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Abstract  

Human cognition supports complex behaviour across a range of situations, and traits (such as 

personality) influence how we react in these different contexts. Although viewing traits as 

situationally grounded is common in social sciences it is often overlooked in neuroscience. 

Often studies focus on linking brain activity to trait descriptions of humans examine brain-

trait associations in a single task, or, under passive conditions like wakeful rest. These studies, 

often referred to as brain wide association studies (BWAS) have recently become the subject 

of controversy because results are often unreliable even with large sample sizes. Although 

there are important statistical reasons why BWAS yield inconsistent results, we hypothesised 

that results are inconsistent because the situation in which brain activity is measured will 

impact the power in detecting a reliable link to a specific trait. To examine this possibility, we 

performed a state-space analysis in which tasks from the Human Connectome Project (HCP) 

were organized into a low-dimensional space based on how they activated different large-

scale neural systems. We examined how individuals’ observed brain activity across these 

different contexts related to their personality. Our analysis found that for multiple personality 

traits (including Agreeableness, Openness to Experience and Conscientiousness) stronger 

associations with brain activity emerge in some tasks than others. These data establish that 

for specific personality traits there are situations in which reliable associations with brain 

activity can be identified with greater accuracy, highlighting the importance of context- bound 

views of understanding how brain activity links to trait variation in human behaviour. 
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Significance statement  

As a species humans act efficiently in many contexts, however, as individuals our personality 

makes us more specialised in some situations than others. This “if-then” view of personality 

is widely accepted in the social sciences but is often overlooked in neuroscience. Here we 

show adopting a situationally bound view of human traits provides more meaningful 

descriptions of a brain-trait associations than are possible in traditional brain wide association 

studies (BWAS) that measure brain activity in a single situation. Our results demonstrate 

multiple personality traits (including Agreeableness, Openness to Experience and 

Conscientiousness) show stronger associations with brain activity in some tasks than others, 

explaining why studies focusing on changes in brain activity at rest can lead to weak or 

contradictory results. 
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Introduction 

Adaptive behaviour depends on efficiently meeting the demands imposed by specific 

environmental conditions, and humans function successfully in a wide range of situations. For 

example, situations can vary on the need for sustained attention (1), skilled performance 

acquired through learning  (2), or on our knowledge of the world (3). In any specific situation, 

therefore, optimal performance corresponds to a specific balance of input from different 

cognitive systems. Consistent with this perspective, contemporary work in psychology has 

established that how individuals respond to environmental demands provides a useful way 

to understand trait variation within our species (4). For example, personality dimensions can 

be conceptualised as “if-then” rules where a given trait is most likely to lead to a type of 

behaviour when the individual is in a situation with a specific set of features (5). 

 

Although this context-dependent view of human behaviour has made important 

contributions to the social sciences (6) it has played a less important role in neuroscience (7). 

For example, studies that link brain activity to traits, often referred to as Brain Wide 

Association Studies (BWAS), focus on differences in brain activity that emerge during tasks 

(REF) or often at rest. However, the BWAS paradigm has recently become the subject of 

controversy due to concerns that without sample sizes in excess of several thousand 

individuals, the results may be prone to false positives (i.e. Type I error (8), although see (9) 

for an alternative perspective). Our study set out to explore whether BWAS focusing on an 

“if-then” view of personality provides an alternative, more useful, way of estimating the brain 

basis of different human traits. 
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Results 

In order to determine how brain responses under different situations relate to personality 

traits, we leveraged the task and resting state functional Magnetic Resonance Imaging (fMRI) 

data and the self-reported personality measures from the Human Connectome Project (HCP, 

10). As descriptions of personality traits we focused on the so called Big 5 personality traits 

(11) since these traits are replicable (12) and show well described links to real world behaviour 

(13), (14). In order to compare how different personality traits vary with brain activity across 

multiple task situations we constructed a state space using the first three dimensions of brain 

variation from a previous decomposition of the resting state data (15). These dimensions of 

brain variation, often referred to as “gradients” (16) describe functional differences between 

activity in different brain systems. We focused on the first three dimensions, which 

correspond to differences between primary and association cortex (Dimension 1, D1), visual 

and somato-motor cortex (Dimension 2, D2) and variation between the two large scale 

systems embedded within association cortex, namely the default mode network, (DMN) and 

fronto-parietal networks (FPN) (Dimension 3, D3). Note in our study we only use resting-state 

data to describe brain organisation   (e.g. Glasser et al. (17)), and so does not incur the 

hypothesised problems in using this method for ascertaining brain-trait associations(8). We 

used this ‘state space’ to organise the macro-scale patterns of each individual’s brain activity 

in the seven tasks (13 conditions) measured in the HCP by correlating each spatial map for 

each task condition (contrasted with the implicit baseline of each condition) with each of the 

dimensions of brain variation (see Methods). This process yielded a set of x, y, z co-ordinates 

for describing the observed brain activity for each individual in each task context (Figure 1. 

We also calculated the pair-wise similarities in the whole brain maps; see Supporting 

Information, SI Figure 2). Our analytic approach, uses no group averaging and preserves the 
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unique functional topography of each individual as this is argued to be important for 

accurately describing brain organisation 17, 18. At the same time, our state-space approach 

allows trait-related variation in brain activity, contextual differences in brain activity, and their 

interaction, to be differentiated along one or more of the dimensions of brain variation 

focused on in our study (See (20–22) for prior demonstrations of this approach). One 

advantage of our state-space method is that it provides a simple low dimensional manifold in 

which the impact of traits and situations can both be assessed. In other words, it provides a 

simple way to assess the possibility that brain-trait relationships are situationally dependent 

in way that would be analytically complex using more concrete regional approaches to 

understanding brain function. 
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Figure 1. Creation of a state space to understand how the neural correlates of personality 

traits are differentially expressed across task situations. To simultaneously map neural 

activity across individuals and situations we utilised a state-space approach (20–22) in which 

we calculated the correlation between the whole brain map of an individual’s brain activity 

in a specific task condition (contrasted with the respective baseline) with each of the three 

dimensions of brain variation generated by the decomposition of brain activity at rest (15). 

This results in a series of values which can be considered to be co-ordinates in a 3-dimensional 

space upon which we can conduct inferential statistics to understand how neural activity 
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changes across situations and individuals and how these two influences on brain activity 

interact. (See SI Figure 1 for the distribution of all individuals’ maps within the space and SI 

Figure 2 for the group average of each task condition within the state space). 

 

We used linear mixed models, as used the lmerTest package (23) in R (24), to perform 

inferential statistics on the co-ordinates of each brain map to understand whether they 

supported a situationally bound account of how brain activity maps onto dimensions of 

personality (see Methods for details of the models). We performed these analyses once for 

each dimension of brain variation, and in each analysis modelled (i) the main effect of task 

conditions, (ii) the main effect of each dimension of personality (Neuroticism, Openness to 

Experience, Conscientiousness Extraversion and Agreeableness) and (iii) the interactions 

between each trait dimension and task condition. Subject ID and family ID were modelled as 

random effects, and age, gender, and mean framewise displacement were added as 

covariates of no interest.  We included family ID as a random effect to control for the fact that 

the HCP data set includes individuals who are biological siblings. 

 

In these analyses, a main effect of condition indicates a difference between the location of 

task conditions on the dimension of brain variation of interest. A main effect of a personality 

trait indicates a similar association between that trait and brain activity across each task 

context. Finally, a trait-by-condition interaction indicates that the association between trait 

and brain activity follows an “if-then” rule, because the strength and/or direction of the 

association between trait and brain activity is variable across the task conditions sampled in 

our study.  To control for family-wise error in these analyses we controlled for the 78 pairwise 

comparisons between tasks, the five traits that make up the Big 5 and the three dimensions 
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of brain variation (78 * 5 * 3 = 1170). Using the Bonferroni correction method this led to an 

alpha value of 0.05/1170 = 0.00004. 

 

In each of these three models we identified a significant main effect of task condition (D1: 

F(12, 11964) = 5.92, p<0.00001 ; D2: F(12, 972) = 51.05, p<0.00001 ; D3: F(12, 11992) = 10.83, 

p<0.00001). This indicates that brain activity recorded in the specific task conditions 

measured in the HCP significantly varies along each of the three dimensions of brain variation 

that make up our state space (see SI Table 2 for complete results and SI Figure 2 for mean 

locations of all conditions in the state space), establishing that across the set of tasks included 

in the HCP, there was significant variation in the average balance of different neural systems 

engaged during task completion. 
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Figure 2. Associations between personality traits and state space location across all 

dimensions and task conditions. In this figure, each point reflects the estimate of the 

association between a trait of the “Big 5” and a single dimension of brain variation, under a 

single task condition, controlling for all other variables in the model. Error bars indicate the 

95% Confidence Intervals around this estimate. For ease of interpretation, tasks are ordered 

from the most negative to the most positive. Significant interaction effects between 

conditions and traits are marked with asterisk (controlling for multiple comparisons, p < 
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0.00004). D1 reflects the dissociation from primary cortex (negative) to association cortex 

(positive). D2 reflects the dissociation between somato-motor (negative) and visual cortex 

(positive). D3 reflects the dissociation between the default mode network (negative) and 

fronto-parietal network (positive). 

 

In addition, for two out of three dimensions of brain variation studied we identified at least 

one example where the association between a trait and brain activity was explained by an “if-

then” relationship (Figure 3). For the second dimension of brain variation (D2, differentiation 

between visual and somato-motor cortex), a significant interaction was observed for 

Agreeableness (F(12, 11958) = 3.82, p< 0.00001). The condition with the most positive association 

(i.e., towards visual cortex) was the “2-back” working memory (t = 2.17) while the task with 

the strongest negative association (towards somato-motor cortex) was “motor” (t = -3.35).  

 

For D3 (the dissociation between the default mode network and the fronto-parietal network) 

we found significant interactions for both Openness to Experience (F(12, 11979) = 4.40, p< 

0.00001) and Conscientiousness (F(12, 11984) = 3.57, p< 0.00003). For Openness to Experience 

the task with the most negative association (i.e., towards the default mode network) was 

“story” (t = -3.60), while the most positive was the “reward” condition in the gambling task (t 

= 2.12). For Conscientiousness, the task with the most negative association was with the 

“motor” task (t = -2.78) and the “0-back” working memory condition had the strongest 

positive association (t = 2.66). 
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Figure 3. Trait associations with respect to variation between visual and sensorimotor 

systems (D2) and default mode and fronto-parietal networks (D3). This figure illustrates the 

strongest relationship between brain activity and trait for the three personality dimensions 

for which significant interactions were identified: Agreeableness, Openness to Experience and 

Conscientiousness. Scatter plots in the top row show the relationships between two 

conditions and the specific trait along the dimension of brain variation of interest. In these 

plots, x axis shows the trait score and y axis shows the location of a specific task condition on 

the dimension of brain variation of interest. Each point represents one individual. Scatter 

plots in the middle row show the correlation between the trait, and the divergence of two 

task-condition maps shown above on the dimension of brain variation interest. In these plots, 
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y axis shows  the pair-wise difference (e.g. 2back - motor) in the location of the two task maps. 

Plots in the bottom row summarize the results of a bootstrapping analysis showing the 

distribution of the same correlations as a function of sample size. In these plots the shaded 

regions show the distribution of 100%, 99%, and 95% of the effects (Pearson’s R) derived from 

the bootstrapping and vertical dashed lines indicate the sample sizes required to consistently 

find effects in the same direction within the 95% and 99% confidence intervals, and in the 

whole range (100%). 

 

It is important to note that in all three models none of the main effects of traits passed our 

correction for family-wise error; the strongest association was in D2 for Neuroticism (p = .033 

uncorrected, complete results of all linear models can be found under Supporting Information 

Tables 3-9). Together, therefore, our analysis indicates only weak support for the hypothesis 

that traits will show a general association with brain activity across tasks, and substantial 

support for the view that these associations are modulated by the task context. Overall, 

therefore, our data is consistent with the view that traits lead to situationally specific changes 

in brain activity and inconsistent with the implicit assumptions behind many BWAS that 

attempt to link traits to a single condition. 

 

Next, we examined the sample size needed to infer associations between traits and brain 

activity across situations in our analysis. One criticism of BWAS is that the magnitude of 

associations between activity within regions or sets of regions and traits are often higher with 

smaller numbers of participants and decline with larger sample sizes: a pattern that is 

indicative of false positives with underpowered designs (8). For each of the significant 

interaction effects, therefore, we repeatedly sampled individuals from our population to 
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create samples-sizes ranging from 25 to 950 in 16 log-spaced steps, creating 1000 examples 

of each sample size, and examined how these relationships changed with increasing power 

(bottom row, Figures 3). It can be seen that with smaller sample sizes the task-trait 

relationships begin to stabilize, i.e., generate > 95% estimates that all have the same direction, 

for samples that are between 222 and 459. Relative to those observed in BWAS that focus on 

brain activity at rest, these estimates tend to stabilize with equivalent, if not smaller, samples. 

Lastly, as the full HCP dataset contains pairs of individuals who are siblings, we repeated the 

reproducibility analysis, generating bootstrapped samples which only contained singletons in 

each resampling iteration, yielding broadly similar results (See SI Figure 4). 

 

Discussion 

Using a state-space created from dimensions of brain variation observed at rest, we 

established that different tasks employed in the HCP vary in the whole brain patterns of brain 

activity they engender, confirming that these situations provoke different challenges to the 

brain. Consistent with psychological models of cognition and behaviour that emphasise trait 

variation as a set of “if-then” rules, different tasks systematically varied in their utility to 

capture the brain activity associated with different traits. Openness to Experience, was most 

strongly associated with increased activity within the default mode network during the 

“story” task condition and least in the “reward” condition. Agreeableness was linked to 

relatively greater activity in somato-motor cortex in the “motor” task and with relatively 

greater visual activity during “2-back” working memory. In contrast, Conscientiousness was 

linked to greater engagement of the fronto-parietal system than the default mode network 

during the “0-back” working memory than the “motor” task. 
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Together these data illustrate that associations between brain activity and trait variation 

cannot be mapped equally in a single situation. Consistent with psychological perspectives 

that traits can be conceived of as stable responses to specific environmental challenges (“if-

then” rules) our analysis establishes that brain activity correlates of traits vary substantially 

across situations. This suggests that regardless of sample size (8), or analytic approach (9), 

BWAS will likely have greater success in detecting accurate correlates of specific traits by 

tailoring the situations in which brain activity is measured to challenge the brain in an 

appropriate manner. Our study, therefore, establishes that one reason why BWAS yield 

inconsistent results is that human traits are inextricably linked to how the individual responds 

to specific situations. While it is important to employ well powered designs, and better 

analytic approaches, BWAS will become more useful following the development of better 

theoretical models which include the situations in which traits influence behaviour and 

appropriate paradigms to capture them e.g. (25). We note that a trend for estimating trait 

associations in appropriate contexts is also emerging in population studies of genetics (26). 

 

At the same time as illustrating that trait associations with brain activity are situationally 

bound, our approach highlights important new avenues of inquiry for understanding how 

human variation is linked to patterns of brain activity. For example, what are the best 

situations for mapping the neural correlates of specific traits, and how many situations are 

needed to efficiently map the bulk of human traits? We utilised the HCP task data because it 

is the largest existing dataset to sample a wide range of tasks along with trait measures. 

However, the selection of tasks for the HCP was not designed to test ”if-then” relationships 

between personality and brain activity. It is likely, therefore, that there are better batteries 

of tasks with which to distinguish the neural correlates of different traits. Fortunately, 
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techniques such as neuroadaptive Bayesian optimisation, which uses machine learning to 

efficiently identify correlations between brain activity and behaviour, can be used to tailor 

situations to map traits to brain activity efficiently (27). Iteratively, this process will enable 

the situations in which we measure brain activity to be optimized, and in turn improve the 

efficiency with which the neural correlates of different features of human behaviour can be 

understood in BWAS. 

 

Our analyses also highlight specific analytic questions that will need to be resolved to properly 

determine how the correlations between neural activity and traits vary across situations. For 

example, our study used a state space based on patterns of brain variation at rest as a low 

dimensional space to preserve individual topography while simultaneously modelling task 

and individual differences in brain function. It has been shown that using broad-scale 

activations as a measure of brain function offers more statistical power over regional effects, 

with a relatively moderate decrease in specificity (25).   We used functional gradients because 

they are a convenient tool for organising brain-wide activity (20–22). However, there are 

likely better ways to characterise the dimensions of brain variation and organisation in order 

to perform state-space analyses like the one we report here. For example, contemporary 

work in neuroscience has identified dimensions of brain variation that combine information 

related to brain structure with functional behaviour (e.g. (28)). Fortunately, machine learning 

can be used to perform multiverse analyses that optimise how different features of brain 

organisation can be best analysed to maximise their links with phenotypes (29). It is likely that 

optimising the dimensions of brain variation will generate state spaces that allow BWAS to 

estimate trait related patterns of brain activity in a more effective manner. Finally, it is 

important to note that our study focused on trait descriptions of human behaviour that have 
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well established features (i.e., the “Big 5”). Our analytic choice was motivated by the idea that 

BWAS should focus on traits that have real world significance (30). In this context, the “Big 5” 

have well established reliability (12) and are predictive of behaviour in real-world situations 

including academia (13) and the workplace (14) and psychopathology(31). However, it 

remains to be seen whether the same tasks which establish the situationally specific neural 

correlates of the “Big 5” can also discriminate the brain mechanisms which impact mental 

health, or physical illness, both of which are probably the most important outcomes from 

BWAS studies (30). In the future, therefore, it is important to take seriously the goal of 

understanding how to tailor task conditions for acquiring brain activity that have better 

capacity to discriminate phenotypes linked to health, wellbeing, productivity and disease. 

 

In conclusion, our state space analysis of the tasks in the HCP suggest that brain-trait 

associations are inextricably linked to the context in which brain activity is measured and this 

observation leads to two concrete suggestions for future studies. First, when examining 

specific brain-trait relationships it would be helpful to consider the most appropriate 

situations in which these association will emerge as out study shows that this intimately 

related to the sample size needed for these associations to stabilise. Second, if in the future 

it is deemed important to generate large data sets similar to the HCP (10) or the Adolescent 

Brain Cognitive Development (ABCD, 32) project, then it is likely that the statistical power for 

detecting robust brain correlates for a range of different traits can be derived from a 

combination of both the amount of time spent acquiring data in a specific situation (enabling 

stable measurement) and the range of different cognitive and emotional features that data 

acquisition encompasses (which enables the testing battery to discriminate multiple different 

traits). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.18.590056doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.18.590056
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

Materials and Methods 

Data 

We used task and resting state fMRI, and self-reported questionnaire data from the human 

Connectome Project (10) 1200 subjects release. The HCP dataset (N= 1206) includes 

multimodal MRI, behavioural, genetic, physiological and demographic data from adult twins 

and their non-twin siblings between 22- 37 years of age. From these, our analysis made use 

of the minimally preprocessed (2mm smoothing) (33) task-fMRI maps and NEO-FFI 

personality measures (11) and summaries of the group-averaged functional connectivity 

matrix from the 900 subjects release (15). Additionally, we used demographic information of 

subjects (age in years, gender), and head-movement parameters of each task-fMRI session as 

covariates. The final sample size of all HCP subjects with preprocessed task-fMRI data 

available for download is 1088 (590 women, mean age = 29.52 ±  3.59 years;  498 men, mean 

age = 27.92   ± 3.61 years). SI Table 1 shows the number of subjects available in each task 

condition.  

 

Neural State Space 

To create a neural state space, which describes maximal functional covariation of different 

neural systems, we used previously established low dimensional summaries of the group-

level whole-brain functional connectivity matrix (15). These dimensions of brain variation, 

often referred to as “gradients”, describe functional differences between brain systems. In 

our analysis, we created a three-dimensional “state space” from the first three gradients 

which correspond to differences between (i) primary and association cortex, (ii) visual and 

sensorimotor cortex and (iii) variation between the two large scale systems embedded within 

association cortex (default mode network, DMN, and fronto-parietal networks, FPN).   
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To project each individual’s brain activity across different contexts into the state space, we 

calculated spearman rank correlation between each of the three gradient maps and each 

individual’s un-thresholded  z-map from each task condition in grayordinate space. (Figure 1). 

Only the main contrasts (each condition against the respective implicit baseline) were used 

for this purpose, resulting in 13 maps for each individual, namely, Motor: 1)average of all 

movements; Emotion: 1) faces 2) shapes; Language: 1) maths, 2) story; Social: 1) random 

interactions, 2) theory of mind (ToM); Working Memory: 1) 0-back, 2) 2-back; Gambling: 1) 

reward, 2) punish; and Relational: 1) match 2) relational). The correlation coefficient of each 

map with the three gradients served as the location of that map along the respective 

dimension of brain variation in the state space (Figure 1)  

 

Linear Mixed Models  

To understand and quantify how locations of tasks in the state space varied with dimensions 

of personality, we performed regression using linear mixed models once for each dimension 

of brain variation as the outcome variable, and the task context, each dimension of 

personality (Neuroticism, Openness to Experience, Conscientiousness, Extraversion, and 

Agreeableness) and  the interactions between each dimension and each task condition as 

predictors. Subject ID and family ID were added as random effects, and age, gender, and mean 

framewise displacement were used as covariates of no interest.   

 

Example model for one dimension of variation:  

Location = β0 + β1×condition + β2×Neuroticism + β3×Openness + β4×Conscientiousness + 

                   β5×Extraversion + β6×Agreeableness + β7×(condition×Neuroticism) +  
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                β8×(condition×Openness) + β9×(condition×Conscientiousness) +  

                β10×(condition×Extraversion) + β11×(condition×Agreeableness) +  

                β12×age + β13×gender + β14×meanFD + usub + uFamily + ϵ 

 

In these analyses, a main effect of task indicates a difference between the location of tasks 

on the dimension of interest. A main effect of personality trait indicates a similar association 

with brain activity with a trait across each task context. Finally, a trait-by-task interaction 

indicates that associations between traits and brain activity varied in their strength, direction, 

or both across different tasks. To control for family wise error in these analyses we controlled 

for the 78 pairwise comparisons between tasks, the five traits which make up the “Big 5” and 

the three dimensions of brain variation (78 * 5 * 3 = 1170). Using the Bonferroni correction 

method this led to an alpha value of 0.05/1170 = 0.00004. To illustrate the change in trait-

brain associations depending on context, we followed up each significant trait*condition 

interaction, by comparing the strongest positive and negative associations of the respective 

trait and with task locations along dimensions of brain variation (Figures 3). Linear models 

were fitted using the lmerTest(34) package in R(24). We used the emmeans(35) package to 

derive the slope for each trait in the model at each level of the factor “condition”, resulting 

in an estimate for the association of each combination of trait and task condition and state-

space location shown in Figure 2. 

 

Reproducibility of context-specific brain-wide associations 

To examine the distribution of effects found in our analysis as a function of sample size, and 

to estimate the sample size required to reliably identify such effects, we calculated the 

bootstrapped (with 1000 iterations) bivariate correlation estimates and confidence intervals 
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for all significant task-brain interactions (Figures 3). Following Marek and colleagues (8) we 

focused on the strongest associations identified in our initial analyses. For each of these 

effects, we created 16 logarithmically spaced samples sizes from 25 to 950 subjects, by 

resampling subjects with replacement 1000 times at each sample size.  Similar to the follow-

up analysis for task*trait interactions in the original sample, in each resampled dataset, we 

calculated the bivariate correlation between trait scores and the distance between two brain 

maps that show the strongest diverging associations with that trait along a dimension. (e.g., 

correlation between Openness and (D3 location of reward – D3 location of story). Figures 3 

shows the distribution of these bootstrapped estimates with increasing sample sizes and 

indicates the 95% and 99% confidence intervals as well as full range of effect sizes derived 

from bootstrapping. 

 

Finally, given that the HCP dataset is made up of sibling pairs and groups, to avoid inflated 

estimates resulting from resampling of closely related individuals, we repeated the 

bootstrapping analysis in a smaller subsample (n=442) of “singletons” where, in each 

iteration, no more than one member of each family could be included at a time. For this 

analysis, we used 13 log-spaced sample sizes between 25 and 442. Results of this analysis are 

shown in SI Figure 4. 

 

Data availability 

All data included in the present analyses were acquired with informed consent and are 

available at  https://db.humanconnectome.org/.   

 

Code Availability 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.18.590056doi: bioRxiv preprint 

https://db.humanconnectome.org/
https://doi.org/10.1101/2024.04.18.590056
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

All code used for analysis and visualization can be found at https://github.com/samyogita-

hardikar/hcp-task-trait   
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