
Comparison of the approaches to the solution of the outer

Magneto-Static-Problem in free-boundary MHD solvers

N. Isernia1, G. Rubinacci1, N. Schwarz2, R. Sparago1,4, F. Vannini2, S. Ventre3,

M. Hoelzl2, F. J. Artola4, F. Villone1

1 CREATE, Università degli Studi di Napoli Federico II, DIETI, 80125 Napoli, Italy
2 Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany
3 CREATE, Università di Cassino e del Lazio Meridionale, DIEI, 03043 Cassino, Italy

4 ITER Organization, Route de Vinon sur Verdon, 13067 St Paul Lez Durance Cedex, France

The solution of free-boundary MHD problems, both static and dynamic, via Finite Element

Methods requires the correct set up of the electro-magnetic boundary conditions at the boundary

of the computational domain [1]. A convenient formulation of the problem reduces this general

task to the problem of determining the magnetic field tangent to the boundary as a function

of the magnetic vector potential tangent to the boundary itself, plus all the external currents.

In the framework of extending the free-boundary capabilities of the JOREK code [2, 3], via

its coupling with CARIDDI [4], we compare here three different implementations of the ideal

Dirichlet-to-Neumann map in absence of external currents, i.e. three possible ways of comput-

ing the relation Atan,pl → Btan,pl . The first two implementations are based on the virtual casing

principle: an equivalent current to the plasma is defined at the boundary of the JOREK domain

which describes the magnetic field outside. In implementation (A) the JOREK boundary is dis-

cretized via 3D hexahedral elements and the equivalent current to the plasma is represented via

standard CARIDDI edge basis functions [6]. In solution (B) the surface equivalent current to the

plasma, expressed in term of flux function, is decomposed in toroidal harmonics, as for JOREK

primary variables, and the JOREK boundary is approximated via standard Lagrange 1D linear

elements. Finally, the last solution (C) is based on a direct Boundary Element approach, which

exploits the Fourier decomposition of JOREK variables along the toroidal angle. In implemen-

tation (C) potentials and fields are described directly within the JOREK finite element space.

The accuracy of the three approaches is compared first against an assigned current distribution

for which we have analytical solution. Finally, we compare the MHD evolution of a tearing

mode for a circular high aspect ratio test-case. The different maps discussed provide coherent

results, we sketch the pros and cons of the different strategies in the final section.
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Mathematical Models

In this contribution, we compute the Dirichlet-to-Neumann map Atan,pl → Btan,pl only in

the reduced MHD approximation, i.e. A = ψ∇ϕ . In this case, the information about the mag-

netic vector potential is equivalent to the information about the stream function ψ , moreover

the boundary condition required by the MHD code is precisely (1/r)∂ψ/∂n, i.e. a contribu-

tion to the poloidal magnetic field. The mathematical details behind implementation (A) were

presented in [2, 5]. In the proposed approach (B) the only difference deals with the represen-

tation of plasma equivalent currents: here we use a Fourier decomposition along the toroidal

angle similar to the one used for JOREK variables. We represent the equivalent current as

keq(x) = ∇I ×n where I = ∑
∞
n=−∞ In(s) exp( jnϕ), where s is a poloidal coordinate along the

boundary of the JOREK domain. The Fourier coefficients {I0(s), I1(s), · · ·} are then discretized

via standard 1D Lagrange elements. In approach (C) we solve directly the standard boundary

integral equation[8]:

(1/2)A =−
∫

∂Vin

[
G
(
B′× n̂′)]dS′−

∫
∂Vin

[(
A′× n̂′)×∇

′G−
(
A′ · n̂′)

∇
′G
]

dS′ , (1)

where G = 1/4π|x− x′|. This is solved, via a Galerkin method, in the hypothesis of toroidal

geometry (the JOREK boundary is axially symmetric) and in the reduced MHD ansatz, i.e.

A = ψ∇ϕ and B = F0∇ϕ +∇ψ ×∇ϕ , where F0 is assumed homogeneous. This means that we

neglect any term in Ar, Az or Bϕ that would naturally appear in Equation (1). Both the scalar

fields and the Green function G are expanded in a Fourier series along ϕ . The singularity of

the Fourier coefficients of G is extracted as indicated in [7]. This is the same for all toroidal

harmonics, allowing to tackle the problem of the integration of the singularity once for all the

harmonics included in the MHD simulation.

Assessment of the response matrices

The test case examined in this manuscript is a simple circular high-aspect-ratio tokamak,

where the major radius of the computational domain is R= 10m and the minor radius is b= 1m.

Before using the Dirichlet to Neumann maps discussed above into actual MHD simulations, we

first verify the robustness of our computation via an analytical test case, also in order to assess

the integration precision to use. The analytical test case under exam uses as source of mag-

netic field a toroidal wire placed at the centre of the MHD computational domain and titled of

3 deg about the x-axis. The reference magnetic field is found by a semi-analytic approach. We

compute the poloidal flux ψ analytically at two surfaces shifted of ±∆ respect to the surface

where we want to compute the magnetic field. The normal derivative of the poloidal flux is
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Figure 1: Tilted wire analytic test: poloidal magnetic field tangent to the boundary: (a) Virtual
Casing principle with CARIDDI or 2D representation of the equivalent current; (b) Direct BEM
for different integration precision.

then computed numerically. Decreasing progressively ∆ up to 0.01 mm, we find that the mag-

netic field we use as reference is precise for our purposes. Notice that in case of the equivalent

current methods (A) and (B) we compute the magnetic field at 1mm outside the boundary of

the computational domain, while in the direct boundary element formulation (C) we compute

the magnetic field precisely at the MHD domain boundary. The results of this assessment are

reported in Figure 1. The left panel demonstrates that approach (B) is indeed coherent with the

already assessed implementation (A). In the right panel, for method (C), we assess the number

of integration points to use within a JOREK boundary element to reach sufficient precision.

No-wall tearing mode test case

In this Section we use the vacuum response matrix Atan,pl → Btan,pl to compute the evolution

of an unstable tearing mode occurring in the circular high aspect ratio tokamak. The q = 2

surface is located quite close to the plasma boundary, hence very close to the boundary of

the MHD computational domain. The external structures are set to high resistance, so that the

interaction with eddy currents does not play a role in this exercise. The evolution of the magnetic

energy for the n = 1 and n = 2 toroidal harmonics is reported in Figure 2, and the respective

growth rates, as estimated via exponential fit, are reported in Table 1.

Conclusions

The immediate advantage of approaches (B) and (C) is that they allow not to discretize the

MHD computational boundary along the toroidal angle, consistently with the representation of

potentials and fields used in JOREK and many other MHD codes. This allows to save numerical
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Figure 2: Evolution of the magnetic energies computed with the vacuum response matrices
discussed in previous Sections.

(A) penta (A) hexa (B) (fourier) (C) ng=8 (C) ng=32 (C) ng=64
n = 1 1.93kHz 1.93kHz 1.93kHz 1.96kHz 1.94kHz 1.93kHz
n = 2 3.87kHz 3.87kHz 3.87kHz 3.92kHz 3.88kHz 3.87kHz

Table 1: Growth rate of the tearing mode instability as computed via the different maps. Expo-
nential in the interval [21.5,33.5] ms.

resources in the actual computation of these vacuum-response matrices, especially if few har-

monics are included in the MHD simulation. For scheme (A) and (B) the mathematical structure

of the interaction with surrounding conductors can be implemented via the mutual inductance

between equivalent plasma currents and external currents [6]. In scheme (C) Equation (1) can

be used as a direct formula, anyway further discussion is necessary to get to a consistent interac-

tion scheme. One difficulty in the implementation of scheme (C) regards the construction of the

regular part of the Fourier coefficients of the Green function, which depend on the source and

field point via the parameter k2 = 4RR′/[(R+R′)2 +(Z−Z′)2]. Here we evaluated numerically

and stored these functions only for the n = 1 and n = 2 harmonics, in a finite subset of points

k2 in the [0,1] interval. The procedure has to be assessed also for higher order harmonics.
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