Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Functional in vitro diversity of an intrinsically disordered plant protein during freeze–thawing is encoded by its structural plasticity

MPG-Autoren
/persons/resource/persons267573

Hernández-Sánchez,  I.E.
Transcript Profiling, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons134175

Alpers,  J.
Transcript Profiling, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97467

Walther,  D.       
BioinformaticsCIG, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

/persons/resource/persons97500

Zuther,  E.
Transcript Profiling, Infrastructure Groups and Service Units, Max Planck Institute of Molecular Plant Physiology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Hernández-Sánchez, I., Rindfleisch, T., Alpers, J., Dulle, M., Garvey, C. J., Knox-Brown, P., et al. (2024). Functional in vitro diversity of an intrinsically disordered plant protein during freeze–thawing is encoded by its structural plasticity. Protein Science, 33(5): e4989. doi:10.1002/pro.4989.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-38D8-F
Zusammenfassung
Abstract Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix?helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.