. However, little is known
about themolecular events responsible for thedisrup-
tion of the plasmamembrane. Here, we find that early
increase in cytosolic calcium in TNF-induced necrop-
tosis is mediated by treatment with a Smac mimetic
via the TNF/RIP1/TAK1 survival pathway. This does
not require the activation of the necrosome and is
dispensable for necroptosis. Necroptosis induced
by the activation of TLR3/4 pathways does not trigger
early calcium flux. We also demonstrate that necrop-
totic plasma membrane rupture is mediated by os-
motic forces and membrane pores around 4 nm in
diameter. This late permeabilization step represents
a hallmark in necroptosis execution that is cell and
treatment independent and requires the RIP1/RIP3/
MLKL core. In support of this, treatment with osmo-
protectants reduces cell damage in an in vivo necrop-
tosis model of ischemia-reperfusion injury.

INTRODUCTION

Necroptosis has captured the attention of scientists during the

last decade as an alternative, non-apoptotic form of regulated

cell death (de Almagro and Vucic, 2015; Oberst, 2016; Wallach

et al., 2016). It holds particular appeal due to its implication in

multiple pathophysiological conditions such as acute pancrea-

titis (He et al., 2009; Zhang et al., 2009), ischemic injury (Linker-

mann et al., 2012), and retinal detachment (Gao et al., 2014).

Moreover, necroptosis is gaining relevance as a form of cell

death induced by bacterial (Blériot and Lecuit, 2016) and viral

(Kaiser et al., 2013) infections.

Necroptosis involves cellular swelling and plasma membrane

rupture leading to cell lysis and the immunogenic release of the

cellular components. In contrast to accidental necrosis, it does

not take place accidentally, but it is tightly regulated by a genet-

ically encoded signaling pathway that is triggered under condi-
This is an open access article under the CC BY-N
tions of caspase inactivation (de Almagro and Vucic, 2015;

Oberst, 2016). In general, necroptosis signaling requires the re-

ceptor interacting protein kinases 1 and 3 (RIP1 and RIP3), which

together with the pseudokinase mixed lineage kinase domain-

like (MLKL) form the necrosome. MLKL is therefore a down-

stream effector of necroptosis that becomes normally activated

upon phosphorylation by RIP3. This then drives MLKL oligomer-

ization and translocation to the plasma membrane, which is a

necessary event for final plasma membrane permeabilization

and cell death (Cai et al., 2014; Zhang et al., 2016).

The best-characterized pathway leading to necroptosis in-

volves tumor necrosis factor a (TNF-a) engagement to the

TNF-a receptor. Experimentally, it is induced by a combination

of TNF-a treatment with molecules that sensitize its activity

such as second mitochondria-derived activator of caspases

(Smac)mimetics, inhibitors of RNA, or protein synthesis and cas-

pase inhibitors (Tait et al., 2014; Wallach et al., 2016). This

pathway shares initial steps with apoptosis and with the nuclear

factor kB (NF-kB) survival signaling pathways. In addition, nec-

roptosis can also be activated by treatment with Toll-like recep-

tors (TLR) agonists (Dillon and Green, 2016; Kaiser et al., 2013;

Vanden Berghe et al., 2014).

The key step in necroptosis execution is the final disruption of

the plasmamembrane integrity. However, the molecular mecha-

nism causing the loss of plasma membrane impermeability re-

mains controversial. It has been proposed that MLKL, as the

most final effector identified so far in the pathway, functions by

directly or indirectly permeabilizing the plasma membrane (Sun

et al., 2012; Zhao et al., 2012; Zhang et al., 2016). On the other

hand, the role of calcium in necroptosis remains unsettled. It

was suggested that calcium influx mediated by the channel

TRPM7 is required for necroptosis downstream of MLKL (Cai

et al., 2014). However, this theorywas recently challenged by ob-

servations that attribute calcium oscillations in necroptosis to the

efflux from intracellular reservoirs (Ousingsawat et al., 2017). The

problem is that themolecular events leading to final plasmamem-

brane permeabilization in necroptosis remain barely explored.

Here, we characterized the mechanism of plasma membrane

permeabilization that happens during necroptosis triggered by

two different pathways: (1) the classical necroptotic treatment

promoted by the TNF-a combined with a Smac mimetic and a

pan caspase inhibitor, and (2) the activation of TLR3/4 also
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combined with a pan caspase inhibitor. Using live-cell imaging of

different mouse fibroblasts and human adenocarcinoma cell

lines, we tracked calcium flux, changes in cell shape, and final

plasma membrane rupture (monitored by propidium iodide [PI]

intake). We show that two independent events occur during nec-

roptosis: early calcium flux, likely mediated by ion channels, and

late plasma membrane breakdown via membrane pores. Strik-

ingly, early calcium flux is cell type independent, not essential

for necroptosis and seems to be a molecular event consequence

of Smac treatment. In contrast, the formation of plasma mem-

brane nanopores at a later stage in the signaling pathway triggers

both calcium signaling and PI intake in a cell- and treatment-inde-

pendent manner. As a consequence, the formation of small pores

in the plasma membrane of cells can be considered as a general

feature in necroptosis that drives final membrane disruption. In

support of this hypothesis, treatment with osmoprotectants re-

duces cell death during ischemia-reperfusion injury (IRI) in mice.

RESULTS

Membrane Breakdown in Necroptosis Is Preceded by
Cell Shrinkage, Detachment, and Rounding
We first compared the ability of different cells lines to undergo

necroptosis. To this end, we used different mouse fibroblasts

(L929, NIH 3T3, and mouse embryonic fibroblast [MEF]), human

adenocarcinoma cells (HT-29), or human embryonic kidney

(HEK) cells (He et al., 2009; Sun et al., 2012; Zhang et al.,

2011). First, we evaluated the kinetics of PI intake upon the

most currently used necroptosis treatment, which includes a

combination of tumor necrosis factor (T), a Smac mimetic (S)

(here LCL-161), and the pan caspase inhibitor zVAD (Z), from

now on TSZ. L929, NIH 3T3, MEF, and HT-29 cells all responded

to treatment with TSZ, albeit with different kinetics and extension

(Figure S1A). As a control, HEK cells did not undergo necroptotic

cell death due to their deficiency in RIP3 (He et al., 2009). To

confirm that PI intake was caused by necroptosis, we tested

the effect of necrostatin-1 (Nec-1). Nec-1 targets RIP1 kinase ac-

tivity and blocks the RIP1-RIP3 complex and necrosome forma-

tion (Vandenabeele et al., 2013). As for HT-29, we also evaluated

the effect of necrosulfonamide (NSA) that specifically inhibits hu-

man MLKL (Sun et al., 2012). Cell death was inhibited in all cell

lines, thereby suggesting its necroptotic nature (Figure S1B).

To further characterize necroptosis in these cell lines, we fol-

lowed in parallel the changes in cell shape and PI intake by

live-cell imaging at 37�C. L929 and NIH 3T3 cells (Figures S1C

and S1D) first shrank, detached, and became round after nec-

roptosis stimuli. Membrane breakdown, monitored by PI intake,

was a latter event that took place concomitant with cell collapse.

Although shrinkage was a phenotypic event common with

apoptosis (Figure S1E), apoptotic blebs were not observed

upon TSZ treatment (Figures S1C and S1D). Moreover, such a

sequence of necroptotic phenotypic events was clearly different

from toxin-induced (Figure S1F) or mechanical-induced necrosis

(data not shown). Necrotic cell death was characterized by initial

membrane injury initiated with PI intake and followed by the

development of swelling blebs without cell detachment. Indeed,

cell swelling was not always easily detected upon TSZ-induced

necroptosis (Figures S1C and S1D).
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Early Calcium Flux Is Not Inhibited by Necrostatin-1
To characterize calcium flux associated with necroptosis, we

treated the cells with the non-fluorescent marker fluo-4 acetox-

ymethyl (Fluo-4 AM), which is cleaved inside cells to yield the im-

permeant, fluorescent form of the calcium indicator (Stosiek

et al., 2003). A clear increase in calcium concentration was de-

tected in the cytosol of L929, NIH 3T3, and HT-29 upon TSZ

treatment (Figure 1A). This event preceded PI intake and there-

fore irreversible plasma membrane breakdown in all the cell

lines. To quantitatively characterize calcium flux, we selected in-

dividual cells (n = 50–200) at different time points and measured

the most probable fluorescence intensity in the population (Fig-

ures 1B–1D). Calcium fluxwas a fast, early event, observed a few

minutes after treatment in all L929, NIH 3T3, andMEF cells. How-

ever, in the case of HT-29 cells, calcium signal was delayed and

took place in the same time range of PI intake (Figures 1A and

1E). For this last cell line, we classified the cells as Fluo-4/Ca

positive since there was a significant population that remained

impermeable to calcium at all times measured (Figure 1E).

Indeed, even after 4 hr of treatment more than half of the

HT-29 cell population remained negative to Fluo-4/Ca signal

(Figures 1A and 1E).

To relate calcium flux to other phenotypic alterations during

necroptosis, we estimated, for the same cell population, the

circularity as a parameter for cell shape and classified each

cell as PI positive or negative. This allows the simultaneous com-

parison of kinetics of calcium signal, change in cell shape, and PI

intake (Figures 1B–1D). We could not detect any cell-shape

change in HT-29 cells because they are intrinsically round.

From the kinetic curves, we calculated the parameter t50, which

represents the time required to achieve 50% increase of each

phenotypical event. This allowed us to set the time frame in

which every process happened after necroptosis induction and

to compare the response of different cell lines.

Early calcium flux (in the first 1 hr after treatment) was

observed in L929 and NIH 3T3 cells, as well as in MEF cells,

although with different kinetics. In L929 cells, 50% of the in-

crease of the Fluo-4/Ca signal was observed as early as

30 min after treatment, while in NIH 3T3 and MEF cells it took

around 1 hr and 1 hr 30 min, respectively (Figures 1B–1D). In

all these cell lines, calcium flux was followed by cell-shape

changes (t50 in L929 �45 min, in NIH 3T3 �1 hr 30 min, in MEF

�2 hr 30 min) and final PI intake (t50 in L929 �1 hr, in NIH 3T3

�2 hr 30 min, in MEF >4 hr). In contrast, HT-29 cells were char-

acterized by a unique, late calcium flux event, which took slightly

less time (�30 min) than PI intake (t50 5–6 hr) (Figure 1E).

These results suggest the activation of two distinct events

after TSZ stimuli: an early event, characterized by calcium flux,

and a late event, which activates both calcium signaling and PI

intake. To further determine the molecular nature of these

events, we assessed the effect of Nec-1 on calcium and PI

flux, as well as on cell shape. Strikingly, early calcium flux was

not inhibited byNec-1 in L929, NIH 3T3, andMEF cells, although,

as expected, both cell-shape rounding and membrane break-

down were delayed in the presence of the necroptosis inhibitor

(Figures 1B–1D and S1G). Moreover, early calcium flux was

not affected in TSZ-treated NIH 3T3 cell knockout for RIP3 or

MLKL, even though necroptosis was completely abolished



Figure 1. Early Calcium Flux and PI Intake Are Independent Events in Necroptosis

(A) Time series of calcium and PI intake during TSZ-induced necroptosis. Scale bar, 50 mm. Pictures are representative of at least three independent experiments.

(B–D) Kinetics of calcium flux, change in cell shape, and PI intake in mouse fibroblasts.

(E) Kinetics of calcium flux and PI intake in HT-29 cells.

(F) Effect of RIP3 or MLKL deletion in NIH 3T3 knockout cells. Cyan, y axis: Fluo-4/Ca fluorescence intensity per cell; gray, y axis: circularity absolute value;

orange, y axis: PI-positive cells. The x axis is common for all parameters plotted in the y axis. The values represent the mean and the SD of at least three in-

dependent experiments. Error bars represent the SD from the measurements. Lines correspond to the best fitting of the data.

See also Figure S1.
(cellular shape remained unaltered and there was no membrane

breakdown) (Figure 1F). In contrast, both calcium flux and PI

intake were inhibited in HT-29 cells with either Nec-1 or NSA

(Figures 1E and S1G).

Calcium Is Dispensable for Plasma Membrane
Breakdown but Could Have a Modulatory Effect
These observations questioned the role of calcium influx in

necroptosis signaling. To shed light on this matter, we examined

the potential mechanism behind calcium influx and its influ-

ence on final plasma membrane disruption during necroptosis.
Interestingly, L929 was the only cell line in which necroptosis

was enhanced by the presence of external calcium (Figure S2A).

In contrast, NIH 3T3 (Figure S2B), MEF (Figure S2C), and HT-29

(Figure S2D) behaved similarly whether the media was devoid of

calcium or not, indicating that extracellular calcium is not neces-

sary for necroptosis signaling, although it may have a cell-type-

dependent modulatory effect.

To get further insight into the source of calcium flux upon TSZ

necroptosis, we evaluated the effect of two different calcium

chelating agents (EGTA and BAPTA-AM) on the increase of cyto-

solic calcium. EGTA is a well-known chelating agent with high
Cell Reports 19, 175–187, April 4, 2017 177



Figure 2. Intracellular and Extracellular

Calcium Have Different Effects in TSZ-

Induced Necroptosis

(A and B) Effect of EGTA and BAPTA-AM in the

kinetics of increase of the intracellular calcium.

(C and D) Kinetics of membrane breakdown in the

presence of EGTA or BAPTA-AM. The values

represent the mean and the SD of at least three

independent experiments. Error bars represent

the SD from the measurements. Lines correspond

to the best fitting of the data.

See also Figure S2.
affinity for calcium that is widely used to trap extracellular cal-

cium. BAPTA-AM is a cell-permeable version of BAPTA, which

is widely used to control its intracellular levels. The rise in calcium

after 1 hr of treatment observed in L929 cells was inhibited in the

presence of EGTA and BAPTA-AM (Figure 2A), which indicates

that this cell line is able to capture calcium both from the extra-

cellular medium and to release it from the intracellular storages.

L929 cells finally overcame the effect of BAPTA-AM, since cyto-

solic calcium levels were restored after 2 hr. On the other hand,

there was a drop on the levels of the cytosolic calcium in NIH 3T3

cells when they were pre-incubated with BAPTA-AM (Figure 2B).

Surprisingly, trapping the extracellular calcium by EGTA did not

inhibit but increased the rise of the cytosolic calcium in this cell

line, probably by promoting further release from the intracellular

storages. This effect was also overcome around 3 hr after

treatment.

Although the effect of completely removing the calcium was

more drastic than trapping it with EGTA, we observed a slight in-

hibition (�30 min) on the kinetic of cell death in L929 cells in the

presence of this agent (Figure 2C). In agreement with the results

obtained in the presence of calcium-free media, chelation of the

extracellular calcium had no effect on necroptosis in most of the

cell lines (Figures 2D, S2E, and S2F). Trapping intracellular cal-

cium inhibited membrane breakdown and cell death in L929

and NIH 3T3 cells (Figures 2C and 2D). However, we did not

find a similar effect on MEF or HT-29 cells (Figures S2E and

S2F). In general, calcium signaling seems to be dispensable for

plasma membrane breakdown and cell death, although it could

have a modulatory effect in different cell lines.
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Early Calcium Flux Is a
Consequence of Treatment with a
Smac Mimetic
In an effort to understand the connection

between early calcium flux and the activa-

tion of the TNF-a pathway, we assessed

the effect of the individual components

of the TSZ mixture, as well as their binary

combinations. Figure 3 shows typical im-

ages obtained with L929 (Figure 3A) or

NIH 3T3 (Figure 3B) cells after 1 hr treat-

ment with each individual component (T,

S, or Z) or binary mixtures (TS, SZ, or

TZ). Images (Figures 3A and 3B) and ki-

netics of calcium flux (Figures 3C and
3D) revealed that only Smac mimetic promoted an increase in

the fluorescence signal in both cell lines. In fact, cells responded

similarly when treated with Smac mimetic alone (S), with binary

combinations containing it (TS and SZ) or with the ternary mixture

(TSZ). Early calcium flux activated by a Smac mimetic was totally

independent of cell death since none of the single components

nor the binary combinations containing it promoted PI intake in

the time frame of the confocal experiments (2–4 hr) (Figures 3E

and 3F).

To further evaluate whether early calcium signal was linked to

apoptosis, cell death (Figures S3A–S3C) was measured in paral-

lel to caspase 3/7 activity (after 24 hr) (Figures S3D–S3F). Staur-

osporine (STS) treatment was included as a positive control of

apoptosis (Figures S3A–S3F). L929 was the only cell line that un-

derwent cell death upon every treatment, including single T or S

(Figure S3A). We found that apoptosis was activated in the pres-

ence of S or TS but not upon T treatment in these cells (Fig-

ure S3D). This feature highlights the fact that L929 is a particular

cell line with the ability to die through necroptosis upon single

TNF-a activation (without additional stimulation), in agreement

with previous studies (Fiers et al., 1999; Zhang et al., 2011).

This would explain why this cell line is more sensitive to varia-

tions in the levels of calcium (Figures 2A, 2C, and S2A). In

contrast, cell death was not triggered in NIH 3T3 cells upon S

treatment (Figure S3B), but they did undergo apoptosis when

treated with T or TS (Figure S3E). As expected, caspase 3/7 ac-

tivity was inhibited in both cell lines when the pan caspase inhib-

itor zVAD (Z) was present, which further supported the necrop-

totic nature of the cell death (Figures S3D and S3E). HT-29



Figure 3. Early Calcium Flux in L929 and NIH

3T3 Cells Is a Consequence of SmacMimetic

Treatment

(A and B) Calcium signal upon different treatments

(T, TNF-a; S, Smac mimetic; Z, zVAD; TS, TNF-a +

Smac; SZ, Smac + zVAD; TZ, TNF-a + zVAD; TSZ,

TNF-a + Smac + zVAD). Images were taken after

1 hr of treatment. Scale bar, 50 mm.

(C and D) Kinetics of calcium flux.

(E and F) Kinetics of PI intake.

(G) Time-series images of the increase in the cyto-

solic calcium after mitochondria permeabilization

upon STS treatment. Scale bar, 10 mm.

(H) Corrected total cell fluorescence (CTCF) of

Fluo-4/Ca in individual cells versus the SD (SD) of

the fluorescence intensity of Smac1-60-mCherry

(n = 4). Time 0 corresponds to the normalized time

when both events cross in each cell. Darker lines

represent the average of the individual cells.

In (C)–(F), values represent the mean value and SD

of at least three independent experiments. Error

bars represent the SD from the measurements.

Lines correspond to the best fitting of the data.

Images are representative of three independent

experiments. See also Figure S3.
cells were also included in this study as a reference of a cell line

that does not experience early increase of the cytosolic calcium

(Figures S3C andS3F). Interestingly, these cells weremore resis-

tant to cell death and only died upon TS (apoptosis) or TSZ (nec-

roptosis) treatments. Altogether these results suggest that early

calcium release takes place independently of the type and

extension of cell death.

We then estimated the Fluo-4/Ca-positive cell population

upon STS treatment in the three different cell lines (L929, NIH

3T3, and HT-29), to test the possibility that there was a link
between early calcium signaling and

intrinsic apoptosis. Increase in cytosolic

calcium was found as a late, modest event

in NIH 3T3 cells (Figure S3G). However,

calcium levels remained basal in L929

and HT-29 cells 6 hr after adding of STS.

Therefore, we selected NIH 3T3 cells to

relate calcium flux with mitochondria outer

membrane permeabilization by means of

live-cell imaging (Figure 3G). Smac-1-60-

mCherry (a truncated version of Smac tar-

geting the intermembrane space, from

now on Smac-mCherry) (Tait et al., 2010)

was used as a marker of mitochondria

outer membrane permeabilization and

apoptosis execution. The Fluo-4/Ca fluo-

rescence was tracked in parallel to the

release of Smac-mCherry from mitochon-

dria to the cytosol (Figures 3G and 3H).

We plotted the kinetics of these events

for individual cells (n = 4). The increase in

the corrected total cell fluorescence

(CTCF) corresponded to the levels of the
cytosolic calcium, while the SD of Smac-mCherry fluorescence

was related with its localization (Figure 3H). As expected,

Smac-mCherry was initially homogenously distributed at the

mitochondria (Figure 3G). Increase in the Fluo-4/Ca fluorescence

intensity correlated with Smac-mCherry release to the cytosol

and the consequent drop of the SD of the fluorescence signal

(Figure 3H). These results support the notion that increase in

cytosolic calcium during intrinsic apoptosis takes places as a

late event followingmitochondria outer membrane permeabiliza-

tion only when Smac/Diablo is released (Pinton et al., 2008).
Cell Reports 19, 175–187, April 4, 2017 179



Figure 4. Early Calcium Signal Is Activated

upon Inhibition of IAP Function and Involves

the TNF-a Survival Pathway

(A) General representation of the role of Smac as

inhibitor of IAPs and its link with the TNF-a-medi-

ated NF-kB survival pathway. cIAP1/2 ubiquitinate

RIP1, and its ubiquitinated chain acts as scaffolds

to recruit others molecules such as TAK1 that

activates the IKK1/2 complex by phosphorylation

of IKK2. 5Z-7-oxozeaenol (5z) is an inhibitor of

TAK1. BMS-345541 (BMS) is an inhibitor of the

catalytic subunits of IKK1/2. Cycloheximide (CHX)

is an inhibitor of protein synthesis.

(B) Expression of different IAPs in L929, NIH 3T3,

MEF, and HT-29 cells. The RIAP antibody recog-

nizes cIAP1/2. Controls consist of the cIAP1 knock

out MEF, HEK cells treated with compound A (911)

that strongly reduces cIAP1 levels but not cIAP2.

Asterisks indicate non-specific bands.

(C) Representative images of calcium flux in MEF

upon different treatments (S, Smac mimetic; TZ,

TNF-a + zVAD; TSZ, TNF-a + Smac + zVAD). Scale

bar, 50 mm.

(D) Percentage of Fluo-4/Ca fluorescence signal in

MEF after 2 hr of treatment with the compounds

referred to.

(E) Effect of IAPs deletion on Fluo-4/Ca fluores-

cence signal after 2 hr treatment with Smac.

(F) Effect of RIP1 deletion on Fluo-4/Ca fluores-

cence after 2 hr treatment with TSZ.

(G) Fluo-4/Ca signal in MEF after 2 hr of treatment

with other TNF-a sensitizers (5z, 5Z-7-oxozeaenol;

T(5z)Z, TNF-a + 5Z-7-oxozeaenol + zVAD; BMS,

BMS-345541; TBS, TNF-a + BMS + zVAD; CHX,

cycloheximide; TCZ, TNF-a + cycloheximide +

zVAD).

Error bars represent the SD from the measure-

ments. See also Figure S4.
Calcium flux in necroptosis was observed at a later stage upon

treatment with the binary mixture TZ excluding a Smac mimetic.

Under these conditions, L929 and NIH 3T3 cell lines underwent

necroptosis but with slower kinetics (Figures 3E and 3F). We

could distinguish two cell populations after TZ treatment: one

that remained adherent, elongated, and both Fluo-4/Ca and PI

negative and a second one in which cells were detached and

became round andwas PI and/or Fluo-4/Ca positive (inset in Fig-

ures S3H and S3I). Nec-1 completely abolished calcium flux in

both L929 and NIH 3T3 cells upon TZ-induced necroptosis (Fig-

ures S3H and S3I). This behavior resembled that observed with

HT-29 cells, characterized by a single, late permeabilization

event, inhibited by Nec-1 (Figure 2E).

Early Cytosolic Calcium Increase Is Activated in Parallel
to Necroptosis through the Survival Pathway Initiated by
TNF-a
Our results suggested that early calcium signaling in TSZ-

induced necroptosis is a consequence of Smac activity, likely

related to the loss of function of the endogenous inhibitors of

programmed cell death (IAPs). The best characterized members

of the IAP family are x-linked IAP (xIAP) and cellular IAP1/2
180 Cell Reports 19, 175–187, April 4, 2017
(cIAP1/2) (Kocab and Duckett, 2016; Vasilikos et al., 2016).

Smac mimetics are small compounds that are based on the

IAP binding motif of Smac/Diablo (Figure 4A) and theoretically

are also able to induce IAP degradation (Fulda, 2015, 2016).

cIAP1/2 are connected with both the survival and cell death

pathways induced upon stimulation with TNF-a (Kocab and

Duckett, 2016; Silke and Meier, 2013). cIAP1/2 behave as E3

ubiquitin ligases of multiple components of the NF-kB pathway

such as RIP1. Upon polyubiquitination, RIP1 forms a scaffold

for the recruitment of additional factors including the transform-

ing grow factor b-activating kinase (TAK1) that further activates

the IkB kinase (IKK1/2) complex and the downstream signaling

that involves protein synthesis leading to cell survival (Gyrd-Han-

sen and Meier, 2010; Sharma et al., 2016). Independently of

this pathway, xIAP has been proposed to inactivate the final

apoptosis effectors caspases 3, 7, and 9 (Kocab and Duckett,

2016; Vasilikos et al., 2016) (Figure 4A).

We examined the basal protein levels of the most character-

ized IAPs (Figures 4B and S4A) RIP1 and 3 (Figures S4B and

S4C) and MLKL (Figure S4D) to determine whether expression

levels correlated with calcium release and necroptosis. L929

had higher levels of cIAP1, RIP3, and MLKL compared to the



other cell lines. This cell line seems to be primed to die by nec-

roptosis when treated with TSZ, as previously demonstrated

(Figure S3). The expression level of RIP3 was particularly low in

HT-29 cells, suggesting that these cells may have to upregulate

RIP3 in response to TSZ to undergo necroptosis. Such differ-

ences would explain why these cell lines behave differently in

terms of calcium signaling and response to necroptosis (Figures

1, 2, S2, and S3). Moreover, we checked the levels of necro-

ptosis markers (i.e., RIP1, RIP3, and phospho-MLKL) upon

TSZ treatment. Co-treatment of TSZ resulted in detection of

phospho-MLKL 1–2 hr after stimulation (Figure S4E) but no

cleavage of the apoptotic marker PARP (Poly [ADP-ribose] poly-

merase) (Figure S4F). These results confirmed that caspase ac-

tivity was inhibited and that these cells died by necroptosis.

Interestingly, levels of cIAP1 and cIAP2 were quite compen-

sated in mouse fibroblasts (Figures 4B and S4A). While L929

had an excess of cIAP1, NIH 3T3 andMEF cells had higher levels

of cIAP2. It has been shown that if cIAP1 is downregulated,

cIAP2 increases, suggesting that the main function of cIAP2 is

just to compensate for cIAP1 loss (Conze et al., 2005; Gardam

et al., 2011). In contrast, HT-29 cells showed low levels of

cIAP1 (Figures 4B and S4A) and cIAP2 was not detected, which

would explain why this cell line does not respond to a Smac

mimetic in terms of calcium signal (Figure 1E). There were no

obvious differences in the levels of xIAP among these four cell

lines (Figure 4B). As expected, co-treatment with Smac mimetic

LCL-161, TNF-a, and zVAD triggered cIAP1/2 but not xIAP

degradation (Figure S4G). cIAP1/2 degradation in mouse fibro-

blasts took place quickly after TSZ treatment (15–30 min), in

the same time frame of early calcium signaling and before the

appearance of phospho-MLKL (Figures S4E and S4G). These re-

sults suggest that specifically cIAP1/2, but not xIAP, mediates

early calcium flux and confirm that this process is independent

of necroptosis.

To further validate these observations, we measured calcium

levels in MEF cells double knockout for cIAP1/cIAP2, cIAP1/

xIAP, or cIAP2/xIAP in the presence or absence of Smac. We

checked that, similar to L929 and NIH 3T3 cells (Figure 3),

calcium increased in MEF cells upon Smac treatment but not

with TZ co-treatment (Figures 4C and 4D). Notably, cIAP1/

cIAP2 double knockout cells did not respond to Smac mimetic

treatment, while cIAP1/xIAP or cIAP2/xIAP double knockout

cells did (Figure 4E). Basal levels of calcium in cIAP1/cIAP2 dou-

ble knockout MEFs were similar to those observed in the wild-

type cells upon Smac treatment (for reference, see Figure 4D).

The lack of increase in calcium levels of cIAP1/cIAP2 knock

out cells resembled the behavior of HT-29, which had overall

lower basal levels of cIAP1/2 (Figure 4B). Moreover, cytosolic

basal calcium levels were increased in RIP1 knockout cells (Fig-

ure 4F) and were similar to those obtained in wild-type cells upon

Smac mimetic treatment (for reference, see Figure 4D). How-

ever, they did not significantly increase upon TSZ treatment in

RIP1 knockout MEFs (Figure 4F), suggesting that removal of

RIP1 from the complex associated with the TNF-a receptor

has direct implications in triggering the calcium signal. Because

calcium signaling was not inhibited by Nec-1, it is likely that a

RIP1 function different from its kinase activity (e.g., scaffold

function) is related to this effect. One possibility could be that
the calcium signal would be triggered by the disassembly of

complexes associated with RIP1 scaffolds (Lee et al., 2004).

To validate this hypothesis, we tested whether the combina-

tion of TNF-a with other sensitizers lead to early calcium

signaling. We evaluated different compounds that inhibit key

elements of the survival cascade activated by TNF-a (e.g., 5Z-

7-oxozeaenol [5z] that is a potent irreversible inhibitor of TAK1;

BMS-345541 (BMS) that inhibits IKK1/2; and cycloheximide

(CHX), an inhibitor of protein synthesis) (Figure 4G). Interestingly,

calcium signal increased in the presence of the TAK1 inhibitor

(5z), which was potentiated with co-treatment with TZ. We did

not detect such an effect when BMS or CHX were tested.

Together, these results suggest that IAPs control the levels of

cytosolic calcium by the activation of downstream components

of the TNF-a survival cascade (e.g., RIP1 and TAK1).

Necroptosis Induction via TLR3 and TLR4 Is
Characterized by a Single Permeabilization Event
Inhibited by Necrostatin-1
To understand the generality of early calcium signal and late

plasma membrane permeabilization in necroptosis, we exam-

ined other pathophysiologically relevant pathways, such as

those involving TLR. Necroptosis via TLR3/4 is less understood

but can also be activated in the presence of caspase inhibitors

(He et al., 2011; Kaiser et al., 2013). We first evaluated the ef-

fect on cell death of two TLR agonists, poly I:C and lipopoly-

saccharide (LPS), which trigger the activation of TLR3 and 4,

respectively (Kaiser et al., 2013; Najjar et al., 2016). Poly I:C

is a synthetic analog of double-stranded RNA (dsRNA) present

in some viruses, while LPS is a common constituent of the

outer wall of Gram-negative bacteria. Different cells lines

(L929, NIH 3T3, MEF, HT-29, and HEK) were treated with

poly I:C (P) (interferon g [IFNg]-primed to stimulate the expres-

sion of TLR3 [Kaiser et al., 2013; Kalai et al., 2002]) or LPS (L)

(without IFNg priming) in the presence of zVAD (Z), from here on

PZ or LZ, respectively. However, only L929 cells underwent

necroptosis when treated with PZ or LZ (Figures S5A and

S5B). L929 were directly stimulated with LZ since IFN-priming

inhibited cell death (Figure S5A), probably due to the activation

of negative regulators of IFN-g and LPS signaling (Schroder

et al., 2006). Cell death in L929 cells was inhibited by Nec-1,

which suggests a role of the RIP1-RIP3 complex in TLR3/4-

induced necroptosis (Figure S5A). However, upon PZ treat-

ment, Nec-1 had a moderated inhibitory effect after 24 hr,

suggesting that RIP1 can be partially dispensable for cell death

after activation of the TLR3 pathway in L929 cells.

TLR activation exhibited a necroptotic response that was

treatment dependent in L929 cells. Death started a few hours

after activation of TLR3 (�4 hr), while it took a longer lag time

(�8 hr) after activation of TLR4 (Figure 5). Similar cellular

morphological changes typical of necroptosis were found upon

PZ and LZ treatment. Cells detached and became round prior

to complete membrane disruption. In contrast to TSZ-induced

necroptosis in L929 cells (Figure 1A), calcium flux was detected

only shortly before complete plasma membrane permeabiliza-

tion, both processes being inhibited by Nec-1 (Figures 5B and

5C). These findings are in agreement with our above observa-

tions that early calcium increase results as a consequence of
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Figure 5. Early Calcium Flux Is Not Acti-

vated in TLR-3/4-Induced Necroptosis in

L929 Cells

(A) Kinetics of PI intake after treatment with poly

(I:C) (P) or LPS (L) in the presence of zVAD (Z). Cells

were primed with IFN-g 24 hr before PZ treatment.

(B and C) Kinetics of late calcium flux and PI intake

after activation of (B) TLR3 (PZ treatment) or (C)

TLR4 (LZ treatment). Top: time series of change in

shape, calcium flux, and PI intake during TLR3 (B)

or TLR4 (C)-induced necroptosis. Scale bar,

50 mm. Purple, y axis: Fluo-4/Ca fluorescence in-

tensity; yellow, y axis: PI-positive cells. The x axis

is common for all parameters plotted. The values

represent the mean and the SD of at least three

independent experiments. Error bars represent

the SD from the measurements. Lines correspond

to the best fitting of the data.

See also Figure S5.
Smacmimetic treatment and is dispensable for necroptosis (Fig-

ures 3 and 4).

Osmotically Active Agents Block PI Intake but Not Early
Calcium Flux
To investigate whether the plasma membrane permeabilization

events observed in necroptotic cells were related with the forma-

tion of pores in the plasma membrane, we visualized necroptotic

cell death in the presence of polyethyleneglycols (PEGs) of

different sizes. Besides being valuable tools for studying size

and osmotic properties of membrane pores (Tejuca et al.,

2001), PEGs do not affect ion channels and can therefore be

used to distinguish the nature of alterations in membrane perme-

ability. The rationale of this classic experiment lies on the colloid-

osmotic hypothesis, which relates the size of membrane pores

with their different permeability to macromolecules of different

sizes. Due to the osmotic gradient resulting from the high concen-

tration of impermeant intracellular molecules (such as big, cyto-

solic proteins), the opening of membrane pores leads to net influx

of water molecules and consequent cell volume increase until the

cell collapses (Figure 6A). Such an effect can be prevented by

addition of the external medium of an osmotic protectant of

appropriate size, which is too large to enter the cell through the

pores and therefore counterbalances the intracellular osmotic

pressure (Figure 6B) (Sukhorukov et al., 2009; Tejuca et al., 2001).

We used the following PEGs (in parenthesis is their hydrated

radii as reported in Tejuca et al., 2001): 2000 (1.3 nm), 4000

(1.6 nm), and 8000 (2 nm). PEG addition did not prevent early cal-

cium signal (Figures 6C and 6D) but inhibited changes in cell

shape and PI intake (Figures 6C, 6E, and 6F). This indicates

that early calcium signal is not driven by osmotic forces and
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strongly suggests that it is mediated by

selective ion channels. In contrast, the

ability of PEGs to block the late permea-

bilization event characterized by PI intake

demonstrates that it involves the forma-

tion of pores at the plasma membrane.

Both calcium signal and PI influx were in-
hibited in the presence of PEG 8000when cells were treated with

TZ (Figure 6G) in agreement with our previous observations that

late ion flux is also directly linked to late plasma membrane per-

meabilization mediated by pores. Kinetically, complete staining

of the nucleus after PI intake was a slow process (�3 min) (Fig-

ure 6H) compared with membrane breakdown (�5 s) (Figure 6I).

The inhibition of cell rounding and PI intake by PEGs was size

dependent, which allowed roughly estimating the size of the

membrane damaging structures to around 2-nm radius (Figures

6E and 6F). Because large-molecular-weight PEGs possess

peculiar properties that affect their hydrodynamic radius (Kuga,

1981; Tejuca et al., 2001), we performed an alternative assay

to confirm the size of the necroptotic membrane pores. We

added 10-kDa dextrans fluorescently labeled with Alexa 488

(FD10) at a final concentration of 5 mM to TSZ-treated cells.

This concentration did not impose osmotic protection but was

high enough to allow visualization of dye uptake into the individ-

ual cells. We found that FD10 was only able to cross the mem-

brane of PI-positive cells (Figure 6J). We also estimated the

size of FD10 (radius �2.3 ± 0.1 nm) based on its diffusion prop-

erties measured by fluorescence correlation spectroscopy.

Thecross-sectionofPI-permeable poreshasbeen estimated to

be around 1.5 nm (Bowman et al., 2010; Nesin et al., 2011). How-

ever, basedon these resultswecould not discard that necroptotic

pores were uncoupled from PI intake, which would then happen

only after total plasmamembrane collapse due to cell swelling af-

ter water influx. To exclude this possibility, we added FD 10 kDa

dextran together with PEG 8000 to cells treated with TSZ in order

to slow down the kinetics of plasma membrane collapse. Under

these experimental conditions, PI was able to cross the mem-

brane, while FD10 dextran remained in the extracellular medium



Figure 6. PI Intake but Not Early Calcium Signal Is Mediated by Membrane Pores

(A) Impermeant intracellular molecules impose an osmotic gradient after pore opening that leads to net influx of water molecules and cell lysis.

(B) PEGs can prevent this effect if their size is large enough to not cross the membrane through the pores.

(C) Calcium flux and PI intake in NIH 3T3 cells treated with TSZ in the presence or absence of PEG 8000. Scale bar, 50 mm.

(D) Kinetics of calcium flux,

(E and F) Change in cell shape (E) and PI intake (F) in NIH 3T3 cells in the presence of PEGs of different sizes.

(G) PI and Fluo-4/Ca-positive NIH 3T3 cells after TZ induction in the presence or not of PEG 8000.

(H) Kinetics of PI intake in individual NIH 3T3 cells. 20 individual cells were selected, and the fluorescence intensity of the PI was recorded every 5 s. Values were

normalized taking as 100% the maximum of the fluorescence obtained per cell.

(I) Time lapse of PI intake, calcium flux, and membrane breakdown. Scale bar, 10 mm.

(J) FD10 influx in NIH 3T3 cells after treatment with TSZ. First-line scale bar, 20 mm, second-, third-, and fourth-line scale bars, 10 mm.

(K–M) Kinetics of PI influx in L929 cells treated with (K) TZ, (L) PZ (IFN primed), or (M) LZ in the presence or not of PEGs.

Results show the mean and the SD from at least three independent experiments. Error bars represent SD from the measurements. Lines correspond to the best

fitting of the data.
(Figure6J). Thisobservationclearlydemonstrates that necroptotic

pores are actually bigger in size than PI but smaller than FD10

dextran and therefore in the range 1.5–4.6 nm diameter.
To confirm that the formation ofmembrane pores of similar na-

ture was involved in necroptosis execution induced by different

pathways, we performed similar experiments with different
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Figure 7. PEG 8000 Provides Osmotic Pro-

tection against the Necroptosis In Vivo

Model IRI

(A and B) Corresponding serum concentrations of

creatinine (A) and urea (B) 48 hr after reperfusion

or sham operation (n = 8 per group, mean values,

p% 0.14. p values were determined by a Student’s

t test). 100 mL vehicle (Tris-HCl [pH 8.0]) or 100 mL

100 mM PEG 8000 (in Tris-HCl [pH 8.0]) was

applied intraperitoneally 15 min before the onset

of ischemia and additionally 1, 3, and 5 hr post-

ischemia in a final volume of 250 mL, respectively.

(C) Representative renal sections stained with

periodic acid-Schiff are shown at magnifications

of 200- and 400-fold as indicated 48 hr following

reperfusion or sham operation. PEG-8000-treated

animals show abundant tubular epithelial vacuoli-

zation without other damage signs. Scale bars,

0.3 (for 200-fold) and 0.2 (for 400-fold) mm,

respectively.

(D) Quantification by renal damage score of (C).

Error bars represent the SD from the measure-

ments. See also Figure S6.
PEGs upon TZ, PZ, or LZ stimuli. As previously shown with

TSZ-induced necroptosis (Figures 6E and 6F), PEGs imposed

osmoprotection to cell death in a size-dependent manner

(Figures 6K–6M). The highest effect was observed with PEG

8000. For all conditions, the population of dead cells decreased

when PEG 8000 was added to the media.

In an effort to validate our observations about the protective

role of osmoprotectant agents in necroptosis, we examined

the effect of PEG 8000 in an in vivo model. Necroptosis has

been described as a crucial component of IRI (Linkermann

et al., 2013b). Here, we focused on a renal model of IRI that is

lethal to mice after 72 hr to investigate the protective effect of

PEG 8000. Elevated serum concentrations of creatinine (Fig-

ure 7A) and urea (Figure 7B), commonly used as markers for

the loss of kidney function (Linkermann et al., 2013a), were

reduced 48 hr after reperfusion when PEG 8000was applied. Im-

ages from histology analysis and tubular damage score values

reflected the protective effect of PEG 8000 (Figures 7C and

7D). Additionally, we controlled that the osmoprotectant did

not have a toxic effect in mice kidneys as reflected by the

levels of lactate dehydrogenase (LDH), glutamate-pyruvate

transaminase/alanine transaminase (GPT/ALAT), and glutamic

oxaloacetic transaminase/aspartate transaminase (GOT/ASAT)

activity after IRI (Figures S6A–S6C). Together with the data

from cultured cells, these in vivo studies support a general model

of cell disruption in necroptosis through the formation of small

pores of a few nanometers radius in the plasma membrane.
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DISCUSSION

Despite the rapid progressmade in recent

years on the understanding of necropto-

sis signaling, how the final and key step

of plasma membrane rupture is executed

remains unclear. Here, we examined al-

terations in membrane permeability and
shape triggered during TNF-a and TLR3/4-induced necroptosis

in different cell lines using single live-cell microscopy. We show

that TSZ treatment induces two distinct events: early calcium

flux, which is not required for necroptosis and late formation of

membrane pores about 4 nm in diameter that are concomitant

with cell death. In contrast to early calcium flux, we identify

late membrane pore formation as a core event in necroptosis

execution that happens independently of the necroptotic stimuli.

So far, it was widely accepted that necroptosis and necrosis

cannot be morphologically distinguished since they both repre-

sent modes of cell death that result in cytoplasmic swelling

and rupture of the plasma membrane (Vanden Berghe et al.,

2010; Wallach et al., 2016). Unexpectedly, the phenotype of

TNF-a- and TLR-induced necroptosis was different from those

described for toxin-induced or non-regulated necrosis. We

found that early calcium flux preceded cell-body detachment

from the glass surface and cellular rounding. Final rupture of

the plasma membrane and spilling of the intracellular content

took place after such morphological changes. Moreover, cell

swelling and membrane blebbing were not easily detected in

necroptosis, in agreement with recent observations (Kunzel-

mann, 2016). This is in contrast with toxin-mediated membrane

injury and pyroptotic cell death (Chen et al., 2016), which cause

the apparition of swelling blebs without cell detachment.

We found that early calcium signal was a consequence of co-

treatment with a Smac mimetic, a synthetic compound that

mimics the apoptotic factor Smac/Diablo and antagonizes



IAPs (Petersen et al., 2007; Wu et al., 2007). Increase in cytosolic

calciumwas evident either as an early event upon treatment with

a Smac mimetic in necroptosis or as a late event after mitochon-

dria outermembrane permeabilization during intrinsic apoptosis,

when Smac/Diablo was released. Neither the presence of Nec-1,

an inhibitor that hinders the formation of the necrosome (Deg-

terev et al., 2014), nor the absence of RIP3 or MLKL blocked

early calcium flux. This also indicates that this molecular event

is triggered artificially by Smac treatment and occurs upstream

of necrosome formation. Our results strongly suggest that the

Smac mimetic activates components of the TNF-a survival

cascade though the removal of the cIAP1/2. Upon TSZ-induced

necroptosis, RIP1 deubiquitination takes place as a conse-

quence of cIAP1/2 degradation induced by a Smac mimetic,

which leads to necrosome formation (Silke and Meier, 2013;

Vanden Berghe et al., 2014). In parallel, calcium signaling is likely

triggered by the disassembly of complexes associated with RIP1

scaffold function involving TAK1. Consequently, calcium flux is a

cell-type-dependent event (L929, NIH 3T3, and MEF) strongly

governed by cIAP1/2 levels. Since calcium signaling resulting

from Smac mimetic treatment appeared independent of IKK1/2

complex activation, it might be mediated by the MAPK survival

pathway (Zhou and Yuan, 2014). Further work will be necessary

to identify the final molecular effector that mediates Smac

mimetic-induced calcium flux.

We also show that early calcium signaling was not driven by

osmotic pressure, so that the most likely alternative is that it is

mediated by selective ion channels. Recently, it has been

described that intracellular (from the ryanodine channels of the

endoplasmic reticulum) but not extracellular calcium modulates

necroptosis in mouse fibroblasts. In contrast, necroptosis in HT-

29 cells was not affected by variations in extracellular or intracel-

lular calcium levels (Ousingsawat et al., 2017). Altogether, our

and others’ data suggest that the intake of extracellular calcium

and/or the release from intracellular pools are processes highly

dependent on the cell line and consequently do not seem to be

a universal hallmark of necroptosis. However, we cannot discard

a modulatory effect in some cell lines. Increase in cytosolic cal-

cium could modulate necroptosis probably due to its toxic effect

(Kunzelmann, 2016; Pinton et al., 2008).

Another important finding is the identification of the core

mechanism responsible for necroptosis execution, which in-

volves the opening of pores at the plasma membrane. It consti-

tutes a general membrane permeabilization process found upon

activation of both TNF-a and TLR signaling pathways. We found

that late permeabilization of the plasma membrane in living cells

is mediated by osmotic forces and the formation of small pores

around 4 nm in diameter. The extracellular addition of osmotic

protectors (e.g., PEG) with hydrodynamic radii between 1 and

2 nm delayed cell death, an effect that was proportional to the

size of the osmoprotectant. In addition, fluorescently labeled

10-kDa dextrans, with a radius around 2.3 nm, were unable to

pass through the plasma membrane before its complete disrup-

tion. In agreement with this, administration of PEG 8000 reduced

cell damage in an in vivomodel of necroptosis based on IRI. Final

pore formation at the plasma membrane requires necrosome

formation and MLKL activation. In this context, late calcium

flux can be explained as a consequence and not as a cause of
plasma membrane permeabilization, as suggested by recent

publications (Dondelinger et al., 2014; Quarato et al., 2016;

Wang et al., 2014).

From our findings, membrane pore formation appears as a

common defining theme in the execution of at least some forms

of regulated cell death, including not only necroptosis, but also

apoptosis (Salvador-Gallego et al., 2016) and pyroptosis (Liu

et al., 2016). In this scenario, membrane permeabilization via

pore formation has been proposed as the underlyingmechanism

driven by MLKL oligomerization at the plasma membrane (Don-

delinger et al., 2014; Wang et al., 2014). However, so far all

experimental evidences regarding the ability of MLKL to form

membrane pores have been obtained using artificial lipid vesi-

cles (Dondelinger et al., 2014;Wang et al., 2014) and require pro-

tein concentrations that are physiologically too high (5 mM)

(Wang et al., 2014). Although MLKL may be a key player in the

formation of the plasma membrane pores reported here, one

cannot discard that MLKL assembly at the plasma membrane

alone could not be sufficient for necroptotic pore formation

and that additional components are required.

In summary, here we described two distinct events upon TSZ-

induced necroptosis. The first, early calcium flux, is related to the

degradation of IAPs mediated by Smac mimetic treatment, does

not require the activation of the necrosome, and is dispensable

for necroptosis. In contrast, the second event, which leads to

final plasma membrane breakdown, depends on the RIP1-

RIP3-MLKL core and is common to TLR-induced necroptosis.

Furthermore, this late permeabilization event is governed by

osmotic pressure and involves the formation of pores around

4 nm in diameter. Taken together, our results show that the final

step of necroptosis execution is generally mediated by formation

of small pores at the plasma membrane. The identification of

necroptotic membrane nanopores reported here opens new

research possibilities to uncover the molecular components

involved and their spatiotemporal dynamics and regulation and

also has implications for the exploitation of necroptosis in clinical

settings.

EXPERIMENTAL PROCEDURES

All in vivo experiments were performed according to the Protection of Animals

Act, after approval of the German local authorities.

Plasma Membrane Integrity

The plasma membrane integrity was tested by flow cytometry measuring the

ability of cells to exclude PI. Flow-cytometric analyses were conducted using

CytoFlex, and data were analyzed using the FACSDiva software (Beckman

Coulter). After treatment, both attached and non-attached cell populations

were collected. Cells were washed twice with cold PBS, centrifuged (500 3

g, 5 min, 4�C), and resuspended in PBS (150 mL) containing PI (2 mg/mL). After

15 min of incubation at room temperature, a total of 10,000 cells were counted

by flow cytometry, and membrane breakage was determined as a PI-positive

population.

Bright-Field and Confocal Microscopy

Cells were seeded in DMEM in Ibidi 8-well chambers (Ibidi) 24 hr before exper-

iment. The day after, cells were washed with PBS to replace the media by

phenol red free DMEM (Sigma-Aldrich) supplemented with fetal bovine serum

(FBS) and antibiotics. Cells were loaded with 2 mM Fluo-4 AM for 30 min at

37�C and 2 mg/mL PI. All images were acquired with a Zeiss LSM 710 Confo-

Cor3 microscope (Carl Zeiss) equipped with incubator at 37�C and 5% CO2.
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Time-lapse imaging with z stack acquisition was carried out before and after

necroptosis induction. Transmitted light and fluorescence images were

acquired through a Zeiss C-Apochromat 403, numerical aperture (NA) = 1.2

water immersion objective onto the sample. Excitation light came from argon

ion (488 nm) or HeNe (561 nm) lasers.
Live-Imaging Analysis

Images were processed with Fiji. At each time point, individual fluorescent

cells were automatically detected based on the fluorescence of the cytosolic

Fluo-4 AM bound to Ca (Fluo-4 AM/Ca). Then, the main fluorescence value

per cell was calculated. From these values, themost probable value of the fluo-

rescence in the cell population was estimated with a probability density func-

tion. Values were normalized dividing by the maximal fluorescence obtained

upon treatment at the longest time point, as follows:

Fluo � 4 AM=Ca ð%Þ= 100 � Ft � Fo

Fmax � Fo
;

where Ft is the fluorescence at each time point, Fmax is the fluorescence ob-

tained at the longest time point, upon treatment, and Fo is the fluorescence

without treatment.
Statistical Methods

All measurements were performed at least three times, and results are pre-

sented as mean ± SD.
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Linkermann, A., Bräsen, J.H., Himmerkus, N., Liu, S., Huber, T.B., Kunzendorf,

U., and Krautwald, S. (2012). Rip1 (receptor-interacting protein kinase 1)

mediates necroptosis and contributes to renal ischemia/reperfusion injury.

Kidney Int. 81, 751–761.
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