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Abstract 12 

The application of multivariate pattern analysis (MVPA) to electroencephalography (EEG) data allows 13 

neuroscientists to track neural representations at temporally fine-grained scales. This approach has 14 

been leveraged to study the locus and evolution of long-term memory contents in the brain, but a 15 

limiting factor is that decoding performance remains low. A key reason for this is that processes like 16 

encoding and retrieval are intrinsically dynamic across trials and participants, and this runs in tension 17 

with MVPA and other techniques that rely on consistently unfolding neural codes to generate 18 

predictions about memory contents. The presentation of visually perturbing stimuli may experimentally 19 

regularize brain dynamics, making neural codes more stable across measurements to enhance 20 

representational readouts. Such enhancements, which have repeatedly been demonstrated in 21 

working memory contexts, remain to our knowledge unexplored in long-term memory tasks. In this 22 

study, we evaluated whether visual perturbations—or pings—improve our ability to predict the 23 

category of retrieved images from EEG activity during cued recall. Overall, our findings suggest that 24 

while pings evoked a prominent neural response, they did not reliably produce improvements in 25 

MVPA-based classification across several analyses. We discuss possibilities that could explain these 26 

results, including the role of experimental and analysis parameter choices and mechanistic 27 

differences between working and long-term memory. 28 
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Introduction 31 

A central question in memory research is how the brain retrieves information stored in long-term 32 

memory (LTM) in the service of adaptive behaviour. This research topic has inspired work from a 33 

variety of angles, involving different experimental protocols and methods—including neuroimaging 34 

modalities. Electroencephalography (EEG) and magnetoencephalography (MEG) have proven an 35 

integral part of this project because they capture brain dynamics on a sub-second resolution. Such 36 

granularity is crucial, given that memory retrieval typically unfolds on the order of seconds, with the 37 

neural cascades underpinning memory retrieval evolving even faster (Staresina & Wimber, 2019). 38 

 To study the evolution of retrieved contents in the brain, one widely pursued family of 39 

techniques is multivariate pattern analysis (MVPA)—more broadly known as classification or decoding 40 

(Haxby et al., 2014; Grootswagers et al., 2017). These tools extract and upweight signal dimensions 41 

that robustly covary with retrieved memory contents, effectively boosting the signal-to-noise ratio of 42 

associated neural activity. MVPA has been successfully used to enrich our understanding of memory, 43 

including how information is encoded (Fritch et al., 2020; Kragel et al., 2017; Kuhl et al., 2012), 44 

consolidated (Deuker et al., 2013; Maguire, 2014; Schreiner et al., 2021), and reinstated during 45 

memory recall (i.e., pattern completion; Danker & Anderson, 2010; Favila et al., 2020; Rissman & 46 

Wagner, 2012; Xue, 2018). 47 

 Despite such advancements, the decoding of long-term memory contents in electrophysiology 48 

data typically remains only slightly above chance, impairing our ability to study the evolution of neural 49 

patterns of interest. One reason for this limitation is that memory processes and their associated brain 50 

activity are highly dynamic, which results in variable patterns across trials and participants (ter Wal et 51 

al., 2021; Madore & Wagner, 2022). Indeed, MVPA and most other EEG-based analyses rely for their 52 

robust predictions on the existence of a detectably constant cascade of neural patterns across 53 

measurements (van Bree et al., 2022). This clash between variability in neural processes on the one 54 

hand and the constancy assumption of our analyses on the other may cause us to miss 55 

representations of interest, or to obtain different results depending on what experimental event we 56 

timelock EEG data to (e.g., retrieval cues vs button presses; Linde-Domingo et al., 2019). A factor 57 

that further hampers our ability to robustly decode representations is that retrieval comes with fainter 58 

neural patterns to begin with compared to perception (Favila et al., 2020; Pearson et al., 2015; Favila 59 

et al., 2022). Together, these points invite creative techniques that improve our ability to infer long-60 

term memory representations from dynamic brain activity. 61 

In this study, we explore a perturbational method that has the potential to mitigate two issues 62 

at the same time: low signal fidelity at the level of measurement, and variability in neural processing 63 

dynamics. Specifically, in this EEG study we evaluated whether the presentation of a high contrast 64 

visual stimulus—henceforth referred to as a “ping”—during LTM retrieval enhances the readout of 65 

signatures of retrieved content. In motivating the hypothesis that pings boost the decodability of LTM 66 

representations, we built directly onto recent successful efforts in the domain of working memory 67 

(WM). In that context, pings have been used to enhance the decodability of the orientation (Wolff et 68 

al., 2015, 2017, 2020; Ten Oever et al., 2020; Yang et al., 2023) and colour (Kandemir et al., 2023) of 69 

objects actively maintained in WM, as well as anticipated target locations (Duncan et al., 2023). A 70 
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preliminary explanation for these findings is that pings induce a robust evoked response that interacts 71 

and indeed boosts the footprint of active neural representations, enhancing their SNR (Barbosa et al., 72 

2021). Specifically, pings may regularize neural dynamics across trials and participants by producing 73 

a phase reset of brain oscillations that coordinate information processing across neuronal 74 

populations. In support of this, visual stimuli presented during memory tasks have been shown to 75 

reset the phase of low-frequency brain oscillations that are implicated in encoding and retrieval 76 

(Rizzuto et al., 2003; Haque et al., 2015; audiovisual stimuli in Cruzat et al., 2021). Thus, by inducing 77 

pings at experimentally controlled moments, researchers may gain a level of control over variability in 78 

synchronized activity across information-coding neurons, making their dynamics more similar across 79 

measurements to improve the predictive power of MVPA. 80 

Importantly however, while ping-based methods have been shown to work in WM contexts, to 81 

our knowledge it has not been explored whether they generalize to LTM research in which information 82 

is retrieved from stored representations. The purpose of this study then, is to systematically explore 83 

the possibility that pings can enhance the readout of reactivated long-term memory contents. To this 84 

end, we presented participants with pings as memory processes were actively engaged during cued 85 

recall, evaluating whether retrieved representations are more robustly discernible after ping onset. On 86 

the whole, we find no compelling evidence that pings boost the classification of retrieved image pairs 87 

from EEG activity. 88 

 89 

Methods 90 

Participants 91 

We recruited thirty-three volunteers (22 women, Mage = 23.8 years, SDage = 2.6 years, range = 18 to 92 

31) with normal or corrected-to-normal vision, and with no history of epileptic attacks or 93 

neuropsychological conditions that could interfere with the examined study effects. The sample size 94 

required to derive a reliable effect was estimated based on (Wolff et al., 2017), though our estimation 95 

was limited by the fact that all previous work was in a WM context. One participant did not finish the 96 

experiment because they were unwell, and following data inspection, two participants were removed 97 

because of poor data quality due to a large number of high impedance channels, and one because of 98 

stimulus trigger issues. Thus, EEG-based analyses were conducted based on 29 participants. For 99 

behavioural analyses, the first four participants were excluded because of missing button press 100 

triggers, which, with the further exclusion of the participant who did not complete the experiment, 101 

resulted in an analysis of 28 participants (participants with noisy EEG data were included in the 102 

behavioural analysis). 103 

 Participants were informed about the details of the experiment in advance—including its 104 

duration, protocol, and methods—but were left naïve with respect to the purpose and hypotheses 105 

associated with the presentation of visual pings. Participants provided their written consent, and after 106 

the experiment, they were debriefed and given information about the central manipulation and 107 

hypothesis upon request, and they were compensated for their time with £9 per volunteered hour. The 108 

study was approved by the Ethical committee of the College of Science and Engineering of the 109 

University of Glasgow (Application number: 300210113). 110 
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 111 

Stimulus and apparatus 112 

The presentation of stimuli was controlled using PsychoPy (version 2021.2.3; Peirce et al., 2019) 113 

running on Windows 10. Stimuli were presented on a CRT monitor (53.3 cm; 1024 by 768 pixels) 114 

operating at a refresh rate of 60 Hz. Participants were seated in a magnetically shielded room in a 115 

chinrest 65 cm from the screen, or at an approximately similar distance from the screen outside the 116 

chinrest if they experienced discomfort. Throughout the experiment, a fixation cross (with a visual 117 

angle of 0.44°) was presented in the centre of a constantly presented grey background (RGB = 128 118 

128 128; PsychoPy default). All centrally presented stimuli overrode the fixation dot. The visual 119 

impulse (i.e., ping) was a single full-contrast bullseye stimulus presented at the centre of the screen 120 

for 200 milliseconds (ms; with a diameter of 13° and 0.31° cycles per degree). The ping was 121 

generated using MATLAB and edited using GIMP (GNU Image Manipulation Program version 122 

2.10.32). 123 

 In the main memory task, participants learned associations between action verbs and images, 124 

and were later prompted with the action verb to retrieve the associated image. The action verbs were 125 

selected based on usage frequency (largely based on Linde-Domingo et al., 2019) and the image 126 

stimulus set was a combination of 192 colour images collated across various royalty free databases, 127 

including the Bank of Standardized Stimuli (BOSS, Brodeur et al., 2010), and the SUN database (Xiao 128 

et al., 2010). The selected 192 images were constructed to follow a nested category structure of three 129 

embedded hierarchical levels. At the top level, the set consisted of 96 objects and 96 scenes, which 130 

were in turn composed at the middle level of 48 animate and 48 inanimate objects and 48 indoor and 131 

48 outdoor scenes. Moving down to the bottom level, each of the middle level categories branched 132 

out into 4 categories (e.g., for animate objects: birds, insects, mammals, and marine animals), each of 133 

which contained 12 specific instances (e.g., twelve specific birds). We chose this nested hierarchy of 134 

stimulus categories because we did not know a priori what dimension of retrieved memories would be 135 

effectively decodable, so we included multiple levels of abstraction and chose one level based on pre-136 

defined criteria (See Level Selection). The objects were presented on a white square matching in size 137 

to scene images (i.e., the visual degrees of all stimulus categories were 13°). Key presses were 138 

registered using a standard QWERTY keyboard. 139 

 140 

Procedure 141 

The main experiment consisted of 8 blocks, each with an encoding, distractor, recall, and recognition 142 

phase (Fig. 1A). In total, the main experiment lasted between approximately 45 and 65 minutes 143 

depending on the duration of self-paced breaks and electrode impedance maintenance. Before the 144 

main experiment, participants were provided with a practice run that covered each phase using 145 

example verbs and images that were not used in the main experiment. A standardized set of verbal 146 

instructions were provided to guide participants through the practice run. If the participant reported not 147 

understanding the task or if they did not give accurate responses, the practice run and instructions 148 

were repeated. Then, the main experiment commenced, throughout which EEG was acquired. At the 149 
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start of each experimental phase, a screen was presented with a reminder of the task instructions and 150 

required response keys. 151 

 152 

 153 

Figure 1. Paradigm and behavioural results. (A) Experimental paradigm. The encoding phase 154 
consisted of a word-image pair learning task. This was followed by a distractor task intended to wash 155 
out working memory effects. Then, during the critical recall phase, participants were cued with words 156 
to retrieve the paired image while visual perturbations (pings) were presented in 75% of trials. In a 157 
fourth phase, recognition performance was tested (not displayed). (B) Average performance during 158 
the recognition task for trials with and without pings, collapsing across blocks for each participant. 159 
Datapoints are individual participants. (C) Average recognition performance per participant (i.e., 160 
collapsing blocks). (D) Average recognition performance per block (i.e., collapsing participants). (E) 161 
Average reaction time during encoding for subsequently recognized and forgotten trials, collapsing 162 
across blocks. Note: in B, C, and D, the y-axis is truncated due to high recognition performance. 163 
 164 
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In the encoding phase, participants learned to build a mental association between action 166 

verbs and paired images. First, a verb was presented for 1500 ms (white, OpenSans font). Then, after 167 

1000 ms, the associated image was presented until the spacebar was pressed to indicate the 168 

association was encoded (with a 6000 ms limit). Then, after a 1000 ms delay, the next verb was 169 

presented. During each block’s encoding phase, 10 unique verb-image pairs were learned in one 170 

shot. This resulted in 80 encoded pairs across the full experiment, with the images pseudo-randomly 171 

selected from the full stimulus set such as to maintain an equal distribution of top-level stimulus 172 

categories (40 objects and 40 scenes) and fully random selection over nested middle and bottom 173 

levels for each ping and no-ping condition. 174 

 The distractor phase that followed was included to flush out WM effects. Here, participants 175 

performed an odd-even task lasting 20 seconds. A number between 1 and 99 was presented in the 176 

centre of the screen (white, OpenSans font), and participants were instructed to press left key for odd 177 

numbers, and right key for even numbers. Following a left or right key press, the next number was 178 

presented immediately. Participants’ average performance was displayed at the end of the distractor 179 

phase, marked as the proportion of correct responses. This data was not further analysed. 180 

 Next in each block, the recall phase tested our central manipulation of a ping-based visual 181 

perturbation. In this phase, participants recalled the learned verb-image associations of the encoding 182 

phase. First, one of the ten encoded verbs was presented for 2000 ms, serving as the retrieval cue 183 

that prompted recall of the associated image. In 75% of trials, a visual impulse was presented in 184 

either of three time bins: between 500 to 833.33 ms (“early ping”), 833.34 to 1116.67 ms (“middle 185 

ping”), or 1116.68 to 1500 ms (“late ping”) after the onset of the retrieval cue, with a uniform 186 

distribution of possible ping times within each bin. This window was chosen on the basis that previous 187 

research on cued recall paradigms suggests this is the moment of maximum memory reinstatement 188 

(Staresina & Wimber, 2019). In 25% of trials, no visual impulse was presented in order to derive a 189 

baseline for statistical hypothesis testing. Participants pressed the left key to indicate that they had 190 

forgotten the image associated with the verb cue, or right key to indicate they remembered it. Key 191 

presses only resulted in a new trial after 1700 ms following retrieval cue onset (i.e., 200 ms after the 192 

latest possible ping). With presses earlier than that, nothing happened. Participants were given a 193 

visual indication that key presses were available via disappearance of the retrieval cue (at its offset; 194 

2000 ms). During the recall phase, each of the 10 encoded verb-image pairs were tested four times, 195 

resulting in 40 recall trials per block, and 320 trials in total, comprising 160 objects and 160 scenes. 196 

Within participants, each of the four conditions—early, middle, late, and no ping—were configured to 197 

present object and scene images equally often (i.e., the top-level stimulus category), with the nested 198 

mid and bottom-level categories randomized. The sequence of presented stimulus level categories, 199 

pinging conditions, and verb-image pairs was fully randomized within and across blocks to mitigate 200 

order effects. For the within block randomization, while the 40 recall trials were fully randomized, we 201 

ensured the same pair was never recalled twice in direct succession. 202 

 Finally, since the cued recall phase only included subjective memory judgments, a recognition 203 

phase was included to obtain an objective measure of memory performance for the verb-image pairs. 204 

During this two-alternative forced choice task, one of the 10 encoded verbs was presented in the 205 
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centre of the screen, with two images (visual angle of 7.8°) presented underneath, one on the left-206 

hand, and one on the right-hand side of the screen. Participants chose which of the two images was 207 

paired with the central action verb using a left or right key press (with a 5000 ms time limit). The 208 

location of the correctly paired image was randomized between the left and right location. The lure 209 

image was always another old image from the immediately preceding encoding phase. Each of the 10 210 

encoded verb-image pairs was tested once in a random sequence. Note that we designed this study 211 

to expend most of the available study time on the recall phase to maximize the statistical power of our 212 

main analysis, with the recognition phase serving chiefly as a basic check to ensure participants were 213 

not skipping through the experiment without memorizing verb-image pairs. 214 

 215 

EEG acquisition and preprocessing 216 

The data was recorded using a 64-channel passive EEG BrainVision system (BrainAmp MR; Brain 217 

Products) with a sampling rate of 1000 Hz. For our recording software we used BrainVision Recorder 218 

(Brain Products). The 64 Ag/AgCl electrodes were positioned in accordance with the extended 219 

international 10-20 system. Due to a necessary change in the recording system, a different EEG cap 220 

type (EasyCap) was used for participants 1 to 14 (subset 1) and 15 to 33 (subset 2). In the first 221 

subset, the ground electrode was located on the back of the head, below occipital electrode Oz, and 222 

two EOG channels were used to monitor eye movements (placed below and next to the eye; VEOG 223 

and HEOG). In the second subset, the ground electrode was on the midline frontal location AFz, and 224 

one EOG channel was used to measure eye movements (placed below the eye; VEOG). 225 

Furthermore, the cap used in the second subset included channels FT9 and FT10. For event related 226 

potential analyses, we included only electrodes common to both caps to enable a universal 227 

visualization of brain activity. Most electrode impedances were kept below 25 kiloΩ, and electrodes 228 

with outlier impedances were removed during preprocessing, with their associated data interpolated 229 

(see below). 230 

 Preprocessing was performed using FieldTrip (Oostenveld et al., 2011) in MATLAB (the 231 

MathWorks). First, the continuous EEG data was split up into two datasets: one with all trials epoched 232 

relative to retrieval cues, and one with trials epoched relative to pings and no-ping (defined by 233 

randomly sampling ping times of the pinged trials, yielding so-called “pseudo-pings”). Put differently, 234 

the data was locked once to 𝑡 = 0 defined as the retrieval cue, and once to 𝑡 = 0 defined as the 235 

manipulation of interest or a baseline alternative. In both cases, the epoched trials were 4 seconds in 236 

duration (-1 to 3 seconds relative to the event of interest). 237 

 Each dataset was filtered between 0.05 and 80 Hz and downsampled to 250 Hz. Next, bad 238 

trials and channels with outlier impedance levels were manually removed via visual inspection. 239 

Subsequently, eye movement and muscle artefacts were identified and removed using ICA 240 

decomposition, and removed channels were interpolated using spline interpolation (with the FieldTrip 241 

function ft_scalpcurrentdensity). Finally, the data was re-referenced using a common average and a 242 

Laplacian method (current source density), deriving separate data structures for cue-locked and ping-243 

locked analyses. 244 

 245 
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Behavioural analysis 246 

The experiment was designed to result in high or even ceiling memory performance in order to obtain 247 

a maximal number of successfully remembered trials, and to optimally evaluate the central hypothesis 248 

of a ping-induced decodability enhancement. We report objective performance for the memory test 249 

conducted in the recognition phase, both across pinging conditions (Fig. 1B), participants (Fig. 1C), 250 

and across blocks (Fig. 1D). We also report subjective judgments during the recall phase, quantifying 251 

how often participants report remembering versus forgetting the word-image pair. Reaction time (RT) 252 

during the recall phase is uninformative, because as described in the Procedure section, the response 253 

key was locked until 1700 ms after cue onset, at which point participants likely had already retrieved 254 

the associated image (Staresina & Wimber, 2019). Indeed, participants reported actively waiting for 255 

response buttons to become available. Thus, we instead analysed RT during the encoding phase as a 256 

function of whether the word-image pair was subsequently recognized or not. These RT data were 257 

collapsed across participants and blocks (Fig. 1E). For the proceeding analyses, both subsequently 258 

recognized and forgotten trials were included. 259 

 260 

ERP Analysis 261 

For the ERP analyses, only channels common to both electrode cap subsets were used. We applied 262 

two types of ERP analyses, one locked to (pseudo-)pings and one to retrieval cues. FieldTrip was 263 

used to downsample the data to 250 Hz and a band-pass filter between 0.2 and 40 Hz was used. The 264 

data was baseline-corrected from -200 ms to 0 ms from events of interest. For ERP traces, we 265 

calculated the average activity across posterior channels (C3, C4, P3, P4, O1, O2, Cz, Pz, Oz, CP1, 266 

CP2, C1, C2, P1, P2, CP3, CP4, PO3, PO4, PO7, PO8, CPz, POz). For ERP topographies, we used 267 

the 61 channels common to both ERP cap types. We statistically evaluated whether pings resulted in 268 

higher amplitude ERPs compared to no-ping trials using non-parametric Monte Carlo permutation 269 

tests applied to each channel, correcting for multiple comparisons using Bonferroni correction as 270 

implemented in FieldTrip, averaging activity from 200 to 400 ms after pseudo-pings (alpha = 0.05; 105 271 

randomizations). 272 

 273 

MVPA analysis 274 

For MVPA, all EEG channels available per electrode cap type were used except EOG channels. 275 

Depending on the analysis, we trained and tested either a multi-class LDA using FieldTrip 276 

(ft_timelockstatistics), or a binary-class LDA using the MVPA Light toolbox (Treder, 2020). We 277 

classified EEG data re-referenced using a Laplacian transform on the basis that it accentuates local 278 

patterns (Kayser & Tenke, 2015). All classifier analyses were performed on the recall phase, where 279 

our main hypothesis could be evaluated. Unless specified otherwise, analyses were carried out on the 280 

retrieval cue-locked dataset. We downsampled the data from 250 Hz to 50 Hz by applying a moving 281 

average with a window length of 140 ms, moving in steps of 20 ms. During each step, a Gaussian-282 

weighted mean was applied in which the centre data sample of the window was multiplied by 1, and 283 

the tail samples by 0.15 (FWHM = ~81 ms). In a subsequent step, sample by sample, the data was z-284 

scored across channels (i.e., setting every channel to mean = 0 and standard deviation = 1), followed 285 
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by training and testing using LDA. To evaluate decoder performance, we applied k-fold cross 286 

validation (5 folds, with 25 repetitions). For binary class decoding, we used area under the receiver 287 

operating characteristics curve (AUC) as a performance metric because it adjusts for class 288 

imbalances (Grootswagers et al., 2017; Xie & Qiu, 2007). For multi-class decoding, where standard 289 

AUC is unavailable, we used accuracy and factored in level-specific differences in chance levels. To 290 

infer decoding performance values under the null hypothesis, depending on the analysis, we either 291 

used no-ping trials or ping trials with shuffled class labels (100 1st-level permutations, each with 3 292 

repetitions). All analyses were restricted to the period before button presses were made (i.e., < 2000 293 

ms). 294 

 295 

Level selection 296 

We used a multi-class LDA on no-ping trials to determine which retrieved stimulus category (top, 297 

middle, or bottom level) is most robustly detectable in the data when our main experimental 298 

manipulation was not applied. This level was then locked in for subsequent analyses that relate to our 299 

key hypothesis of ping-induced decoder enhancement. We selected the level with a high baseline 300 

performance to offer a conservative starting point from which we could establish whether pings are a 301 

powerful tool to further enhance decodability. However, as we will see in the results, stimulus 302 

selection rationales matter minimally because we found no reliable level differences in the no-ping 303 

decoder across levels to begin with. For statistics, we performed a Wilcoxon rank sum test comparing 304 

the empirical and shuffled decoding performance for each level, in the way described in the next 305 

section. 306 

 307 

Main analysis 308 

For the statistical analysis of the main hypothesis, we used two-level permutation testing for the ping 309 

versus shuffle decodability comparison, and a Wilcoxon ranked sum test for the ping versus no-ping 310 

comparison. The former approach, which is based on van Bree et al., 2022, implemented the 311 

following algorithm in pseudo-code—applied window-by-window: 312 

1) For each 2nd-level permutation (105 times): Grab one random window-specific decodability 313 

value from the 1st-level distribution of the 25 permutations of each participant and average the 314 

result. This yields 105 permuted averages. 315 

2) Generate one empirical p-value by calculating the percentile of the average empirical 316 

decoding value within the distribution of permuted averages. 317 

The latter approach involved taking the Wilcoxon signed-rank test between the distribution of 318 

empirical decoder results and 1st-level permutation results across participants. We opted for a 319 

Wilcoxon test over cluster-based methods because it makes minimal assumptions about the 320 

distribution of decoding results (Wilcoxon, 1945; Grootswagers et al., 2017). For both approaches, we 321 

adjusted the resulting p-values across windows for their false discovery rate (FDR). Since the p-322 

values are not independent across time, we applied the approach by Benjamini & Yekutieli (2001). 323 
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Finally, for ping-locked analyses we restricted statistical analyses between 0 and 500 ms from 324 

ping onset. For analyses locked to retrieval cue, we analysed 500 to 2000 ms from cue, which is the 325 

approximate range where memory reactivation is maximal (Staresina & Wimber, 2019). 326 

 327 

Condition-relative decoding peaks 328 

In addition to our main analysis, we carried out a presumably more sensitive analysis to evaluate the 329 

possibility of ping-induced decoding enhancements. We reasoned that even if visual pings do not 330 

offer an enhancement of LTM decoding performance that is strong enough to emerge in a direct ping-331 

to-no ping or ping-to-shuffle comparison, there could still be a weaker effect that is detectable by 332 

factoring in the relative order of decoding peaks across pinging conditions. Specifically, we tested 333 

whether trials with an early, middle, and late ping tended to have, respectively, earlier, later, and even 334 

later decoding performance peaks. In other words, we tested to what extent decoding peaks captured 335 

ping presentation orders (see Linde-Domingo et al., 2019; Mirjalili et al., 2021 for similar peak 336 

selection approaches). 337 

First, we took every participant’s SOA-specific decoding time series—early, middle, and 338 

late—and extracted one peak (specified below). Then, we calculated a peak order distance (POD) per 339 

participant, defined as the absolute serial distance between the order of extracted peaks and true ping 340 

presentation order, given by the formula: 341 

 342 

𝑃𝑂𝐷!"!#!"$%&'()*+ ='𝑎𝑏𝑠(𝑝𝑒𝑎𝑘 − 	𝑡𝑟𝑢𝑒) 343 

 344 

For example, if the decoder peak came first for early ping trials (1 − 1), third for middle pings trials 345 

(3 − 2), and second for late ping trials (2 − 3), this would amount to a POD of two. We divided PODs 346 

by the maximum distance (4), normalizing the score between zero and one:  347 

 348 

𝑃𝑂𝐷 =
∑𝑎𝑏𝑠(𝑝𝑒𝑎𝑘 − 	𝑡𝑟𝑢𝑒)
𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  349 

 350 

On this distance metric, lower values indicate a closer correspondence between ping-induced peaks 351 

and condition presentation order, which in turn confers stronger evidence for ping-based decoding 352 

enhancement. For our statistical evaluation, we used a two-level permutation approach (similar to van 353 

Bree et al., 2022). Specifically, we compared the distribution of empirical PODs with PODs calculated 354 

across 106 second-level permutations, randomly grabbing from the pool of first-level shuffled decoder 355 

time courses. The p-values were defined by the resulting percentile of the empirical POD within the 356 

distribution of second-level shuffled PODs (one-sided test, empirical < permuted). 357 

For the detection of decoder peaks in this analysis, we detected the maximum peak in the 358 

derivative of the cumulative sum of decoding time series. We chose this peak detection method over 359 

more standard approaches—such as simply extracting the largest peak from raw decoding series—360 

because independent simulations revealed that this algorithm is most powerful at detecting true POD 361 

effects, outperforming a range of competing approaches (Supplementary Materials; Section 2). 362 
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 363 

Results 364 

Behavioural results 365 

As expected in light of our experimental design, participants achieved high memory recognition 366 

performance, with scores approaching ceiling across behavioural analyses. First, we found no 367 

significant difference in memory performance across participants between the ping (M = 0.980, SE = 368 

0.0032) and no ping condition (M = 0.984, SE = 0.006) during the recognition phase (t(27) = -0.745, p 369 

= 0.463; Fig. 1B), suggesting that the decoding analyses that follow are not influenced by absolute 370 

inter-condition differences in behaviour. This general near-ceiling performance is also apparent when 371 

analysing recognition performance across participants (M = 0.980, SD = 0.015; Fig. 1C) and blocks 372 

(M = 0.980, SD = 0.009; Fig. 1D). Furthermore, participants reported a high rate of remembered to 373 

forgotten judgments during the recall phase (M = 0.819; SD = 0.022). The average RT during 374 

encoding was 2313 ms for subsequently recognized trials (SD = 1041 ms; n = 2194 trials), and 2472 375 

ms for subsequently forgotten trials (SD = 1105 ms; n = 46 trials; Fig. 1E). 376 

 377 

Event-related potentials 378 

We observed a robust evoked EEG response after pings (Fig. 2). Specifically, for each of the three 379 

stimulus onset asynchrony (SOA) conditions, we observed an extended peak of activity across 380 

occipitoparietal channels that followed the distribution of ping times for retrieval cue-locked data, 381 

peaking approximately 200 to 300 ms after pings. To further confirm that pings successfully evoked a 382 

visual response, we applied a ping-locked analysis across all channels and found significantly higher 383 

ERP amplitudes after pinged than no-pinged trials in posterior channels (Fig. 2, insets). Together, the 384 

ERP analysis suggests pings yielded a strong time-locked response that could putatively interact with 385 

ongoing LTM representations. For cue-locked and ping-locked ERPs for each participant, time-386 

resolved topographical plots, and for p-values of each channel in Fig. 2 inset topographies, see the 387 

Supplementary Materials (Section 1). 388 

 389 
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Figure 2. Ping-induced event-related potential. Average evoked response in posterior EEG 391 
channels across early (turquoise), middle (blue), and late ping (purple) trials during the recall phase. 392 
The inset topographies reveal higher posterior amplitudes following ping trials as contrasted with no-393 
ping trials (Monte Carlo permutation test; Bonferroni-corrected). 394 
 395 

Decoding results 396 

Stimulus category selection 397 

We used a multi-class LDA on no-ping trials (25% of the overall recall trials) to determine which 398 

retrieved stimulus category (top, middle, or bottom level) is most robustly decodable when our main 399 

experimental pinging manipulation was not present (Fig. 3). We found that none of the three levels 400 

displayed significant windows of decodability during our retrieval period of interest from 500 to 2000 401 

ms after cue onset (Wilcoxon signed-rank test; p > 0.11 for top; p > 0.25 for middle; p > 0.07 for bot). 402 

We proceeded with the top-level, which with its two classes (objects and scenes) afforded simple 403 

binary classification with comparatively low variability in decoding performance. Next, during our main 404 

analysis, we investigated whether pings enhance the decodability of LTM contents. 405 

 406 

 407 
Figure 3. Stimulus category selection. Average decoding accuracy across stimulus category levels 408 
(top, middle, bottom). Decoding accuracy was quantified relative to the average performance across 409 
shuffled decoding results. No significant differences were observed for any level (Wilcoxon signed 410 
rank test, controlled for multiple comparisons using FDR).  411 
 412 

Main analysis 413 

For our central analysis, we compared decoder performance between ping and no-ping trials for top-414 

level (objects vs scenes) classification, both with the data locked to retrieval cues, and to 415 

pings/pseudo-pings (i.e., artificial markers derived from the pool of ping timings; Fig. 4). For the cue-416 

locked analysis, we found no windows where decoding was above chance for no-ping trials (two-level 417 

Monte Carlo permutation; p > 0.49; Fig. 4A), while the ping trials showed several significant windows 418 

of content decodability (p < 0.05; Fig. 4B). To validate our analysis we carried out a direct comparison 419 
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between the ping and no-ping trial decoder, as opposed to contrasting each condition with a shuffled 420 

baseline. In this analysis, we found no evidence for a ping-induced decodability enhancement; neither 421 

in the cue-locked (Wilcoxon signed-rank test; p > 0.99; Fig. 4C) nor in the (pseudo-)ping-locked data 422 

(p > 0.99; Fig. 4D). 423 

In light of an important methodological observation, we place more importance on the latter 424 

analysis, which directly compares the empirical decoding performance for ping and no-ping conditions 425 

without leveraging shuffled results. Specifically, we observed that the standard error of the mean 426 

(SEM) of the shuffled distributions varies substantially between ping (μSEM = 0.047) and no-ping (μSEM 427 

= 0.028), which we speculated could be explained by trial number differences alone. We inferred that 428 

since the ping trial decoder was trained and tested on three times more trials than the no-ping trial 429 

decoder, this might naturally shrink SEM values of the shuffled distribution and thereby modulate test 430 

statistics. In support of this interpretation, we built a simulation which confirms that an increase in the 431 

number of trials (and the number of decoding classes) reduces p-values, but only if there is an effect 432 

in the data (Supplementary Materials; Section 3). Therefore, instead of relying on ping-to-shuffle and 433 

no-ping-to-shuffle comparisons where power differences might misleadingly lead us to infer a ping-434 

related enhancement, we placed most credence in the direct comparison between ping and no-ping 435 

trials in which shuffled results are sidestepped (Fig. 4C & Fig. 4D; see the Supplementary Materials 436 

for an extended discussion; Section 3.3). 437 

 438 

 439 
Figure 4. Main decoder analysis. (A) Cue-locked decoding across no-ping trials compared with a 440 
shuffled baseline. (B) Cue-locked decoding across ping trials compared with a shuffled baseline. (C) 441 
Direct comparison between on ping and no-ping trials. (D) Same as (C), but with the data time-locked 442 
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to pings and (artificially marked) pseudo-pings. In (A) and (B) the shaded area represents the 5th and 443 
95th percentile of the distribution of 2nd-level permutations of the shuffled decoder, and in (B) and (C) it 444 
represents the SEM of the empirical decoder. In (A) and (B), p-values were derived using two-level 445 
Monte Carlo permutations, and in (C) and (D) using Wilcoxon signed-rank test (all p-values were 446 
corrected using FDR). 447 
 448 

Condition-relative decoding peaks 449 

Next, we turn to the presumably more sensitive peak-order analyses. Qualitatively, we observe no 450 

ordered structure in decoder peaks when averaging across participants for each SOA pinging 451 

condition (Fig. 5A). For a quantitative analysis, we formally compared peak order structure by 452 

comparing POD scores for the empirical and shuffled decoder using two-level permutation tests. This 453 

analysis confirmed the previous result by revealing no significant evidence for the hypothesis that 454 

pings induce systematic differences in the order of decoding peaks (p = 0.357; Fig. 5B). 455 

 456 

 457 
Figure 5. Condition-relative peak analysis. (A) Decoding results specific to for early (cyan), middle 458 
(blue), and late (purple) ping conditions, averaged across participants. (B) Peak order distance scores 459 
for the empirical decoder (red line) among a pool of 2nd-level permutations derived from the shuffled 460 
decoder (grey distribution). 461 
 462 

Discussion 463 

In this study, we set out to systematically evaluate visual perturbation, or ping-based stimulation, as a 464 

method to dynamically enhance the decodability of reactivated neural representations during memory 465 

recall. Such an approach could supplement offline analytical approaches by adding further read-out 466 

enhancements online at the experiment side. Despite promising results in the WM literature, in this 467 

LTM context we found no evidence for a ping-based enhancement across several time-resolved 468 

decoding analyses. While pings evoked a strong brain response, they did not detectably boost neural 469 

signatures of memory representations in EEG data. We draw this conclusion based on two key 470 

results. First, in the main comparison between pinged trials and non-pinged trials, we found no 471 

significant decoding difference regardless of whether the data was locked to (pseudo-)pings or 472 

retrieval cues. Second, in a more advanced analysis that leverages the constraining information of 473 
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ping presentation timings during the experiment, we also found no evidence for ping-related decoding 474 

increases. 475 

 There are three overarching explanations for these null results. First, there could be an effect 476 

in the data that was left undetected analytically or statistically. Second, there could be an effect that 477 

manifests across other experimental contexts, but not with this study’s parameters. Third, there could 478 

be no effect in principle, with LTM-based retrieval eluding the enhancement of representational 479 

readouts using pings. We consider each option in turn. 480 

 First, the signal analysis parameter space is high, with variability in parameters across 481 

preprocessing and statistical analysis steps potentially altering the results. One important source of 482 

variability concerns the implementation of decoding techniques. Namely, we do not rule out that 483 

untested decoding methods such as linear approaches beyond LDA or non-linear classifiers would 484 

have resulted in performance enhancements induced by pings. More trivially, our analyses could have 485 

been optimal, with our key statistical results containing a type-II statistical error. 486 

 Second, the parameter space on the experimental side is also high. Here, we opted for a 487 

word-image association task, which has previously been shown to afford classification-based 488 

inferences about memory processing in the brain (Linde-Domingo et al., 2019; Martín-Buro et al., 489 

2020; Mirjalili et al., 2021; Kerrén et al., 2022). However, other LTM tasks might be better suited to 490 

reveal ping-based enhancements. Besides the memory task itself, a key set of parameters concerns 491 

the presentation of pings. In this study, we chose a high-intensity, short-lasting ping presented with a 492 

uniform distribution between 500 and 1500 ms after retrieval cues. This time window was selected 493 

based on a review of the timeline of memory reactivation during cued recall, which suggested a 494 

maximal content reinstatement within this period (Staresina & Wimber, 2019). However, we observed 495 

that decoding was highest late within and even after this range, at approximately 1200 – 2000ms after 496 

cue (see Fig. 4D). Decoding plateaus that exceed 1500ms have also been observed in recent work 497 

that employed a similar task and analysis pipeline (Kerrén et al., 2022). This raises the possibility that 498 

the aforementioned 500 to 1500 ms window is biased to be too early—perhaps because it was 499 

estimated based on intracranial EEG research where recordings tend to focus on the hippocampus 500 

and other regions that activate early during retrieval (Merkow et al., 2015; Mormann et al., 2005; 501 

Staresina et al., 2019). Put differently, it is possible that we did not find significant effects because the 502 

signatures of retrieved contents tended to arise robustly only after our ping presentation times. We 503 

recommend that future work considers later ping times, potentially informed by maximum decodability 504 

periods found in this and other work, or ideally in newly acquired pilot data. Moreover, additional 505 

research could explore parameters such as ping duration, intensity, and strength. Furthermore, 506 

besides visual pings, a plethora of other perturbational approaches are on stock that could realize the 507 

ping’s proposed effects. Also inspired by WM research, stimulation using auditory impulses might 508 

offer a multimodal route to improving the readout of LTM contents (Kandemir & Akyürek, 2023). 509 

Furthermore, brain stimulation methods like transcranial magnetic and ultrasound stimulation have the 510 

potential to regularize brain activity through the induction of a dynamics-altering magnetic or 511 

ultrasound pulse (Moliadze et al., 2003; Mueller et al., 2014).  512 
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 A third possibility is that none of these factors explain our null results, with ping-based 513 

approaches restricting their utility to WM tasks. One specific possibility could be that WM and LTM 514 

differ in their mechanisms of action, with separate kinds of neural processes underpinning them. 515 

Indeed, classically WM is believed to involve the active maintenance of stimulus-induced information 516 

(Fuster & Alexander, 1971; Goldman-Rakic, 1995), whereas LTM is assumed to be based on a 517 

generative reconstruction of past experience based on the activation of silent information-storing 518 

engrams (Josselyn & Tonegawa, 2020). Perhaps the sweep of activity associated with the ping 519 

interacts more effectively with functional brain activity maintained continuously from stimulus onset, 520 

thus explaining WM-to-LTM differences. Speaking against this interpretation is work that suggests 521 

WM representations are encoded in activity-silent networks through short-lasting synaptic changes 522 

(Kamiński & Rutishauser, 2020; Masse et al., 2020; Stokes, 2015), which would not be fundamentally 523 

different from how LTM works. Contradicting this in turn is a critique which argues that evidence for 524 

activity-silent networks in WM tasks could alternatively be explained by LTM processes kicking in 525 

(Beukers et al., 2021). Thus, since it is both unclear to what extent the mechanisms of WM and LTM 526 

differ and to what extent WM and LTM intertwine in studies where ping-based effects have been 527 

demonstrated, we avoid firm interpretations in this part of the possibility space. In summary, although 528 

pings unambiguously elicited expected patterns of visual activity (Fig. 2), we failed to find effects on 529 

memory decoding, either because they were left undetected in our analysis, because they do not 530 

show up in our experimental protocol, or because they do not exist. 531 

 This study builds on decoding research that investigates the physical basis of memory, 532 

leveraging its findings for a strictly instrumental purpose: the systematic enhancement of LTM 533 

readouts. This undertaking is key because the field presently lacks temporally sensitive neuroimaging 534 

methods that enable the consistent and clear readout of memory representations, which is needed to 535 

explain how the brain implements memory processes. Furthermore, the analytical challenges, null 536 

results, and possible solutions considered in this work could inform practice in fields closely aligned 537 

with memory, such as the neuroscience of mental imagery (Dijkstra et al., 2018). 538 

To conclude, most efforts to improve memory readouts from electrophysiology data have 539 

been restricted to the signal analysis end. Here, we advocate for research that explores online 540 

manipulations as memory tasks are unfolding, which has previously shown to complement or 541 

synergize with decoding techniques. For long-term memory decoding in particular however, such 542 

interventions are scarce, which limits research because memory involves low decodability to begin 543 

with. Thus, even if a further carving out of the parameter space does not demonstrate a notable 544 

benefit of visual perturbations, future research should creatively explore alternative online methods 545 

such as multimodal stimulation and non-invasive brain stimulation. 546 
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Supplementary Materials 730 

1. Event-related potential 731 

 732 

 733 
Supplementary Figure 1. Retrieval cue-locked ERP. The purple trace reflects the average cue-734 

locked response for each participant across posterior EEG channels. The grey horizontal line 735 

represents cue onset. For more details, see the Methods section in the main text. The amplitude on 736 

the y-axis is in arbitrary units. 737 

 738 

 739 

 740 
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Supplementary Figure 2. Retrieval ping-locked ERP. The purple trace reflects the average ping-741 

locked response for each participant across posterior EEG channels. The grey horizontal line 742 

represents ping onset. For more details, see the Methods section in the main text. The amplitude on 743 

the y-axis is in arbitrary units. 744 

 745 

 746 

 747 

 748 
Supplementary Figure 3. Retrieval cue-locked topographies. These topographical plots represent 749 

the average cue-locked activity across participants. The colours represent the difference in EEG 750 

activity before and after cue onset in arbitrary units (red colours represent activitypost > activitypre and 751 

vice versa for blue colours). No statistical analysis was carried out for these topographical contrasts. 752 

For more details, see the Methods section in the main text. 753 
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 754 
 755 

Supplementary Figure 4. Retrieval ping-locked topographies (ping vs. no ping trials). These 756 

topographical plots represent the average cue-locked activity across participants. The colours 757 

represent the difference in EEG activity between ping and no-ping (red colours represent activityping > 758 

activityno ping and vice versa for blue colours). No statistical analysis was carried out for these 759 

topographical contrasts. For more details, see the Methods section in the main text. 760 

 761 

 762 

Channel Early ping (p-val) Middle ping (p-val) Late ping (p-val) 

Fp1 0.032 0.616 0.246 

Fpz 0.089 0.079 0.011 

Fp2 0.042 0.537 0.115 

AF8 0.119 0.422 0.318 

AF7 0.014 0.272 0.954 

AF3 0.439 0.23 0.123 

AF4 0.712 0.541 0.014 

F7 0.002 0.346 0.358 

F5 0.068 0.439 0.33 

F3 0.119 0.477 0.693 

F1 0.597 0.662 0.119 

Fz 0.053 0.551 0.003 

F2 0.013 0.473 0 

F4 0.341 0.939 0.049 

F6 0.427 0.559 0.707 

F8 0.131 0.826 0.825 

FT8 0.001 0.097 0.049 

FC6 0.177 0.142 0.78 

FC4 0.962 0.176 0.881 
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FC2 0.245 0.276 0.09 

FC1 0.969 0.503 0.881 

FC3 0.176 0.279 0.28 

FC5 0.011 0.083 0.112 

FT7 0.002 0.298 0.127 

T7 0.004 0.047 0.043 

C5 0.013 0.027 0.051 

C3 0.002 0.022 0.01 

C1 0.148 0.049 0.04 

Cz 0.144 0.155 0.114 

C2 0.305 0.182 0.104 

C4 0.02 0.004 0.014 

C6 0.003 0 0.003 

T8 0.002 0.002 0.003 

TP10 0.002 0 0 

TP8 0 0 0 

CP6 0 0 0 

CP4 0.001 0 0.001 

CP2 0.006 0.001 0.001 

CPz 0.019 0.006 0.01 

CP1 0.272 0.002 0.003 

CP3 0 0 0.001 

CP5 0.002 0.001 0.001 

TP7 0.002 0.008 0.001 

TP9 0 0 0 

P7 0 0 0 

P5 0 0 0 

P3 0 0 0 

P1 0 0 0 

Pz 0.001 0 0 

P2 0.001 0 0 

P4 0 0 0 

P6 0 0 0 

P8 0 0 0 

PO8 0 0 0 

PO4 0 0 0 

POz 0 0 0 

PO3 0 0 0 

PO7 0 0 0 

O1 0 0 0 

Oz 0.001 0 0 

O2 0 0 0 

 763 

Supplementary Table 1. P-values associated with inset topographies in main text Fig. 2; rounded to 764 

three decimal points. 765 
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2. Peak order analysis simulation 766 

2.1 Time series simulation 767 

We used MATLAB (the MathWorks) to generate time series with two components: (1) a peak at a 768 

fixed time point (1000 ms), and (2) autocorrelated noise generated using a random walk procedure. 769 

We matched several characteristics of the simulated time series to our empirical decoding data, 770 

including the analysis period (500 to 2000 ms), sampling rate (50 Hz), and the number of (virtual) 771 

participants (N = 29). The signal-to-noise (SNR) ratio of the simulation was set to 1.15, qualitatively 772 

matching peaks observed in the empirical data. We found that varying the SNR does not significantly 773 

alter the results. We generated 1000 trials per participant, resulting in 29000 trials in total. 774 

 775 

2.2 Analysis 776 

We included a smoothing parameter that implemented one of four smoothing methods: no filter, a 777 

Gaussian filter, a Savitzky-Golay filter, and a median filter. We also included a window size for 778 

smoothing, set to 10 samples for our main analysis. We compared the performance of eight peak 779 

detection methods, evaluating each of them based on the absolute distance between estimated peaks 780 

and true peaks—amounting to a simplified version of the peak order distance score described under 781 

condition-relative decoding peaks in the main text. The winning method was locked in for our 782 

empirical analysis. We tested eight peak detection methods: 783 

(1) Low-pass approach, where the maximum peak was computed after a low-pass filter was 784 

applied to the time series. 785 

(2) Maximum value approach, which simply computed the maximum value per time series 786 

regardless of whether the surrounding data was peak-like. 787 

(3) Cumulative sum approach, which computed the maximum peak in the derivative of the 788 

cumulative sum of the data. 789 

(4) Cumulative integral approach, which computed the maximum peak in the cumulative integral 790 

of the data via the trapezoidal method. 791 

(5) Integral cumulative sum approach, which worked as the previous method but which operates 792 

over the cumulative sum rather than raw time series. 793 

(6) Wavelet transform-based method, which finds the maximum peak in a wavelet decomposed 794 

version of the data. 795 

(7) Hilbert transform-based method, which find the maximum peak in the amplitude fluctuations in 796 

the envelope of the time series. 797 

(8) Cross-correlation method, which finds the time lag with a maximal correlation between the 798 

signal and iteratively shifted versions of itself. 799 

 800 

2.3 Results 801 

We found that approach 5—the integral cumulative sum approach—reliably achieves low absolute 802 

distance errors across parameters (Supplementary Figure 5). These results were generally 803 

unchanged across adjustments of the parameters (to evaluate this, we refer to the code published 804 

with this manuscript). Thus, we used approach 5 in our main peak order detection analysis. 805 
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 806 

Supplementary Figure 6. In simulated time series, the integral cumulative sum approach works best 807 

for detecting a peak in noisy time series. The red circle indicates the best-performing method, and 808 

yellow the second best-performing method. Errors were computed based on the absolute distance in 809 

milliseconds (ms) between estimated and true peak location. 810 

 811 

3. Class and trial number decoding simulation 812 

We speculated based on a qualitative inspection of the empirical decoding results that the number of 813 

trials (Ntrials) and classes (Nclasses) reduces the statistical significance of decoding results. We 814 

evaluated this intuition by demonstrating using simulations that these two parameters do indeed 815 

influence the variance of shuffled and empirical results, which in turn affects p-values but only if there 816 

is a true effect in the data. 817 

 818 

3.1 Time series simulation 819 

Using MATLAB, we generated one ground truth vector of class labels which represented the true 820 

class structure in the simulated data. This vector contained a random sequence of integers randomly 821 

grabbed between the interval 1 and Nclasses. For example, with 16 classes, the ground truth pattern 822 

might have contained a sequence of [2,7,15,4,13,17] and with 2 classes a sequence of [2,2,1,2,1,2]. 823 

 Then, to simulate shuffled decoding results, we generated a distribution of random sequences 824 

of integers identical to the ground truth procedure, but with newly generated random integers. These 825 

random sequences represented shuffled decoding results and were scored based on their average 826 

element-wise correspondence to the ground truth pattern—which is how decoding accuracy is 827 

normally computed. For example, if the permuted vector is [2,1,2,2,1,1] and the true sequence is 828 

[2,2,1,2,1,2], the accuracy would be 50% because half of the class labels correspond to the true 829 

structure. Trivially, with increasing repetitions the shuffled distribution will approach chance level 830 

predictions of the ground truth pattern (i.e., the expected value is exactly at 1/Nclasses). 831 
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 Finally, to simulate empirical decoding results, we again generated a distribution of random 832 

integers identical to the procedure for shuffled and ground truth decoding results. However, for these 833 

data we manually injected between 0% and 60% of the ground truth pattern into the otherwise 834 

random vector, effectively modulating decoding accuracy. With 0% of the ground truth injected, there 835 

is no statistically detectable difference in accuracy between empirical and shuffled decoding results, 836 

because the vectors are equally random. With 60%, the encoding results are substantially more 837 

accurate than shuffled results, yielding above chance decoding accuracy. 838 

We simplified our simulation by operationalizing the variable Ntrials as the number of elements 839 

in the vector, allowing us to efficiently investigate how the number of observations influences 840 

statistical tests. We also compared Nclasses = 2 and Nclasses = 16, which respectively match the number 841 

of classes for top- and bottom-level category decoding in our main experiment. Both Ntrials and Nclasses 842 

were independently manipulated in a 2 ∗ 2 factorial design, allowing us to evaluate the contribution of 843 

each variable toward statistical outcomes (as a function of effect size). 844 

 845 

3.2 Results 846 

First, with respect to Nclasses, we found that increasing the number of classes reduces the spread of 847 

both shuffled and empirical decoding results (Supplementary Figure 7; columns). This happens both if 848 

there is no true effect in the empirical data, and when a significant proportion of the ground truth is 849 

inserted into the empirical data. Second, we found that Ntrials similarly reduces the variance of both 850 

shuffled and decoding results, both across low and high Nclasses (Supplementary Figure 7; top and 851 

bottom half). Thus, we conclude that both factors modulate the likelihood of finding a significant 852 

difference between empirical and shuffled results, but only if there is a true effect in the data. Indeed, 853 

as we can glean from the results based on non-existent effects, the distributions of empirical and 854 

shuffled will overlap regardless of Ntrials or Nclasses (Supplementary Figure 7; left half). In contrast, if 855 

there is an effect (60% injected ground truth), both Ntrials and Nclasses independently increase the 856 

distributional distance between empirical and shuffled accuracy values.  857 

 858 

3.3 Discussion 859 

We found that Ntrials and Nclasses independently reduce the variance of accuracy results, which will 860 

affect statistical tests between empirical and shuffled distributions but only if there is an effect in the 861 

data. As suggested in the main text, these findings suggest that statistical analyses that depend on 862 

variance comparisons between empirical and shuffled distributions should be interpreted with care if it 863 

is done across conditions with varying Ntrials and Nclasses. With regard to our main analysis for example, 864 

the fact that the decoder based on pinged trials yields more significant decodability compared to the 865 

decoder based on no-pinged trials should be interpreted with caution because there are differences in 866 

Ntrials between the two conditions that could partially or fully explain this effect. More generally, we 867 

found that the condition with more trials or more classes is by default more likely to yield significant p-868 

values—but only if a true effect exist. 869 

 870 
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 871 
Supplementary Figure 7. The effects of class and trial number on decoding accuracy. Both the 872 

number of classes (columns) and trials (top vs. bottom half) influences the distance between shuffled 873 

and empirical distributions—but only if there is an effect in the data (left vs. right half). 874 

 875 

These findings may be a manifestation of the classical notion of statistical power in statistical 876 

analysis but within the less intuitive context of decoding accuracy. Our interpretation then is not that 877 

Ntrials and Nclasses must necessarily be equal between conditions for a statistical comparison to be 878 

meaningful. Rather, we wanted to err on the side of caution and ensure that analyses where power 879 

differences could possibly explain condition differences (e.g., Fig. 3 and Fig. 4A and 4B in the main 880 

text) do not inform subsequent analyses and scientific interpretations by themselves. Instead, we 881 

supplemented each of the implicated analyses with additional rationale (in the case of Fig. 3) or 882 

analyses that do not involve empirical-to-shuffle decoding comparisons. Indeed, Fig. 4C and Fig. 4D 883 
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involve direct comparisons between empirical and shuffled distributions, sidestepping the issue 884 

altogether. 885 
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