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A checkpoint function for Nup98 in nuclear pore
formation suggested by novel inhibitory nanobodies
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Abstract

Nuclear pore complex (NPC) biogenesis is a still enigmatic example
of protein self-assembly. We now introduce several cross-reacting
anti-Nup nanobodies for imaging intact nuclear pore complexes
from frog to human. We also report a simplified assay that directly
tracks postmitotic NPC assembly with added fluorophore-labeled
anti-Nup nanobodies. During interphase, NPCs are inserted into a
pre-existing nuclear envelope. Monitoring this process is challen-
ging because newly assembled NPCs are indistinguishable from
pre-existing ones. We overcame this problem by inserting Xenopus-
derived NPCs into human nuclear envelopes and using frog-specific
anti-Nup nanobodies for detection. We further asked whether anti-
Nup nanobodies could serve as NPC assembly inhibitors. Using a
selection strategy against conserved epitopes, we obtained anti-
Nup93, Nup98, and Nup155 nanobodies that block Nup–Nup
interfaces and arrest NPC assembly. We solved structures of
nanobody-target complexes and identified roles for the Nup93 α-
solenoid domain in recruiting Nup358 and the Nup214·88·62
complex, as well as for Nup155 and the Nup98 autoproteolytic
domain in NPC scaffold assembly. The latter suggests a checkpoint
linking pore formation to the assembly of the Nup98-dominated
permeability barrier.
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Introduction

The nucleus and cytoplasm of eukaryotic cells are separated by the
nuclear envelope (NE), which comprises two concentric lipid
bilayers: an outer nuclear membrane (ONM) and an inner nuclear
membrane (INM). This separation protects the genome, allows

proper handling of introns, and provides sophisticated control over
gene expression. However, it also necessitates a dedicated infra-
structure for communication and fine-tuned exchange between the
two compartments. Nucleocytoplasmic transport proceeds through
NE-embedded nuclear pore complexes (NPCs; reviewed in Görlich
and Kutay, 1999; Wing et al, 2022). With a molecular mass of
around 120 MDa and an outer diameter of ~120 nm in higher
eukaryotes, NPCs are among the cells’ largest protein complexes.
They are composed of about 30 different proteins called
nucleoporins, or Nups for short (Fig. 1A; reviewed in Knock-
enhauer and Schwartz, 2016).

The NPC scaffold has octagonal symmetry and is organized in
three coaxial, stacked rings. The inner ring (IR) encloses the central
transport channel, and it is flanked by two outer rings: the
cytoplasmic ring (CR) and the nuclear ring (NR; Fig. 1A). Several
Nups pre-assemble into subcomplexes. The Y-complex, named for
its Y-shaped structure, is the largest Nup complex and the most
prominent building block of the outer rings (Siniossoglou et al,
2000; Harel et al, 2003b; Walther et al, 2003a; Beck et al,
2004, 2007). In vertebrates, it consists of nine proteins, namely
Nup160, Nup133, Nup107, Nup96, Nup75, Nup43, Nup37, Sec13,
and Seh1.

The Nup93·Nup188 complex (Miller et al, 2000) is a constituent
of the inner ring, while recent NPC structures have shown that the
(paralogous) Nup93·Nup205 complex is present in all three rings
(Bley et al, 2022; Mosalaganti et al, 2022; Zhu et al, 2022). Nup35
(also called Nup53 or MP44) and Nup155 are further structural
elements of the inner ring, connecting it through Aladin and the
membrane-integral nucleoporin Ndc1 to the pore membrane
(Eisenhardt et al, 2014; Mosalaganti et al, 2022).

So-called FG Nups equip NPCs with a permeability barrier.
Their intrinsically disordered FG repeat domains can engage in
cohesive interactions and condense into a selective FG phase. The
FG phase is highly permeable to shuttling nuclear transport
receptors (NTRs) and NTR·cargo complexes, while rejecting inert
macromolecules that are not recognized as valid cargoes (Schmidt
and Görlich, 2015; Labokha et al, 2013; Frey and Görlich, 2007).

Vertebrate NPCs contain 11 FG Nups, each anchored in a
specific way. Nup98 provides the most cohesive and barrier-critical
FG domain (Hülsmann et al, 2012). It is anchored by its
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autoproteolytic domain (APD) either to the flexible N-terminus of
Nup96 in the Y-complex (Hodel et al, 2002) or to the β-propeller of
Nup88 (Griffis et al, 2003). The N-terminus of Nup93 provides
binding sites for two other FG Nup complexes, namely the
Nup62·58·54 coiled-coil trimer complex (Chug et al, 2015; Stuwe
et al, 2015) and the Nup214·Nup88·Nup62 complex (Griffis et al,
2003; Bley et al, 2022). The Nup62·Nup214·Nup88 complex also
appears to contact Nup85 (Fontana et al, 2022).

Y-complexes of the cytoplasmic ring anchor Nup358/ RanBP2
(Beck et al, 2004, 2007), a giant FG Nup that forms the cytoplasmic
filaments (Walther et al, 2002; Wu et al, 1995; Yokohama et al,
1995). In addition to providing several FG domain segments,
Nup358 pentamerizes and functions as an architectural element of
the cytoplasmic ring that stabilizes interactions between
Y-complexes (Von Appen et al, 2015; Zhu et al, 2022; Bley et al,
2022; Mosalaganti et al, 2022).

In animals, NPCs form de novo from individual Nup complexes
at two distinct stages of the cell cycle, namely upon exit from
mitosis and during interphase. In mitosis, NPCs and the NE
disassemble prior to chromosome segregation, resulting in soluble
Nups and Nup complexes as well as in the dispersal of membrane-
integral Nups into vesicles/NE remnants (reviewed by Kutay et al,
2021). After cell division, NPCs re-assemble “postmitotically” from
these building blocks in a synchronized wave, while fusion events
between membrane sheets and vesicles re-form a closed NE and
establish the special topology of the pore membrane.

Extracts from activated Xenopus eggs have been widely used to
reconstitute postmitotic NPC assembly in the test tube (Newport,
1987; Finlay and Forbes, 1990; Marshall and Wilson, 1997; Bernis
and Forbes, 2015). Xenopus eggs are laid in metaphase of meiosis II.
Their nuclei are thus disassembled, and they contain large
stockpiles of all NPC and NE components. Upon activation, they
return to an interphase state and become assembly-competent. In a
typical nuclear assembly experiment, egg extract is mixed with
demembranated sperm chromatin that serves as an assembly
template. Within an hour, nuclei form that contain functional
NPCs, exclude inert macromolecules, and actively accumulate
supplied import cargoes. This in vitro system thus recapitulates
NPC and NE formation at the end of cell division and allows the
analysis of phenotypes that would be lethal in a cellular setting
(Fig. 1B).

A powerful approach has been to deplete specific Nup
components from Xenopus egg extracts and analyze the con-
sequences for the assembly process (reviewed in Antonin et al,
2008; Schellhaus et al, 2016). This approach revealed essential
functions of the Y-complex (Walther et al, 2003a; Harel et al,
2003b; Franz et al, 2007; Rasala et al, 2008), Nup35 (Vollmer et al,
2012), Nup93 (Sachdev et al, 2012), and Nup155 (Franz et al, 2005)
in NPC scaffold assembly. This way, it has also been shown that a
functional permeability barrier requires cohesive Nup98 FG repeat
interactions (Hülsmann et al, 2012).

However, Nup depletions are tedious; they may remain
incomplete, may damage the extracts in a non-specific manner,
or may not be feasible for all components. Furthermore, removing
an entire protein or Nup complex abolishes multiple
protein–protein interactions and introduces a rather dramatic
change in the system. Therefore, it is not straightforward to define
which assembly step(s) are specifically affected or whether the
observed phenotypes correspond to actual intermediates.

In contrast to the postmitotic assembly mode described above,
NPCs are inserted into an intact NE during interphase. This
requires a pore-forming fusion event between the inner and outer
nuclear membranes (reviewed in Otsuka and Ellenberg, 2018) and
is also more fundamental since it is the only NPC biogenesis
pathway in organisms with closed mitosis (such as fungi).

Interphase NPC assembly has been followed by examining the
increase in NPC numbers after the completion of postmitotic NPC
assembly from Xenopus egg extracts (D’Angelo et al, 2006; Vollmer
et al, 2015) and also visualized by live-cell and electron microscopy
in other model systems (Maul et al, 1972; Goldberg et al, 1997;
Dultz and Ellenberg, 2010; Otsuka et al, 2016). The earliest
assembly event has been proposed to be the direct binding of
Nup153 to the INM. Nup153, in turn, is thought to recruit the
Y-complex to new assembly sites (Vollmer et al, 2015). Subse-
quently, additional Nups appear to be recruited, perhaps exerting
mechanical force to deform the NE. The local fusion between the
INM and ONM seems to require Torsins (Laudermilch et al, 2016;
Rampello et al, 2020; Prophet et al, 2022), but is otherwise only
poorly understood.

It is generally accepted that interphase and postmitotic NPC
assembly proceed through a stepwise sequence of structurally
defined intermediates, and fundamental mechanistic differences
between the two pathways have been described (Antonin et al,
2008; Dultz and Ellenberg, 2010; Otsuka et al, 2016, 2018).
Nevertheless, either pathway is still poorly understood, mainly
because it has been very difficult to identify assembly intermediates,
arrange them in temporal order, and characterize them both
biochemically and structurally.

In this study, we introduce the use of Nup-specific nanobodies
to investigate the mechanisms of both NPC assembly modes.
Nanobodies (Nbs) are the isolated variable domains of heavy chain-
only IgGs (Casterman et al, 1993). They are small in size
(~12–15 kDa) and can be selected for very high affinity (with
dissociation constants down to the picomolar range) and robust
folding. In addition, functional nanobodies can be produced in
microorganisms at high yields and easily labeled with fluorescent
dyes (reviewed in Cheloha et al, 2020; Helma et al, 2015; Ingram
et al, 2018; Muyldermans, 2013). We (Pleiner et al, 2015; Chug et al,
2015) and others (Nordeen et al, 2020) have previously employed
nanobodies to aid in the biochemical and structural characteriza-
tion of NPCs. Here, we extend the anti-Nup-nanobody toolbox to
investigate the mechanisms of NPC biogenesis and overcome
limitations of the currently available assembly assays.

Our first set of nanobodies, termed tracking Nbs, bind soluble
Nup complexes as well as intact NPCs. These nanobodies allow
robust Nup tracking along the course of postmitotic NPC assembly
by simply adding them in a labeled form to an assembly reaction
and detecting them by direct fluorescence microscopy. We also
present a novel approach to study the insertion of NPCs into an
intact interphase NE. It relies on human cell nuclei as NPC
insertion templates, a sfGFP-Nup107 fusion to mark pre-existing
NPCs, interphase Xenopus egg extract to supply nucleoporins that
assemble new NPCs into human NEs, and tracking nanobodies that
selectively stain and thus identify newly inserted Xenopus NPCs.
The system is flexible in terms of which Nups are being tracked,
and it allows for biochemical manipulation.

A second set of anti-Nup nanobodies, termed inhibitory Nbs,
block essential Nup–Nup interactions and arrest the assembly of
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functional NPCs by targeting conserved Nup epitopes that get
buried during NPCs assembly. All inhibitory nanobodies cross-
react between Xenopus and human Nups, whereas tracking
nanobodies can be either cross-reactive or Xenopus-specific. We
describe an anti-Nup93 inhibitory nanobody that prevents the
incorporation of Nup358 and the Nup214·88·62 complex, indicat-
ing a specific arrest in the assembly of the cytoplasmic ring. In
addition, inhibitory nanobodies targeting distinct domains of
Nup155 and the APD of Nup98 block very early assembly steps.
The requirement of the Nup98-APD for the assembly of the NPC
scaffold suggests that the formation of NE-perforating pores is
closely linked to the establishment of the permeability barrier. This
can be seen as a checkpoint to avoid assembly intermediates with
non-selectively open pores.

Results

Anti-Nup nanobodies for tracking postmitotic NPC
assembly from Xenopus egg extracts

We have previously generated a toolbox of Xenopus-specific anti-
Nup nanobodies that recognize fully assembled NPCs (Pleiner et al,
2015). These nanobodies were directly coupled to fluorophores.
They yielded bright and specific fluorescent signals at the NE of
Xenopus cells, without having to use secondary detection reagents.
We now use these nanobodies to simplify NPC assembly assays.

To study the postmitotic mode, we mixed various anti-Nup
nanobodies (carrying compatible fluorophores) with Xenopus egg
extract, an energy-regenerating system, sperm chromatin, and egg
membranes (Fig. 1B). The nanobodies bound their Nup targets
without interfering with the formation of functional NPCs, thus
allowing a multiplexed Nup tracking during the assembly process
by confocal laser scanning microscopy—live and without additional
sample preparation steps (Fig. 1C).

In some experiments, we also added an IBB-MBP-GFP fusion as
a fluorescent import cargo. The nuclear accumulation of this IBB
fusion allows correlating Nup recruitments with the formation of
functional NPCs (Fig. 1D), because cargo retention in the nuclear
compartment and the import-driving RanGTP gradient both
require a properly installed permeability barrier (reviewed in
Schmidt and Görlich, 2015; Knockenhauer and Schwartz, 2016).

For this study, we added 13 new anti-Nup nanobodies to our
repertoire (see below). This set (listed in Fig. 2A) now includes
nanobodies for tracking the Y-complex, Nup155, Nup93, Nup35,
Nup98, Nup358, and the Nup62·Nup58·Nup54 and Nup214·-
Nup88·Nup62 complexes during NPC assembly. The nanobody

names (Fig. 2A) include the recognized Nup, the recognized species
as a prefix (x, Xenopus-specific; xh, Xenopus-human cross-
reacting), a running number, and the suffix “t” (for “tracking”).

Tracking interphase NPC assembly using semi-
permeabilized HeLa cells and Xenopus egg extracts

Compared to postmitotic NPC assembly, interphase NPC forma-
tion is more challenging to track because only a few pores get
sporadically inserted into the growing NE over a relatively long
period of time. Moreover, the newly inserted NPCs are indis-
tinguishable from the pre-existing ones; they look identical
(reviewed in Otsuka and Ellenberg, 2018; Weberruss and Antonin,
2016). Nevertheless, we wanted to establish a readily accessible
experimental assay for interphase NPC assembly that allows direct
biochemical manipulation. This requires not only that the process
occurs in a test tube but also that newly inserted NPCs can be
identified and distinguished from pre-existing ones. To this end, we
considered assembling NPCs from a Xenopus egg extract into
human NEs. Newly inserted NPCs would then be of Xenopus origin
and thus chemically distinct from the pre-existing human NPCs.
Xenopus-specific tracking nanobodies should then label only newly
assembled NPCs (see Fig. 3A for a scheme). However, given the
great evolutionary distance between frogs and humans, it was
initially unclear whether the NPC components and assembly
machineries would still be compatible enough for such an
interspecies experiment to work.

To mark pre-existing human NPCs, we generated a CRISPR/
Cas9-edited HeLa cell line whose Nup107 carries an N-terminal
sfGFP tag. We grew these cells on coverslips, selectively
permeabilized their plasma membranes with a low concentration
(30 µg/ml) digitonin, and incubated them with a membrane-free
(“high-speed”) extract of activated Xenopus eggs, which is a rich
source of assembly-ready Nups and Nup complexes. To track the
assembly of new nuclear pores, we added fluorophore-labeled
nanobodies recognizing the Xenopus Y-complex, Nup155, or other
frog Nups.

In equatorial confocal sections of the incubated nuclei, the
Xenopus-specific tracking nanobodies produced a bright fluorescent
signal that coincided (at low resolution) with the GFP signal
(Fig. 3B, top panels). High-resolution images not only confirmed
that the Xenopus Y-complex had accumulated at the human NE but
also resolved the Xenopus signal as being located between old NPCs
(Appendix Fig. S1). In nuclear surface scans, the tracking
nanobodies produced a fluorescent spot pattern that was similar
to, but offset from, the GFP signal, which is also consistent with the
formation of new NPCs (Fig. 3B, bottom panels). Importantly, the

Figure 1. Anti-Nup nanobodies for tracking postmitotic NPC assembly from Xenopus egg extracts.

(A) Schematic representation of the NPC showing the locations of the major Nup complexes (B) Illustration of the nuclear assembly assay from Xenopus egg extracts in the
presence of anti-Nup nanobodies (see Fig. 2A). (C, D) For tracking, the soluble fraction of Xenopus egg extract was pre-incubated with indicated fluorescent nanobodies at
a 50 nM concentration, which is roughly stoichiometric to endogenous Nups (Wühr et al, 2014). Energy mix and sperm chromatin were added, and the chromatin was
allowed to decondense for 15 min. Then a purified Xenopus membrane fraction was added and the reactions allowed to proceed at 20 °C. Images of live nuclei were
acquired at the indicated time points using a LSM880 FAST Airyscan confocal microscope. (C) The Y-complex, Nup155, and Nup93 are recruited to the NE as nuclear
assembly proceeds and nuclei grow in size. (D) Reconstituted nuclei become transport-competent as the Y-complex and Nup98 are recruited to assembly sites. 1 µM IBB-
MBP-GFP was added as an active nuclear import reporter. This is a triple fusion of the Importin β-binding domain of importin α (a very strong nuclear import signal; Görlich
et al, 1996), the maltose-binding protein (MBP) and a green fluorescent protein (GFP). For the “false color” representation, the “Fire” LUT from “FiJi” was used. Scale bar,
5 µm. Source data are available online for this figure.
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A

Nb ID Nup target Specificity ReferenceUseEpitope

xNup93-Nb1t
(TP179)

Nup93 Pleiner et
al. 2015

Tracking

xhNup98-Nb3i Nup98 Xenopus +
human

Present
study

xhNup155-Nb2i Nup155 Xenopus +
human

Present
study

CTD
α-solenoid (**)xhNup155-Nb3i Nup155 Present

study

NTD
β-propeller (**)

xY-Nb1t Y complex Xenopus Present
studyTrackingNot

determined (*)

xNup98-Nb1t
(TP377)

Nup98 Xenopus Pleiner et al.
2015

APD
(residues 715-866) (**)

xNup155-Nb1t Nup155 Xenopus Pleiner et al.
2015TrackingOrth. to xh-Nup155-Nb2i

and xh-Nup155-Nb3i

xNup358-Nb1t Nup358

Xenopus +
human

Present
study

NTD
(residues 1-145)

xhNup35-Nb1t Nup35 Xenopus +
human

Present
study

RRM
domain (**)

xNup93-Nb2t
(TP317)

Nup93 Pleiner et
al. 2015

α-solenoid
(residues 168-820)

Xenopus +
human

Present
studyTrackingNup133

β-propeller

xhNup214-Nb1t Nup214
complex

Xenopus +
human

Nup214·Nup62·Nup88
trimeric coiled coil

xNup62-Nb1t
(Nb15) Nup62 complex Xenopus Chug et al.

2015

xhNup93-Nb3t Nup93

Xenopus

Present
study

Cryo-EM
reference

α-solenoid
(residues 168-820) (**)

Xenopus

Y complex

Xenopus

Present
study

xhNup133-Nb2t

Xenopus +
human

xhNup98-Nb2i Nup98 Xenopus +
human

Present
studyInhibitory

Nup358 Present
study

NTD
(residues 1-145)

Xenopus +
human

xhNup358-Nb2t

Nup62·Nup58·Nup54
trimeric coiled coil

APD
(residues 715-866) (**)

APD
(residues 715-866) (**)

Tracking

Tracking

Tracking

Tracking

Tracking

Inhibitory

Tracking

Tracking

Inhibitory

Inhibitory

InhibitoryxhNup93-Nb4i Nup93 Present
study

Xenopus +
human

α-solenoid
(residues 168-820)

α-solenoid
(residues 168-820) (**)

Phage-displayed
immune nanobody library

R. 1

Phage display
selection rounds

Xenopus
Nup

Human
Nup

Xenopus
Nup

Human
Nup

Xenopus
Nup

Human
Nup

Xenopus
Nup

Human
Nup

Xenopus
Nup

Human
Nup

R. 2

R. 3

xNup Nbs hNbsxhNup Nbs

B

Overview of the nanobodies used in this study

KD Xenopus Nup KD human Nup

500 pM 800 pM

2 nM≤ 10 pM

≤ 10 pM 500 pM

400 pM3 nM

≤ 10 pM 3 nM

1 nM≤ 10 pM

100 pM

≤ 10 pM ≤ 10 pM

20 pM

≤ 10 pM

1.7 nM

≤ 10 pM

n.d. No binding

No binding≤ 10 pM

No binding

No binding

> 100 nM (***)

20 pM

≤ 10 pM ≤ 10 pM

1 nM No binding

No binding

60 pM

4 nM
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nanobody signal was strictly dependent on the addition of egg
extract, confirming the species specificity of the tracking nano-
bodies and the Xenopus origin of the labeled NPCs.

During extract incubation, the initially flat HeLa nuclei became
rounder (Fig. EV1A). They grew ~twofold in volume (Fig. EV1B),
suggesting that a massive import of Xenopus nuclear proteins had
occurred, inflating nuclei by their osmotic-colloidal pressure. This
indicates that the newly assembled nuclei contained a functional
permeability barrier that kept the imported material inside the nuclei.

To assess whether different Xenopus Nups co-localize with each
other on the detected spots, we stained the samples with various
combinations of tracking nanobodies and imaged them at higher
resolution. Figure 4A shows that newly assembled NPCs can be
clearly identified as sfGFP-Nup107-free but Xenopus Y-complex,
Nup155, and Nup93-co-localizing spots. Xenopus Nup358 and the
Nup62 complex also co-localized with the Xenopus Y-complex,
indicating that barrier-forming FG Nups and the central organizer
of the cytoplasmic NPC ring were also recruited to the newly
inserted pores.

The Xenopus-specific xNup98-Nb1t and a Xenopus-specific anti-
Nup153 antibody co-localized with Xenopus-derived NPCs—as
expected from a faithful assembly process—but also gave bright
signals co-localizing with GFP-positive old human NPCs (Fig. 4B).
Since these reagents do not recognize the human proteins, as
confirmed by the lack of staining in the absence of egg extract, this
suggests either that the pre-existing NPCs still had vacant binding
sites for Nup98/Nup153, or that some exchange between NPC-
bound and free populations occurred over time. This would be
consistent with the reported mobility of these Nups (Griffis et al,
2002a, 2004; Rabut et al, 2004). It should be noted, however, that
the huge excess of Xenopus FG Nups in the added extract is likely to
increase the off-rates of the human proteins—as their anchoring
occurs through multiple weak interactions that are easily out-
competed by the excess molecules in a stepwise fashion.

The presented approach relies on a high species specificity of the
used tracking nanobodies (Fig. 2A), which can indeed be explained
by the corresponding nanobody-target structures. In the case of
xNup98-Nb1t, an arginine residue at CDR3 of the nanobody
interacts with an asparagine residue at the APD of Xenopus Nup98,
but would clash with a lysine at the same position in its human
counterpart, preventing its binding (Pleiner et al, 2015; Fig. EV2A).
Similarly, our newly solved cryo-EM structure shows that xNup93-
Nb2t fits well into a pocket at the C-terminus of Xenopus Nup93,
but clashes with the backbone of human Nup93 at the same protein
region (Fig. EV2B; Appendix Table S1).

As expected, cross-specific anti-Nup35 and anti-Nup214 com-
plex nanobodies (see below) stained both pre-existing (GFP-
positive) human and newly assembled (GFP-free) Xenopus NPCs as
spots of similar brightness (Fig. 4C). This is a key control,
documenting the architectural equivalence of old and new NPCs.

To further confirm the insertion of properly assembled NPCs,
we acquired higher-resolution images of the HeLa NE containing
newly assembled pores, using two-color STED (stimulation
emission depletion) microscopy (Klar et al, 2000; Göttfert et al,
2013). The anti-GFP nanobodies (labeling Nup107 in the pre-
existing human NPCs) allowed to resolve ring-like structures of
~100–120 nm in diameter (Fig. 5A,C), which is consistent with the
dimensions of the NPC outer rings. As expected, the Xenopus-
specific xY-Nb1t-stained rings of a similar shape and diameter,
which did not co-localize with the GFP-labeled old NPCs
(Fig. 5B,C).

These STED images (in particular the higher resolved channel 1)
appear to visualize not only fully assembled NPCs. Possibly they
also captured smaller Xenopus intermediates that might not yet
have reached the ring-like assembly stage (Fig. 5B). This is
particularly obvious in comparison to the imaged old human
NPCs that are surrounded by only very few intermediates (Fig. 5A,
left).

New NPCs detected in this assay did not cluster in specific
membrane regions but maintained an even and homogenous
density on the human NE (Figs. 4 and 5A,B), which was also
observed by Otsuka et al (2016) in live-cell microscopy studies.
Furthermore, the fact that essentially no GFP signal was detected in
the Xenopus Nup structures (Figs. 4 and 5A,B) indicates that the
new pores assembled de novo and did not originate from pore-
splitting events, which is also consistent with previous conclusions
(D’Angelo et al, 2006; Dultz and Ellenberg, 2010).

In these assays, we included membrane-depleted (“high-speed”)
egg extracts. Thus, if the new NPCs had incorporated any integral
membrane Nups, such as Ndc1 or Gp210, they should be of human
origin. To test this, we detected human Ndc1 and Gp210 with
antibodies and observed that both indeed co-localized with the new
pores stained with the Xenopus-specific xY-Nb1t (Fig. EV3). Thus,
human membrane Nups present in the HeLa cells support the
assembly of the new Xenopus NPCs.

Two hours after the addition of the Xenopus extract, Xenopus
NPCs represented ~30% (range 15–60%) of the pre-existing human
NPCs (Fig. EV1C). Longer incubations did not increase the number
of assembled Xenopus NPCs. Perhaps this plateau was reached
because membrane Nups (in particular, the essential transmem-
brane Nup Ndc1) had become limiting. Nevertheless, this initial
rate of NPC insertion is higher than in cultured HeLa cells (Maul
et al, 1972), where the count of NPCs doubles over a period of
~20 h (G1+ S+G2). We would explain this high rate by the
embryonic origin of the added extract and the high concentration
of available Nups.

The insertion of frog NPCs into a human NE is not a trivial
result. Instead, it implies that the ~30 soluble different frog Nups
can cooperate smoothly with the still elusive human membrane
fusion machinery and the at least three human membrane-integral

Figure 2. Overview of anti-Nup nanobodies and phage display strategy used in this study.

(A) List of anti-Nup nanobodies. The targeted Nup, specificity, affinities estimated by biolayer interferometry (Appendix Fig. S2), epitope, and use are indicated. NTD
N-terminal domain, CTD C-terminal domain, APD autoproteolytic domain of Nup98, orth. orthogonal, n.d. not determined. (*) Not determined because this nanobody
recognizes a still unidentified domain within the ~800 kDa-sized frog Y-complex that is not yet available in recombinant form. (**) for epitope determination, see below
Figs. 10, 11 and EV4; Appendix Fig. S4. (***) Affinities with a KD worse than 100 nM dissociate too rapidly for contributing detectable signals in NPC stainings. (B) Scheme
of the used phage display strategy to identify nanobodies with tailored specificities. xNup Nbs Xenopus-specific anti-Nup nanobodies, xhNup Xenopus-human cross-
reactive anti-Nup nanobodies, hNup Nbs human-specific anti-Nup nanobodies.
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Schematic of the established in vitro assay to track interphase NPC assembly

Figure 3. Interphase insertion of Xenopus NPCs into human NEs.

(A) Scheme of the assay. To initiate NPC assembly into an intact human NE, Xenopus egg extract (as a source of soluble xNups), fluorophore-labeled tracking nanobodies,
and energy mix are added to digitonin-permeabilized HeLa cells expressing a genomically sfGFP-tagged hNup107. In this setup, the newly inserted NPCs are of Xenopus
origin and can be specifically stained by the Xenopus-specific nanobodies. (B) Indicated Xenopus-specific tracking nanobodies were conjugated at two or three engineered
cysteines (Pleiner et al, 2015) to Alexa Fluor 568 maleimide (xY-Nb1t) or Alexa Fluor 647 maleimide (xNup155-Nb1t). They were then mixed with either buffer (−) or a
high-speed Xenopus egg extract (+), supplemented with energy, and incubated with the semi-permeabilized sfGFP-hNup107 cells for 2 h at room temperature (RT), before
confocal images were acquired. The Xenopus-specific tracking nanobodies gave a bright, specific signal at the midplane (top panels) and a punctate signal at the NE
surface (lower panels), which is consistent with the insertion of new NPCs. Scale bar, 5 µm. Source data are available online for this figure.
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Nups. Indeed, the fact that human Nup98 and human Nup153 can
be exchanged by their Xenopus counterparts (Fig. 4C) shows that
even NPCs containing Nups from multiple species are operational.
Given that the lineages leading to mammals and frogs diverged
~350 million years ago (Benton et al, 2015), such interspecies
compatibility is remarkable and suggests that functionally essential
Nup–Nup interfaces are well conserved through evolution.

A cross-species phage display strategy for targeting
functional Nup regions

Capturing and characterizing intermediate stages of NPC assembly
has remained the main bottleneck in the field. As NPCs are
essential structures, such capture can be complicated by lethal
phenotypes and is thus particularly challenging in living cells.
Biochemical alterations are easier to introduce in Xenopus cell-free
extracts, where all potential assembly phenotypes are, in principle,
accessible. In this system, only a few inhibitors of nuclear pore
formation have been described, including wheat germ agglutinin
(WGA) (Wiese et al, 1997), BAPTA (1,2-bis(O-aminophenoxy)
ethane-N, N, N’, N’-tetraacetic acid) (Macaulay and Forbes, 1996;
Wiese et al, 1997; Bernis and Forbes, 2015), and an excess of
importin β (Harel et al, 2003a; Walther et al, 2003b). These
treatments result in pore-free membranes and thus block NPC
assembly at very early stages, providing only limited information
on the mechanisms of this process.

We reasoned that nanobodies directed against functional Nup
interfaces could prevent relevant Nup–Nup interactions and thus
arrest the NPC assembly process at discrete intermediate steps.
Such nanobodies would act through the smallest possible change in
the system without having to deplete any protein. They would
provide “epitope resolution” and not just reveal requirements for
protein components or entire protein complexes. In addition,
nanobodies could be added to the soluble NPC components in
nonlimiting amounts, which would ensure that all targeted Nup
molecules become trapped in Nup⋅nanobody complexes when NPC
assembly is initiated.

To test this idea, we performed nuclear assembly reactions in the
presence of various anti-Nup nanobodies selected by Pleiner et al
(2015) (Fig. 1C,D); however, none of them affected the formation
of functional nuclear pores (see below). While initially disappoint-
ing, this outcome became plausible when considering (i) that all of
the initially tested nanobodies had been selected for their bright
stain of fully assembled NPCs (Pleiner et al, 2015), and thus for
targeting well-accessible epitopes, and (ii) that all of them recognize
non-conserved, Xenopus-specific epitopes. In contrast, functional
protein regions, whose block can arrest NPC assembly, should get
masked by protein–protein interactions and be well conserved
through evolution. With this in mind, we set out to select
nanobodies recognizing conserved Nup epitopes.

Since Pleiner et al (2015) had immunized alpacas exclusively
with Xenopus Nups, the antibody response was likely biased
towards variable Xenopus-specific surfaces that the immune system
did not recognize as “self”. To boost an immune response directed
against conserved epitopes, we re-immunized the same animals
simultaneously with Xenopus and human Nup homologs. We
chose the same Nup domains that had already been administered
by Pleiner et al (2015), namely the autoproteolytic domain (APD)

of Nup98, the Nup93 α-solenoid domain, and the full-length
Nup155. In addition, we immunized the N-terminal domain
(NTD) of Nup358 (Kassube et al, 2012), the RRM domain of
Nup35 (Handa et al, 2006), the β-propeller of the Y-complex
component Nup133 (Berke et al, 2004), and the trimeric (Δ FG)
Nup62·Nup214·Nup88 complex (Figs. 1A and 2A). This focus on
well-folded immunogens considered that nanobodies only rarely
bind linear epitopes.

We employed three parallel phage display strategies to select
binders of a given Nup from the obtained immune libraries: (i) a
Xenopus-specific (multi-round) selection using the Xenopus Nup
ortholog as a bait, (ii) a selection using the human Nup ortholog,
and (iii) a cross-specific selection alternating between the Xenopus
and the human Nup orthologs in successive selection rounds, in
order to exclusively enrich nanobodies recognizing Nup epitopes
that are conserved among the two species (Fig. 2B). The bait
concentrations were gradually reduced in each selection round to a
final concentration below 1 nM to only enrich high-affinity binders.
Not surprisingly, we re-discovered the same nanobody classes as
Pleiner et al (2015) in the Xenopus-specific selections against
Nup98, Nup93, and Nup155. However, all cross-specific pannings
selected new nanobody classes—consistent with an enrichment of
nanobodies against conserved Nup epitopes. Figure 2A provides an
overview of all selected nanobodies used in this study, including
estimates for their affinity as measured by biolayer interferometry
(Appendix Fig. S2).

Cross-specific tracking nanobodies that
stain human NPCs

We expressed and purified representative members of all nano-
body classes obtained from the cross-species selections, conjugated
them to fluorophores, and screened them for NPC staining
in HeLa cells. A subset, including xhNup133-Nb2t, xhNup93-
Nb3t, xhNup35-Nb1t, and xhNup358-Nb2t yield bright and
specific NPC signals in both fixed, Triton X-100-permeabilized
(Fig. 6A) and non-fixed, digitonin-semi-permeabilized (Appen-
dix Fig. S3) HeLa cells with still intact nuclear membranes,
suggesting that their epitopes are well-exposed in fully assembled
NPCs.

In addition, these four tracking nanobodies perform well in
super-resolution microscopy and allow to resolve NPC rings on
HeLa cell NEs by STED (Fig. 6B). As expected, nanobodies
recognizing Nups of the NPC outer rings (e.g., Nup358, Nup133)
labeled rings with larger diameters than nanobodies against inner
ring components (e.g., Nup93, Nup35; Fig. 6C).

Since these nanobodies originate from cross-specific phage
display selections, they can also track NPC assembly from Xenopus
egg extracts (Fig. 4A,C, see also below Figs. 8 and EV6). Probably,
they stain NPCs from other vertebrate organisms as well. To
understand such broad cross-reaction, we solved the crystal
structure of xhNup35-Nb1t bound to its target. This revealed that
the nanobody docks in two copies to a highly conserved epitope of
the homodimeric RRM domain of Nup35 (Fig. EV4), contacting
identical residues in the human and frog Nup. Consistent with this,
xhNup35-Nb1t stains fully assembled human and frog NPCs
(Figs. 4C, 6A,B, 8, and EV6) and is compatible with the assembly of
functional nuclear pores.
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Figure 4. Tracking nanobodies to image pre-existing human NPCs, new frog NPCs, and mobile Nups.

Interphase NPC insertion was initiated as described in Fig. 3, in the presence of the indicated tracking nanobodies and either buffer (−) or Xenopus egg extract (+). (A)
Xenopus Y-complex co-localizes with (Xenopus) xNup155, xNup62, and xNup358 in newly assembled frog NPCs. xNup155 also co-localizes with xNup93 in all cases. (B)
xNup98 and xNup153 are detected in both pre-existing and newly assembled NPCs. The buffer controls (no egg extract added) indicate that this is not due to cross-
reaction but to either complementing vacant binding sites in old pores or to subunit exchange. (C) Cross-specific xhNup35-Nb1t and xhNup214-Nb1t co-localize with both
pre-existing and newly assembled NPCs. To resolve single pores, the acquired confocal images were deconvolved by Airyscan Processing (Huff, 2015). Circles mark newly
inserted pores; arrows point to pre-existing NPCs. Prefixes indicating species specificity: x, Xenopus-specific; xh, cross-reaction between Xenopus and human. Scale bar,
0.25 µm. Source data are available online for this figure.

Mireia Solà Colom et al The EMBO Journal

© The Author(s) The EMBO Journal 9

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on A

pril 29, 2024 from
 IP 134.76.223.157.



Identification of cross-specific nanobodies that target
buried NPC epitopes

The NPC staining by the human-Xenopus cross-reacting nanobo-
dies xhNup93-Nb4i, xhNup98-Nb2i, xhNup155-Nb2i, and
xhNup155-Nb3i was remarkably dim (Fig. 6A; Appendix Fig. S3).
This was particularly striking when compared to the internal
sfGFP-Nup107 reference and to the tracking nanobodies tested in
parallel. These very weak signals could be explained by (i) a poor
affinity to their target Nups or (ii) by their epitopes being buried by
protein–protein interactions in fully assembled NPCs.

To distinguish between these scenarios, we measured affinities
for their recombinant Xenopus and human Nup targets and found
low nanomolar to low picomolar KDs (Fig. 2A; Appendix Fig. S2).
These numbers indicate a tight or even very tight binding. As a
complementary experiment, we used the weakly-staining nanobo-
dies as baits to purify soluble (unassembled) Nups from Xenopus
egg extracts and HeLa cell lysates. This resulted in a clean one-step

purification of Nup93 (with co-purifying Nup188 and Nup205),
Nup98 (with co-purifying Gle2), and Nup155 (Fig. 6D). HeLa and
Xenopus egg extracts gave essentially identical results, confirming
the cross-species recognition. Thus, the xhNup93-Nb4i, xhNup98-
Nb2i, xhNup155-Nb2i, and xhNup155-Nb3i nanobodies recognize
their targets specifically, which in turn is consistent with their low
to sub-nanomolar affinities (Fig. 2A). Their weak staining of intact
NPCs is therefore best explained by a burial of their epitopes.

Blocks in NPC assembly by nanobodies that target
conserved, buried epitopes

Next, we tested all cross-specific nanobodies for their effects on
postmitotic NPC assembly from Xenopus egg extracts. All
nanobodies that brightly stained NPCs of HeLa cells also allowed
the formation of import-competent nuclei and, thus, of functional
nuclear pores (Fig. 7A), which is not surprising given that their
epitopes are obviously exposed on the NPC surface.
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Figure 5. Ring-like architecture of Xenopus NPCs newly inserted into human NEs.

New NPC insertion was initiated as described in Fig. 3, in the presence of an anti-GFP nanobody (Kirchhofer et al, 2010) targeting the human sfGFP-Nup107 fusion of pre-
existing NPCs and xY-Nb1t specific for newly inserted frog NPCs. The two nanobodies had been coupled to compatible STED dyes using maleimide chemistry (Pleiner et al,
2015). Two-channel images of the NE plane were acquired using a STEDYCON microscope. The dyes were swapped between (A) and (B), as channel 1 provides higher
resolution. Newly inserted frog NPCs are marked by white circles or squares, pre-existing pores by white arrows. Yellow circles indicate putative Xenopus intermediates
that have not yet reached the state of a ring-like assembly. Scale bar, 200 nm. (A) The anti-GFP nanobody revealed ring-like human NPC structures of ~100–120 nm in
diameter, which did not co-localize with the spots labeled by the Xenopus-specific xY-Nb1t. (B) The Xenopus-specific xY-Nb1t yielded ring-like structures of similar size that
did not co-localize with the GFP-labeled old human NPCs. (C) NPC ring diameters from at least 50 different pores and two different nuclei were measured with FiJi. n.s.
difference not significant with P= 0.9 (unpaired t test). Source data are available online for this figure.
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In contrast, the xhNup93-Nb4i nanobody caused a quite
diagnostic phenotype. Import of IBB-MBP-GFP into assembled
nuclei was ≥tenfold reduced. Likewise, nuclear exclusion of MBP-
Cherry and an NES-GFP fusion failed; instead, the two reporters
equilibrated between nucleus and cytoplasm. This is consistent with
defects in the (passive) permeability barrier and in Xpo1-mediated
nuclear export (Fig. 7B,D). Nevertheless, it appears that at least
rudimentary NPCs can still assemble in the presence of this
nanobody (see also below).

In contrast, the phenotype was very severe when xhNup98-Nb2i,
xhNup98-Nb3i, xhNup155-Nb2i, or xhNup155-Nb3i were present
during the nuclear assembly reaction. Nuclear import of IBB-MBP-
GFP was drastically reduced—100-fold or even to the extent of
nuclear exclusion (Figs. 7B,D and EV5A, left). In addition, the
nuclei remained very small, probably because there was no nuclear
import to drive nuclear growth. Indeed, the “nuclei” trapped by
these nanobodies resemble those assembled in the presence of
WGA, an excess of importin β, or BAPTA (Fig. 7C), which are
known to inhibit nuclear pore formation completely and to result
in a pore-free nuclear envelope around the added chromatin (Wiese
et al, 1997; Harel et al, 2003a; Bernis and Forbes, 2015).

Strikingly, these nanobodies had no inhibitory effect when
added 30 min after membrane addition and thus beginning of the
assembly reaction (Fig. EV5B). Therefore, they do not block
nuclear import directly, supporting the interpretation that they
arrest NPC assembly by targeting Nup epitopes that are only
transiently accessible. Furthermore, this control is another strong
argument against off-target effects (besides their exquisite binding
specificities, as documented in Fig. 6).

Composition of nanobody-arrested (pseudo)
NPC assemblies

To characterize the assembly-arrested phenotypes at the level of NPCs,
we repeated the postmitotic assembly reactions with inhibitory
nanobodies, stained the resulting (pseudo) nuclei with the full set of
tracking nanobodies, and analyzed the samples in several ways.

Figure 8A shows scans through the equator of the whole (pseudo)
nuclei, Fig. 8B shows overview scans of the nuclear surface, while
Fig. 8C is a quantification of the respective Nup-positive structures.
This revealed that the inhibitory anti-Nup98 (xhNup98-Nb2i) and
anti-Nup155 nanobodies (xhNup155-Nb2i and -Nb3i) caused severe
defects, namely a dramatic loss of inner ring components (Nup35,
Nup93, Nup155) and FG Nups (Nup98, Nup358, Nup62·58·54 and
Nup214·62·88 subcomplexes) from the NE.

Nuclear surface scans at single-pore resolution (Fig. EV6) not
only confirmed the severe reduction of Nup-positive structures in
the arrested nuclei, but also revealed that the residual structures
had largely lost the NPC-typical colocalization between Nups. This
is consistent with inhibitory anti-Nup98 and anti-Nup155 nano-
bodies causing defects early in NPC assembly.

A quantification of these effects is shown in Fig. 9. It comprises
25 scatter plots, each analyzing (for hundreds of Y-complex-
positive structures) how a given inhibitory nanobody affected the
colocalization of a tracked Nup with the Y-complex. The figure is
laid out like a table, where each column represents one inhibitory
and each row one tracking nanobody. These analyses confirm that
the inhibitory anti-Nup98 and anti-Nup155 nanobodies disrupt the
ordered recruitment of inner ring and FG Nups to the Y-complex.
They also document that the inhibitory xhNup93-Nb4i was still
compatible with the assembly of a basic NPC scaffold and the
recruitment of Nup98 and the Nup62·Nup58·Nup54 complex, but
caused a selective loss of Nup358 and the Nup214·62·88 complex
from nuclear pores (see xhNup93-Nb4i panels in Figs. 8A,B, 9, and
EV6). In the following, we will delve deeper into the assembly
phenotypes and their structural basis.

Inhibitory nanobodies targeting distinct Nup155 domains
block NPC scaffold assembly

xhNup155-Nb2i recognizes the N-terminal β-propeller of Nup155,
whereas xhNup155-Nb3i recognizes its α-solenoid domain (Fig. 2A;
Appendix Fig. S4A–C). These two inhibitory nanobodies are not
only orthogonal to each other but also orthogonal to the anti-
Nup155 tracking nanobody (xNup155-Nb1t; Appendix Fig. S4D).
Thus, xNup155-Nb1t can track Nup155 molecules also in (nano-
body-inhibited) pseudo-NPCs.

The two inhibitory nanobodies blocked the postmitotic
incorporation of Nup155 into Y-complex-positive structures
(Figs. 8, 9, and EV6) and prevented the assembly of transport-
competent NPCs (Fig. 7B, D). Nup155 interacts with Nup160 of
the Y-complex, with Nup205, and with unstructured regions of
Nup98 (R3) and Nup35. In addition, it forms an interaction hub
with Ndc1 and Aladin that anchors the inner ring to the nuclear
membrane (Lin et al, 2016; Fontana et al, 2022; Mosalaganti et al,
2022). So far, we cannot tell which of these interactions are directly
blocked by the nanobodies. However, their strong phenotypes
reaffirm the central role of Nup155 in scaffold assembly
and demonstrate that both its β-propeller and its α-solenoid
domain are required.

Figure 6. Cross-specific (frog-human) anti-Nup nanobodies for imaging NPCs and purifying Nup complexes.

(A) Paraformaldehyde (PFA)-fixed and Triton X-100-permeabilized sfGFP-Nup107 HeLa cells were stained with 35 nM of the indicated nanobodies coupled to Alexa Fluor
647. Confocal sections across nuclei at their equatorial plane were acquired using a Leica SP8 confocal microscope with identical settings. Four of the eight nanobodies
gave bright NPC signals, indicating that they recognize exposed Nup epitopes. For a clearer comparison between the different nanobodies, a false-color representation is
shown (along with the applied color look-up table). The GFP signal is included as an internal reference. Scale bar, 10 µm. (B) Tracking nanobodies allow the ring-like
structure of human NPCs to be to resolved by STED microscopy. HeLa cells were stained with 35 nM of indicated Abberior STAR 635P-labeled nanobodies and imaged
using a STEDYCON system. Representative complete NPC rings are marked in white circles or rectangles. Scale bar, 250 nm. (C) Diameters of nanobody-decorated NPCs
rings were measured with FiJi as described in Fig. 5C. n.s., no significant difference; **** significant difference with P < 0.0001 (unpaired t test). For each tracking
nanobody, the diameters of 45 NPC rings from three different images were measured. (D) Nanobodies that failed to stain HeLa NPCs do purify their human and Xenopus
Nup targets in a specific manner. Indicated nanobodies were produced with a cleavable N-terminal (biotin)-Avi-SUMOEu1-tag, immobilized on streptavidin-agarose beads,
and incubated with either HeLa lysate or Xenopus egg extract to capture the targeted Nups. Nup-nanobody complexes were then eluted by tag-cleavage with SENPEuB

protease (Vera-Rodriguez et al, 2019) and analyzed by SDS-PAGE/Coomassie staining. Protein identities were confirmed by mass spectrometry. Source data are available
online for this figure.
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Even though the assembly of functional NPCs was fully blocked,
it was evident that some larger NPC subcomplexes of varying
composition still assembled in the presence of the anti-Nup155
inhibitory nanobodies (Figs. 9 and EV6). For example, we observed
objects that stained bright for Nup358 as well as for the Y- and
Nup214 complexes but lacked Nup155. Others stained positive for
Nup35, Nup93, and the Y-complex. These rudimentary structures

alter the correlation between the intensity of the Y-complex and
later-recruited Nups in the imaged pore-like structures (see Fig. 9
for an extensive analysis). They likely represent off-pathway
intermediates that are heterogeneously assembled. Their occur-
rence illustrates that NPC building blocks have an intrinsic affinity
for each other and suggests that proper NPC assembly is kinetically
controlled—probably by cooperative binding events.
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Figure 7. Inhibitory anti-Nup nanobodies disrupt the transport competence of newly assembled nuclei.

Xenopus egg extract was supplemented with either 2 µM of the indicated anti-Nup nanobodies, 2 µM importin β, 2.5 µM WGA, or 5 mM BAPTA. Postmitotic nuclear
assembly was then initiated by adding energy mix, sperm chromatin, egg membranes and allowed to proceed for 1 h at 20 °C. DAPI, a fluorescent import cargo (IBB-MBP-
GFP), and either a passive nuclear exclusion reporter (MBP-mCherry) or an active (Xpo1-dependent) export cargo (NES-GFP) were added. Confocal scans were taken
30min later. Scale bar, 5 µm. (A) None of the Xenopus-specific or cross-specific nanobodies that brightly stain HeLa NPCs (see Fig. 6A) caused transport defects, as
exemplified by the xhNup93-Nb3t control. (B) The four (inhibitory) cross-specific Nbs that failed to stain intact (fully assembled) NPCs (Fig. 6A; Appendix Fig. S3) and (C)
the traditional inhibitors of NPC assembly resulted in nuclei that failed to import the IBB-MBP-GFP fusion protein. (D) Total import was quantified as the partition
coefficient (Part. coef.) between the mean intensity inside and outside the nuclei multiplied by the nuclear volumes. The obtained values were then normalized to the
control values (i.e., nuclei assembled without inhibitor). Passive and active exclusion were quantified as the partition coefficient (Part. coef.) between the mean intensity
outside and inside the nuclei. The nuclear volume was quantified from 3D reconstructions of acquired z-stacks. In all cases, the mean and SD of 10–50 nuclei from at least
four independent experiments are shown. Source data are available online for this figure.
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Figure 8. NPC assembly arrests by inhibitory nanobodies.

Postmitotic nuclear assembly with inhibitory nanobodies was as described in Fig. 7. (Pseudo) nuclei were PFA-fixed, Triton X-100-permeabilized, stained with fluorescent
tracking Nbs targeting various NPC subcomplexes, and imaged on a LSM880 FAST Airyscan confocal microscope. Equatorial planes (A) and nuclear surface planes (B) of
the nuclei are shown. Note that the fixation conditions can alter the morphology and apparent volume of the nuclei; the volume phenotype is thus better appreciated in live
samples (i.e., Fig. 7). Scale bar, 5 µm. (C) Quantification of panel B but based on a larger dataset. Nup-positive structures were counted from acquired images of the
nuclear surface. Note that all inhibitory nanobodies disrupted the recruitment of Nups to the NE. The non-inhibitory nanobody controls in the different rows included:
xhNup93-Nb3t, xNup93-Nb1t, xhNup35-Nb1t, xNup155-Nb1t, xNup358-Nb1t, and xNup62-Nb1t. They were chosen so that they could not interfere with the labeled tracking
nanobodies. Source data are available online for this figure.
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The inhibitory anti-Nup93 nanobody disrupts the
assembly of the NPC cytoplasmic ring

The presence of xhNup93-Nb4i during postmitotic assembly
altered the composition of NPCs. The Y-complex, Nup35,
Nup93, Nup155, Nup98, and the Nup62·Nup58·Nup54 complex
still co-localized in approximately wild-type ratios. In contrast, the

Nup214·Nup88·Nup62 complex and Nup358 were detected only in
few pore-like structures and with clearly reduced intensities (Figs. 8,
9, and EV6). Since the Nup214·Nup88·Nup62 complex and Nup358
reside exclusively on the cytoplasmic side of the NPC, this points to
defects in the assembly of the cytoplasmic ring.

Nup358 is an architectural element of the cytoplasmic ring that
comprises two Y-complex rings, and the outer Y-complex ring is

xN
up

93
-N

b1
t

Non-inhibitory Nb xhNup155-Nb2i

Assembly-arrested NPCs and (pseudo) NPC structures

xN
up

15
5-

N
b1

t 2

1

0
0.5 1.0 1.5 2.0

xhNup93-Nb4i

2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

+ Nb

Buffer control
xhNup98-Nb2i xhNup155-Nb3i

xN
up

98
-N

b1
t 2

1

0
0.5 1.0 1.5 2.0

Buffer control

+ Nb
2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

xhNup93-Nb4i xhNup98-Nb2i xhNup155-Nb2i xhNup155-Nb3iNon-inhibitory Nb

xh
N

up
21

4-
N

b1
t

2

1

0
0.5 1.0 1.5 2.0

Buffer control

+ Nb
2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

xhNup155-Nb2i xhNup155-Nb3ixhNup93-Nb4i xhNup98-Nb2iNon-inhibitory Nb

xY-Nb1t signal

xN
up

35
8-

N
b1

t

2

1

0
0.5 1.0 1.5

Buffer control

+ Nb
2

1

0
0.5 1.0 1.5

2

1

0
0.5 1.0 1.5

2

1

0
0.5 1.0 1.5

2

1

0
0.5 1.0 1.5

xhNup155-Nb2i xhNup155-Nb3ixhNup98-Nb2ixhNup93-Nb4iNon-inhibitory Nb

2

1

0
0.5 1.0 1.5 2.0

Buffer control

+ Nb2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

2

1

0
0.5 1.0 1.5 2.0

xhNup93-Nb4i xhNup98-Nb2i xhNup155-Nb2i xhNup155-Nb3iNon-inhibitory Nb

Figure 9. Quantification of Nup colocalization in residual assembly-arrested (pseudo) NPC structures.

Postmitotic NPC assembly was arrested by inhibitory nanobodies as in Figs. 7 and 8. Individual (pseudo) NPC structures were detected from 3-channel images. Selected
images are shown in Fig. EV6. The Y-complex channel served as a reference. Signal intensities were quantified by ImageJ/ FiJi scripts. Figure shows 25 scatter plots for 25
combinations of inhibitory and tracking nanobodies. Each point in a plot represents a detected (Y-complex-positive) structure, whereby the point coordinates are the
normalized signal intensity of the Y-complex and the signal intensity of a second Nup. The point clouds for nanobody-arrested structures are plotted in color and are
overlaid with point clouds for unperturbed NPCs (buffer control) in gray. xhNup93-Nb4i selectively blocked the recruitment of Nup358 and the Nup214·88·62 complex to
NPCs. xhNup98-Nb2i, xhNup155-Nb2i and 3i had more severe effects, disrupting already the recruitment of inner ring Nups (Nup93, Nup155) as well as of Nup98, Nup214
and Nup358 to Y-complex-positive structures. Note that these plots still underestimate the effects because they only show pore-like structures with detectable Y-complex.
Structures with a low Y-complex signal and a high signal for any of the other Nups, as well as the general reduction in Y-complex-positive structures, were not considered.
Data from two independent experiments with each 3–7 nuclei per sample are shown. The non-inhibitory nanobodies used in the experiments shown as different rows were
xhNup93-Nb3t, xNup93-Nb1t, xhNup35-Nb1t, xNup155-Nb1t, xNup358-Nb1t, or xNup62-Nb1t. A total of 28610 NPC/pseudo-NPC structures were analyzed. Source data
are available online for this figure.
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lost in the absence of Nup358 (Von Appen et al, 2015). We
therefore assume that xhNup93-Nb4i phenocopies this effect. The
epitope of xhNup93-Nb4i is poorly accessible in properly
assembled NPCs (Fig. 6A; Appendix Fig. S3), but becomes
accessible in NPCs upon Nup358-depletion (Fig. 10A). Thus, there
is indeed an antagonism between this nanobody and Nup358
incorporation.

To map the functional epitope of xhNup93-Nb4i, we solved its
structure in complex with the α-solenoid domain of xNup93
(residues 168–820) and xNup93-Nb2t by X-ray crystallography and
cryo-EM (Fig. 10B–D; Appendix Tables S2 and S3). The tracking
nanobody xNup93-Nb2t binds to a C-terminal region of the
Xenopus Nup93 α-solenoid, it is frog-specific (Fig. 2A) and did not
inhibit NPC assembly.

In contrast, xhNup93-Nb4i recognizes an epitope in the middle
of the Nup93 α-solenoid (i.e., residues 450–536). This nanobody
cannot interfere with the direct Nup93-Nup188 and Nup93-
Nup205 interactions, since it efficiently purifies the two complexes
from HeLa and Xenopus egg extracts (Fig. 6D). However, the
alignment of our structure with recent cryo-EM maps of the NPC
revealed that xhNup93-Nb4i clashes with a Nup205 molecule from
a neighboring Nup93·Nup205 heterodimer (Fig. 10D), which would
plausibly explain a failed assembly of the cytoplasmic ring (Lin
et al, 2016; Bley et al, 2022; Mosalaganti et al, 2022; Zhu et al, 2022).
This consideration further suggests that the occasional Nup214 and
Nup358 signals seen in some of the xhNup93-Nb4i distorted NPCs
represent off-pathway intermediates (Figs. 9 and EV6).

The failure to recruit Nup358 and the Nup214·Nup88·Nup62
complex is consistent with the observed functional deficits
(Figs. 7–9 and EV6). The Nup214·Nup88·Nup62 complex directly
contributes two FG domains (from Nup214 itself and from Nup62)
to fully assembled NPCs. In addition, its Nup88 β-propeller
anchors a subset of Nup98 molecules, whose FG domains would
also be unavailable. Nup358 is normally present in 40 copies, each
also contributing multiple FG sub-domains (Kosinski et al, 2016;
Bley et al, 2022; Mosalaganti et al, 2022). The loss of the outer
Y-complex ring results in the loss of anchoring sites (through
Nup96) for another eight Nup98 molecules. Therefore, anti-
Nup93-nanobody-distorted NPCs suffer a cumulative loss of ~6
megadaltons of FG mass. This explains the increased passive
leakage through the FG-based permeability barrier and the defect in
Xpo1/NES-mediated nuclear export (Fig. 7B), which heavily relies
on Nup214 and Nup358 (Hutten and Kehlenbach, 2006; Labokha
et al, 2013).

Nup98 is not just anchored to the NPC scaffold but
required for scaffold assembly

Nup98 has a conserved domain structure. The unusually conserved
N-terminal FG domain is interrupted by a Gle2-binding (GLEBS)
domain and makes a key contribution to the NPC permeability
barrier (Bailer et al, 1998; Laurell et al, 2011; Hülsmann et al,
2012). It is followed by an intervening disordered domain with
conserved linear motifs (R1, R2, and R3) and the aforementioned
C-terminal autoproteolytic domain (APD) (Hodel et al, 2002; Bley
et al, 2022). The catalytic activity of the APD is used in cis to cleave
the initially synthesized Nup98–Nup96 fusion protein (called
Nup196), which happens during or shortly after translation
(Fontoura et al, 1999). Therefore, the egg extract contains the

already cleaved entities: Nup98 and Nup96, which is a subunit of
the Y-complex.

The second APD function is to anchor Nup98 to NPCs—by
binding either to the N-terminus of Nup96 (Hodel et al, 2002) or
the β-propeller of Nup88 (Griffis et al, 2003; Stuwe et al, 2012; Bley
et al, 2022). We have now characterized three nanobodies against
the Nup98-APD. One of them (xNup98-Nb1t) stains intact NPCs,
permits normal NPC biogenesis, and allows tracking of the
assembly process (Figs. 1D, 8, 12, and EV6; Pleiner et al, 2015).
By contrast, xhNup98-Nb2i and -Nb3i are inhibitory and cause a
severe and early NPC assembly defect—comparable to a block of
Nup155 (Figs. 7–9, EV5, and EV6). To understand this difference,
we solved their crystal structures in complex with the Nup98-APD
(Fig. 11A; Appendix Table S4).

The obtained structures show that the inhibitory nanobodies
xhNup98-Nb2i and -Nb3i each recognize overlapping epitopes
(Fig. 11A). Both inhibitory epitopes also overlap with the binding
sites of the Nup98-APD for Nup96 and Nup88 (Fig. 11B),
suggesting that these nanobodies fully block these interactions.
Indeed, xhNup98-Nb2i abolishes the binding of Nup98 to both
Nup96 and Nup88, as tested in a biochemical assay (Fig. 11C). By
contrast, the tracking nanobody xNup98-Nb1t binds to a non-
overlapping epitope on the Nup98-APD and is compatible with
both interactions (see structural analysis in Fig. 11B and direct
interaction assay in Fig. 11C).

So far, it was assumed that Nup98 gets recruited to a pre-
assembled NPC scaffold—the argument being that the bulk of
Nup98 arrives at NPC assembly sites rather late (Dultz et al, 2008).
Our observation that preventing a Nup98–Nup96 interaction
causes a much earlier defect, already at scaffold assembly, suggests
a different scenario, namely a tight coupling between scaffold
assembly and the establishment of the Nup98-dependent perme-
ability barrier of NPCs.

To explore the phenotypes of the inhibitory anti-Nup98
nanobodies in interphase NPC assembly, we inserted Xenopus
NPCs from egg extract into an intact human NE. Indeed, not only
the traditional assembly inhibitors (WGA, BAPTA; Fig. 12A), but
also the anti-Nup98 inhibitory nanobodies abolished new NPC
insertion (Fig. 12B). Interestingly, however, the xhNup98-Nb2i
nanobody did not prevent the recruitment of Xenopus Nup98 from
the extract to old human NPCs (Fig. 12B). This might appear
surprising but can be explained by the fact that the APD is not the
only NPC interaction site of Nup98. Indeed, Nup98 is additionally
anchored to NPCs by cohesive interactions between Nup98 FG
repeats and FG domains of other Nup molecules, as well as by
additional linear motifs of Nup98 that bind to Nup205 and Nup155
(Griffis et al, 2002a, 2004; Stuwe et al, 2012; Chatel et al, 2012;
Hülsmann et al, 2012; Bley et al, 2022).

The NPC assembly block by the inhibitory anti-Nup98
nanobodies is thus of a different quality than (just) impeding the
anchorage of an FG Nup to NPCs. This block occurs very early in
the assembly pathway, suppressing the appearance of Xenopus Y-
complex-positive spots at the NE (Figs. 8C and EV6). The
occasionally observed weakly Y-complex-positive structures lacked
any Nup98 signal (in contrast to old NPCs). We interpret this as
the Nup98-APD mediating interactions that are essential for the
assembly of the NPC scaffold. Given the inhibitory effect on the
early Y-complex structures, we assume that the APD-Nup96
interaction is the relevant one. This requirement applies to both
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Figure 10. xhNup93-Nb4i recognizes a conserved epitope in the α-solenoid domain of Nup93 and clashes with Nup205 from a neighboring Nup93·Nup205 dimer.

(A) The epitope of xhNup93-Nb4i becomes more exposed in NPCs depleted of Nup358. HeLa cells were transfected with siRNAs targeting Nup358, fixed and stained with
the indicated tracking nanobodies. Scale bar, 10 µm. (B) Cryo-EM structure of Xenopus laevis xNup93(168–820) (gray) in complex with xhNup93-Nb4i (green) and
xNup93-Nb2t (blue). The paratope residues of the nanobodies are highlighted in red. (C) A representation of the Nup93 surface with the nanobody epitopes highlighted in
green and blue, respectively. (D) xhNup93-Nb4i blocks the interface with a neighboring Nup205 molecule (red). See Methods for details of crystallization, cryo-EM, and
structure solving as well as Appendix Tables S2 and S3 for crystallographic and cryo-EM statistics. Source data are available online for this figure.
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postmitotic (Figs. 8, 9, and EV6) and interphase NPC assembly
(Fig. 12B), suggesting that these two processes are, after all, more
similar than currently believed. Given that the final NPC product is
the same, this is a plausible scenario.

Discussion

We present here a toolbox of anti-Nup nanobodies and demon-
strate their use as specific trackers or inhibitors of the NPC
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xhNup98-Nb3i

A

Epitope of xhNup98-Nb3i
(PDB 7NOW - new structure)

xhNup98-Nb2i

xhNup98-Nb2i and xhNup98-Nb3i recognize an overlapping epitope on xNup98

Figure 11. xhNup98-Nb2i and Nb3i recognize a conserved APD region and block the Nup98–Nup96 and Nup98–Nup88 interactions.

(A) Crystal structures of the APD of Xenopus tropicalis xNup98 (gray) in complex with xhNup98-Nb2i (yellow) and xhNup98-Nb3i (blue). The epitope-contacting residues
of the nanobodies are highlighted in red. Both nanobodies recognize overlapping epitopes. Both nanobodies are equally effective in blocking NPC assembly (see Fig. EV5A
for a comparison). See Methods for details of crystallization and structure solving and Appendix Table S4 for crystallographic statistics. (B) Surface representations of the
APD of Nup98 showing its known interaction interfaces with Nup88 (orange), Nup96 (green), xhNup98-Nb2i (yellow), xhNup98-Nb2i (blue) and xNup98-Nb1t (cyan).
(C) The His14-NEDD8-tagged APD of xtNup98 (715–866) was immobilized on a Ni2+ chelate matrix and incubated with either the xNup98-Nb1t or the xhNup98-Nb2i.
Next, either the N-terminus of xNup96 (residues 1–20) fused to RFP (left) or the N-terminal β-propeller of xtNup88 (residues 2–500) (right) were added, and the
immobilized APD was eluted along with its binding partners by the tag-cleaving NEDP1 protease (Frey and Görlich, 2014). Eluted fractions were analyzed by SDS-PAGE/
Coomassie staining. Source data are available online for this figure.
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assembly process. To track postmitotic assembly, we use the well-
established Xenopus egg extract system. The key challenge in
tracking interphase assembly is to distinguish newly assembled
from pre-existing NPCs. We overcame this problem by using
human NEs as templates and inserting chemically distinct frog
NPCs from an activated egg extract into them. The described
experimental setup opens new avenues to study NPC assembly
during interphase and to biochemically dissect this pathway.

Through AddGene, all nanobody plasmids will be made
available to the community. Earlier, we reported the first generation
of nanobodies directed against frog nucleoporins (Pleiner et al,
2015). We now demonstrate their utility for tracking NPC assembly
from Xenopus egg extracts, which represents a major simplification
of the assay. In addition, we present a new set of tracking
nanobodies with broad cross-reactivity that stain Xenopus as well as
human NPCs. These include nanobodies against Nup358, Nup133,
Nup93, Nup35, and the Nup214·88·62 complex. They are suitable
for super-resolution microscopy and allow to resolve NPC ring
structures.

We also report the first NPC assembly-inhibiting nanobodies
against three targets: Nup93, Nup155, and Nup98. All of them bind
to epitopes that are initially accessible in soluble Nup complexes
but become buried in protein–protein interaction interfaces during
NPC assembly. The nanobodies thus block critical protein–protein
interactions. Inhibitory nanobodies perturb nuclear pore formation
by introducing a very small, yet specific change and are therefore
excellent tools to complement the structural data of fully assembled
NPCs (Fontana et al, 2022; Bley et al, 2022; Mosalaganti et al, 2022)

with insights into the function and assembly mechanisms of the
different Nup components. We obtained them by a direct cross-
species (frog-human) immunization and phage display strategy for
binders of conserved and, thus, functionally relevant epitopes. This
strategy is generally applicable and can be used to generate highly
selective, protein-based inhibitors of also other molecular
machines. We are currently extending the anti-NPC toolbox to
all relevant subunits, also for capturing in-pathway intermediates,
such as the immediately pre-membrane-fusion state of NPCs.

The inhibitory anti-Nup93 nanobody imposed a late block that
impairs assembly of the cytoplasmic double-ring, as well as the
cytoplasmic appendices. The resulting NPCs lack Nup358, the
Nup214·88·62 complex as well as ~1/3 of their Nup98-APD-
binding sites. They thus suffer a substantial loss of FG mass,
causing defects in the permeability barrier and consequently in
active import and export. Yet, this inhibitory nanobody still
allowed rudimentarily functional NPCs.

By contrast, the inhibitory anti-Nup155 nanobodies prevented
scaffold assembly, resulting in nuclei without nuclear import
activity and a NE containing only a few off-pathway NPC assembly
intermediates with derailed Nup compositions. This was not
unexpected as Nup155 is a critical architectural element of NPCs.
Surprisingly, however, the same scaffold phenotype was caused by
anti-Nup98 nanobodies targeting its autoproteolytic domain and
blocking interactions with Nup96 and the Nup88 β-propeller. If
these anti-APD inhibitory nanobodies only interfered with the
anchoring of Nup98, one would expect that the NPC scaffold
(including the Y-complex, Nup93, Nup155, and Nup35) and other
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Figure 12. xNup98-Nb2i blocks interphase assembly of new NPCs without preventing Nup98 from binding pre-existing pores.

Interphase insertion of new Xenopus NPCs into human NEs was performed and tracked with fluorescent nanobodies as in Fig. 3, in the absence or presence of the indicated
inhibitors. After 2 h at RT, cells were washed, fixed, and imaged as in Fig. 4. Newly assembled NPCs are marked by circles with solid lines, incomplete pore-like structures
by circles with dashed lines, and pre-existing NPCs by arrows. Scale bar, 0.5 µm. (A) An excess of importin β (2 µM), WGA (2.5 µM) and BAPTA (5mM) completely
abolished the insertion of new pores. (B) xhNup98-Nb2i (2 µM) also blocked new NPC insertion but still allowed pre-existing human NPCs to recruit Xenopus Nup98. The
control nanobody xNup93-Nb3t (2 µM) had no effect on NPC insertion. Source data are available online for this figure.
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FG Nups would still assemble correctly. Instead, however, they
impose an obvious block at early stages of assembly
(Figs. 7–9 and EV6). This suggests that Nup98 is not just a “late
addition” to a pre-assembled NPC scaffold but is already involved
in the earliest NPC biogenesis steps.

This scenario further suggests the existence of multiple Nup98
populations that are recruited at different assembly stages and
through different qualities of Nup–Nup interactions. Some copies
of Nup98 are likely recruited at the early stages of assembly through
obligatory contacts of the Nup98-APD with Nup96, engage in
additional contacts with other scaffold Nups, and thereby trigger
the aforementioned assembly checkpoint for the NPC scaffold. We
assume that these Nup98 molecules remain very stably attached.

Indeed, one candidate for such early inter-complex interactions
can be prominently detected by affinity chromatography from
nuclear assembly extracts (Appendix Fig. S5), where a Nup98395–866

fragment (lacking 394 residues of its FG domain) retrieves not only
the Y-complex (through the APD-Nup96 interaction) but also the
Nup188·Nup93 complex with similar efficiency. The interaction
with the Nup188·Nup93 complex was lost when the remaining 100
residues of the FG domain were also deleted (in Nup98486–866). This
is consistent with previous reports of yeast Nup188 homologs
interacting with GLFG repeats (Andersen et al, 2013; Onischenko
et al, 2017). In our data, however, this interaction appears to be
more sequence-specific and to favor an interaction with Nup188
over the paralogous Nup205. In addition, Nup98 is known to
interact through its R3 motif with Nup155 (Lin et al, 2016; Bley
et al, 2022; Mosalaganti et al, 2022).

This multitude of interactions renders the APD actually
dispensable for steady-state Nup98 anchorage, which explains
why the inhibitory anti-APD nanobodies still allow efficient Nup98
incorporation into pre-existing NPCs (Fig. 12B). Considering,
however, the essential role of the APD during the first steps of NPC
biogenesis, it is tempting to speculate that early Nup98–Nup96
interactions are special: they might serve as an assembly
checkpoint, allowing scaffold assembly and pore formation to
proceed only after a sufficient number of barrier-forming Nup98
molecules have been recruited, which in turn connect (at least)
three key architectural elements of the NPC scaffold: the Y-
complex, Nup155 and the Nup188·Nup93 dimer.

The bulk Nup98 population may arrive later in assembly to
complete the “sealing” of the NPC central channel with its
permeability barrier. This population is likely recruited through
fewer contacts and thus weaker interactions—at least this is
suggested by the reported mobility of Nup98 in photobleaching
experiments (Griffis et al, 2002; Rabut et al, 2004) and by the ease
with which they are exchanged in the presence of egg extract
(Fig. 4B). We would assume that the later-arriving population
is still heterogeneous, anchored by interactions between the
Nup98 unstructured regions and Nup155, Nup188 and/or
Nup205, cohesive interactions between FG domains, and
binding of the Nup98-APD to still vacant Nup96 sites and to
the later-recruited Nup88 (Lin et al, 2016; Bley et al, 2022;
Mosalaganti et al, 2022).

It can be estimated that a barrier-free NPC with a channel
diameter of 60 nm would cause 1 000 times more leakage of a GFP-
sized molecule than a functional NPC (for derivation, see Ribbeck
and Görlich, 2001). For larger molecules, this ‘leakage ratio’ would
be even higher. Non-selective leakage is dominant, implying that

already a small fraction (a few percent) of barrier-free NPCs would
severely degrade the performance of the entire nuclear transport
system. This would include a deterioration of the transport-driving
RanGTP gradient, impaired nuclear exclusion of cytoplasmic
components, and leakage of already imported soluble factors from
the nucleus. The Nup98 checkpoint sketched here could be crucial
in preventing such a situation, as it would avoid NEs with non-
selectively open pores and ensure that only NPCs with selective
permeability assemble.

Methods

Expression and purification of recombinant proteins in
E. coli

Recombinant Nups were expressed in NEB Express E. coli cells
(New England Biolabs, C2523). Nanobodies were expressed in E.
coli SHuffle cells (New England Biolabs, C3026J) for disulfide bond
formation and higher stability (Lobstein et al, 2016). Protein
expression was induced by 30–100 μM isopropyl-β-D-thiogalacto-
side (IPTG) at 18–30 °C for 4–20 h. Next, cells were harvested,
resuspended in resuspension buffer (50 mM Tris/HCl pH 7.4,
300 mM NaCl, 20 mM imidazole, 2 mM DTT), lysed by sonication,
and the lysates cleared by ultracentrifugation. His-tagged proteins
were immobilized onto pre-equilibrated Ni2+ chelate matrixes,
washed with resuspension buffer, and eluted by the addition of
resuspension buffer supplemented with either 400 mM imidazole or
the appropriate protease (500 nM bdNEDP1, 50 nM bdSENP1, or
50 nM SENPEuB; Frey and Görlich, 2014; Vera-Rodriguez et al,
2019).

Alpaca immunizations

Immunogens were expressed recombinantly in E. coli as H14-
NEDD8, His14-scSUMO or His14-SUMOEu1 fusions, purified by Ni-
chelate affinity chromatography with protease elution and sub-
sequent size-exclusion chromatography (SEC). Antigens were
buffer-exchanged to a physiological, isotonic, isoosmolar buffer
(150 mM NaCl, 20 mM Tris/HCl pH 7.4, 250 mM Sorbitol), mixed
with either the commercial adjuvant Fama (GERBU Biotechnik
GmbH, Cat. No.: 3030) or a squalene-based oil-in-water emulsion,
and injected subcutaneously.

Three female alpacas, kept at the Max Planck Institute for
Multidisciplinary Sciences, were immunized with 0.5–1.0 mg of the
human and Xenopus Nups at 3–4 week intervals. Nups that had
already been immunized by Pleiner et al (2015) were immunized
two more times, whereas Nups that were used for the first time as
immunization antigens were injected 3–4 times. Blood samples
were taken 4–7 days after the last immunization. These alpaca
projects have been approved by the animal welfare authority
LAVES (reference numbers: 33.9-42502-05-13A351, 33.9-42502-
05-17A220, and 33.19-42502-04-22-00210).

Immune library constructions and phage display

The generation of phage-displayed nanobody immune libraries from
lymphocyte RNA and selection of anti-Nup Nbs with biotinylated
baits was performed as previously described (Pleiner et al, 2015, 2018).
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The bait concentration was gradually decreased in subsequent panning
rounds to a concentration below 1 nM. Specific nanobody inserts were
cloned into H14-NEDD8, His14-scSUMO, or His14-SUMOEu1 expres-
sion vectors and transformed into E. coli cells. Individual clones were
sequenced, and representative nanobody sequences were chosen for
expression and further characterization.

Nanobody labeling with maleimide dyes

Fluorophore maleimides were conjugated to nanobodies through
two or three engineered surface cysteines (including N- and
C-terminal ones), as previously described (Pleiner et al,
2015, 2018). Briefly, purified nanobodies were supplemented with
15 mM dithiothreitol (DTT) for 15 min on ice. Next, nanobodies
were buffer-exchanged to (de-gassed) maleimide-labeling buffer
(300 mM NaCl, 50 mM potassium phosphate pH 6.8) and rapidly
mixed with a 1.2-fold molar excess (over the ectopic cysteines) of
the respective maleimide fluorescent dye. Labeling reactions
proceeded for 40 min at 4 °C and the excess dye was removed
using NAP-5 desalting columns (17-0853-01, GE Healthcare).
Nanobodies to be used for confocal microscopy were labeled with
Alexa Fluor 488 (Thermo Fisher, A10254), Alexa Fluor 568
(Thermo Fisher, A20341) or Alexa Fluor 647 (Thermo Fisher,
A20347), and nanobodies to be used for STED microscopy were
labeled with the STED fluorophores Abberior STAR 580 (Abberior,
ST580-0003) or Abberior STAR 635P (Abberior, ST635P-0003)
(Wurm et al, 2012). Labeling efficiencies (degree of labeling; DOL)
were determined by UV–Vis spectroscopy (at 280 nm and the
absorbance peak of the respective fluorophore) and validated by
size shifts on SDS-PAGE.

Postmitotic nuclear assembly from Xenopus egg extracts
(Figs. 1, 7–9, EV5, and EV6)

Xenopus egg extracts were prepared as described in Hülsmann et al
(2012). To initiate an assembly reaction, 10 µl egg cytosol were pre-
incubated with energy mix (10 mM creatine phosphate, 0.5 mM
ATP, 0.5 mM GTP, 50 µg/ml creatine kinase) and sperm chromatin
for 15 min at 20 °C to allow for chromatin decondensation. As
indicated, inhibitory nanobodies were present already during this
step. Next, egg membranes (isolated by high-speed centrifugation
during the egg extract preparation and further purified by flotation
through a Nycodenz gradient) were added.

To follow NPC assembly in real time (Fig. 1C,D), 50 nM of the
corresponding tracking nanobody was added, and images were
acquired at the indicated time points using an LSM880 FAST
Airyscan confocal microscope (Zeiss, Germany). To screen
nanobodies for inhibition of NPC assembly (Figs. 7–9, EV5, and
EV6), 2 µM of each nanobody was added to the egg cytosol fraction
prior to chromatin and membrane addition or at the indicated time
point. Alternatively, 2.5 µM WGA, 2 µM importin β, or 5 mM
BAPTA was added to the egg cytosol fraction to inhibit NPC
assembly. After adding purified egg membranes, nuclear assembly
proceeded for 1 h at 20 °C, without shaking.

The formation of NPCs with an intact permeability barrier
(Figs. 7 and EV5A) was tested by adding 1 µM IBB-MBP-GFP, 5 µg/
ml DAPI, and either active (0.5 µM NES-GFP) or passive (0.5 µM
MBP-mCherry) exclusion cargoes. Transport cargoes were incubated
for another 30min at 20 °C, and the resulting nuclei were analyzed

using a Leica SP8 confocal microscope (Leica, Germany). Note that the
strength of the inhibition might vary depending on the precise time
point in which the inhibitory nanobodies are added. The laid eggs are
arrested in metaphase II of meiosis and activated by the addition of
calcium to shift them back to interphase, whereby the assembly-
inhibitory mitotic phosphorylations are removed then only slowly. For
a complete inhibitory effect, nanobodies must be added at a very early
time point and before the first interactions between Nups and Nup
subcomplexes occur.

To resolve single pores on acquired images of assembled nuclei
by confocal microscopy (Figs. 8, 9, and EV6), it is critical to ensure
maximum epitope occupancy and use an imaging mounting
medium that minimizes bleaching and matches the diffraction
index of the objective immersion oil. Thus, a slightly modified
staining protocol was used: 15 µl assembled nuclei were fixed with
25 µl 2.4% paraformaldehyde (PFA) for 5 min at RT, layered on top
of 250 µl gradients (10% glycerol, 11% sucrose, 100 mM NaCl,
50 mM Tris/HCl (pH 7.4)) and centrifuged onto polylysine-coated
coverslips (swingout rotor at 1400 × g for 4 mins). Purified nuclei
were washed with phosphate-buffered saline (PBS), permeabilized
with 0.3% (v/v) Triton X-100 for 3 min at RT, and blocked with
0.5% bovine serum albumin (BSA). Next, nuclei were incubated
with three tracking nanobodies recognizing different Nups and
coupled to compatible fluorophores (i.e., Alexa Fluor 488, Alexa
Fluor 568, and Alexa Fluor 647) for 30 min on ice. After washing
off the excess nanobodies, SlowFade Gold Antifade Mountant
(Thermo Fisher) mounting medium was applied. Images were
acquired using an LSM880 and deconvolved by Airyscan Proces-
sing (Huff, 2015).

The utility of the here reported tracking nanobodies in following
postmitotic NPC assembly was reproduced in >200 biological
samples, which included experiments that addressed a range of
questions—as detailed throughout the manuscript. The conclusion
that the nanobodies xhNup93-Nb4i, xhNup98-Nb2i, xhNup98-
Nb3i, xhNup155-Nb2i, and xhNup155-Nb3i impede NPC assembly
is based on a total of >100 individual biological samples, analyzed
in complementary ways, such as by documenting nuclear import
and barrier defects, or failure in NPC assembly or changes in the
composition of NPCs or NPC-like structures.

Image analysis of postmitotically assembled
nuclei (Figs. 7–9)

To measure the volume of the reconstituted nuclei (Fig. 7D), DAPI
and IBB-MBP-GFP were added onto unfixed nuclei assembly
reactions. Next, 2-channel z-stacks were acquired using a Leica SP8
microscope with a Δz of 0.2 μm, and the acquired z-stacks were
thresholded and segmented using the software KNIME version 4.1.0
(Berthold et al, 2009). Segmented images were used to measure the
nuclei volume using the “Particle Analyzer” tool of the MorpholibJ
Plugin (Legland et al, 2016) from FiJi/ ImageJ (Schindelin et al, 2012).
Finally, the average and SD of at least 20 nuclei per sample from three
independent experiments were calculated.

To quantify the active import, active exclusion, and passive
exclusion (Fig. 7D), acquired images were filtered using FiJi/ ImageJ
(Schindelin et al, 2012), thresholded using the Otsu algorithm
(Otsu, 1979) and segmented. Segmented images were then used as a
mask to measure the mean pixel intensity inside and outside the
nuclei using the “Analyze particles” function from FiJi. Partition
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coefficients were calculated as the ratio between the mean intensity
inside and outside each nucleus. The mean and SD of at least 10
nuclei per sample from 4 independent experiments were calculated.
To calculate the total import, the partition coefficient was
multiplied by the volume of each nucleus.

To count the number of assembled NPCs (or Nup-positive
structures) (Fig. 8C), the “Analyze particles” function from FiJi was
used on segmented 3-channel images and the spots detected on
each channel were counted. For each tracking nanobody, the
average and SD of at least five images from three different
experiments were measured.

To analyze the correlation between the signal intensities of
different Nups (Fig. 9), nuclear pores and pore-like structures were
first detected in the xY-Nb1t channel, and the signal intensity of
each detected spot was measured by integration. The Y-complex-
positive spots were then also used as a reference mask to integrate
the signals in the other Nup-channels and thus to quantify their co-
colocalization. Figure 9 illustrates these data as scatter plots, where
each point represents one detected NPC or NPC-like structure. The
point coordinates are the normalized signal intensities of the Y-
complex, and the indicated second Nup. On each plot, the signal
intensity distribution of the indicated inhibition condition is
overlayed with that of the buffer control. The FiJi scripts mentioned
above are included with the source data accompanying this
manuscript.

Semi-permeabilized cell assay for interphase NPC
assembly (Figs. 3–5 and 12)

To label pre-existing (old) NPCs, HeLa P2 cells (Gunkel et al, 2021)
were CRISPR/Cas9-edited to express Nup107 with sfGFP at its
N-terminus (homozygous genomic tagging). The full characteriza-
tion of this cell line will be reported elsewhere (PG and Volker
Cordes, forthcoming). sfGFP-Nup107 cells were grown at 37 °C in
high-glucose Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS). One day before
use, cells were seeded in a 10-well glass slide (543078, Greiner Bio
One) at an appropriate density to reach 70–80% confluence at the
time of the experiment.

sfGFP-Nup107 HeLa cells were semi-permeabilized by the
addition of transport buffer (TRB; 110 mM potassium acetate,
3.5 mM magnesium acetate, 20 mM HEPES/KOH (pH 7.5), 1 mM
EGTA, 250 mM sucrose) supplemented with 30 μg/ml digitonin for
3 min at RT with gentle shaking. This treatment perforates the
plasma membrane for entry of Nups and nanobodies while leaving
the NE intact. After washing off the digitonin, a Xenopus egg
extract mixture was added to the cells. These mixtures contained
15 μl of the soluble fraction of Xenopus egg extracts, 1.8 μl energy
mix (supplying final concentrations of 10 mM creatine phosphate,
and each 0.5 mM ATP and GTP), two tracking nanobodies
(recognizing different Nups and conjugated to compatible fluor-
ophores) at a 35 nM final concentration each, and TRB to a final
volume of 75 μl. To arrest interphase NPC assembly, final
concentrations of 2 μM inhibitory nanobodies, 2.5 mM WGA,
2 μM importin β, or 5 mM BAPTA were included. The Xenopus egg
extract mixture was incubated with the HeLa cells for 2 h at RT,
with gentle shaking. The cells were washed three times with TRB
and either imaged directly in transport buffer or fixed with 2.4%
PFA for 5 min at RT.

For an optimal quality of the acquired microscopy images, fixed
cells were washed with TRB+ 0.3% (v/v) Triton X-100 for 3 min at
RT, blocked with PBS+ 1% BSA and subsequently stained with
35 nM of the same tracking nanobodies for 30 min at RT, with
gentle shaking. After washing, SlowFade Gold Antifade Mountant
was added to the cells to protect the dyes from photobleaching.

For Figs. 3, 4 and 12, an LSM880 FAST Airyscan confocal
microscope was used. Three-channel images of nuclear cross-
sections or 3-channel z-stacks along the bottom NE with a Δz of
0.2 μm were acquired. Acquired images were then Airyscan
processed. Z-stack projections are shown. For super-resolution
microscopy (Fig. 5; S1), cells were imaged using a Nikon inverted
microscope (Ti-2) mounted with a STEDYCON system (Abberior
Instruments, Germany) and deconvolved using the Huygens
Professional software (version 19.10; Scientific Volume Imaging,
The Netherlands) (Schoonderwoert et al, 2013).

The observation that incubation of digitonin-permeabilized
HeLa cells with Xenopus egg extract leads to the insertion of frog
NPCs into the human NE was reproduced in >100 biological
samples.

Immunofluorescence of human NPCs (Fig. 6A,B;
Appendix Fig. S3)

sfGFP-Nup107 HeLa cells were grown on 10-well glass slides as
above. For staining, they were either left unfixed and semi-
permeabilized with 30 μg/ml digitonin as in Appendix Fig. S3.
Alternatively, cells were fixed with 2.4% PFA for 3 min at RT and
permeabilized with 0.3% (v/v) Triton X-100 (Fig. 6A). In both
cases, cells were then blocked with 1% BSA for 30 min at RT and
stained with 35 nM of the indicated Alexa Fluor 647-labeled
tracking nanobodies for 30 min at RT. Finally, the excess of
tracking nanobodies was washed off, and cells were imaged using a
Leica SP8 confocal microscope (Leica, Germany). For STED
microscopy (Fig. 6B), cells were imaged in SlowFade Gold Antifade
Mountant. Images were acquired with the above-mentioned
STEDYCON microscope and deconvoluted using the Huygens
Professional software.

RNA interference in HeLa cells (Fig. 10A)

HeLa cells were seeded at a low density on 10-well glass slides
(543078, Greiner Bio One). The next day, cells were transfected
with 10 nM of either control or Nup358 Silencer Select siRNAs
(4390846 and s11774, respectively; Ambion, USA) using the
HiPerFect transfection reagent according to the manufacturer’s
instructions (301704, QIAGEN, Germany) in serum-free medium
(OptiMEM). RNA silencing proceeded for 72 h at 37 °C, and cells
were then fixed, blocked, and stained with combinations of the
indicated tracking nanobodies. Stained cells were imaged using a
confocal SP8 microscope.

Native purification of endogenous Nups using
nanobodies (Fig. 6D)

Biotinylated Nups containing a SUMOEu1 cleavage site were
immobilized to a Sepharose-streptavidin matrix (53113, Thermo
Scientific) and incubated with the soluble fraction of either Xenopus
egg extracts or HeLa lysates for 40 min at 4 °C. Next, unspecific

The EMBO Journal Mireia Solà Colom et al

22 The EMBO Journal © The Author(s)

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on A

pril 29, 2024 from
 IP 134.76.223.157.



binders were washed off and the Nup-nanobody complexes were
eluted by the addition of 50 nM SENPEuB (Vera-Rodriguez et al,
2019). The eluted proteins were analyzed by SDS-PAGE followed
by Coomassie staining.

Isolation of Nup98-interacting Nups from Xenopus egg
extract (Appendix Fig. S5)

Xenopus Nup98 fragments were expressed as H14-Avi-SumoSTAR
fusions in E. coli, purified with intact tags, enzymatically
biotinylated with BirA (Beckett et al, 1999), immobilized on
streptavidin-agarose and incubated with the soluble fraction from
Xenopus egg extract. After washing, formed Nup98·Nup complexes
were eluted by tag-cleavage with 100 nM SumoSTAR protease
(Peroutka et al, 2008).

Binding assays with recombinant Nups and nanobodies
(Fig. 11D; Appendix Fig. S4A, B)

Purified nanobodies carrying an N-terminal His-tag and a protease
cleavage site (NEDD8, see also Frey and Görlich, 2014) were
immobilized onto pre-equilibrated Ni2+ chelate beads for 45 min at
4 °C. Next, excess nanobody was washed off with washing buffer
and equimolar amounts of the untagged Nup target were added for
30 min at 4 °C. Excess Nups were then washed off and nanobodies
were eluted along with their bound Nup targets by the addition of
the appropriate protease (NEDP1). The eluted protein fractions
were analyzed by SDS-PAGE followed by Coomassie staining.

Biolayer interferometry (BLI) affinity measurements
(Fig. 2A and Appendix Fig. S2)

BLI experiments were performed using an Octet RED96e instru-
ment (ForteBio/Sartorius, Germany) and High Precision Strepta-
vidin biosensors at 25 °C and using PBS (pH 7.4), 0.02% (w/v)
Tween-20 and 0.1% BSA as assay buffer. KDs listed in Fig. 2A were
determined by modifying nanobodies (containing two ectopic
cysteines) with Biotin-[PEG]3-maleimide (Iris Biotech) and immo-
bilizing them to a binding signal of about 1 nm on High Precision
Streptavidin sensors. Target proteins (Xenopus or human) at
30–100 nM were allowed to bind for 600–1200 s and to dissociate
for 600–1200 s, as indicated in the letterings. Apparent KDs were
fitted using the Octet Analysis HT 12.0 software.

Crystallization and structure determination of the
hNup35·xhNup35-Nb1t complex (Fig. EV4)

Purified untagged hNup35 (residues 173–248, corresponding to the
RRM domain) was incubated with a molar excess of His14-NEDD8-
xhNup35-Nb1t. The formed complex was immobilized onto a Ni2+

chelate matrix, eluted by 0.5 µM NEDP1 protease and further purified
by SEC on a Hi-Load Superdex 75 16/60 column eluted in 100mM
NaCl, 10mM Tris/HCl (pH 7.5), and concentrated to 10mg/ml.

The optimal crystallization condition was 0.05 M HEPES (pH
6.5); 25% PEG400 (v/v); 0.05 M NaCl, 0.01 M MgCl2. The crystals
were cryoprotected by soaking in reservoir solution with increasing
amounts of PEG400 up to 40% for 30 min, directly harvested from
the robotic plate, mounted in loops, and flash-frozen in liquid
nitrogen. Datasets were collected at EMBL beamline P14, PETRA

III storage ring (DESY, Hamburg, Germany) using a EIGER X 16 M
detector (DECTRIS). The obtained data were processed with XDS
(Kabsch, 2009), XSCALE (Diederichs, 2006), and POINTLESS/
AIMLESS (Evans and Murshudov, 2013). Initial phases were
obtained by molecular replacement in PHASER (McCoy, 2006)
using the model coordinates of PDB 4LIR and 2X1O as references.
Automatic model building was done using warp (Langer et al, 2008)
followed by iterative manual building in Coot (Emsley et al, 2010).
The structure of the complex was refined using REFMAC5
(Murshudov et al, 2011). Data collection and final refinement
statistics are summarized in Appendix Table S1.

Crystallization and structure determination of the Nup93
nanobodies (Fig. 10)

Homology modeling (including AlphaFold) did not yield structures
of xhNup93-Nb4i and xNup93-Nb2t that allowed a plausible
docking into the cryo-EM map of the Nup93-nanobody complex
(see below). Therefore, we first solved the structures of the
unliganded nanobodies by X-ray crystallography. The two nano-
bodies were expressed as His14-bdSUMO fusions, purified by Ni2+

chelate chromatography and on-column protease cleavage, fol-
lowed by SEC on Superdex 75 in 100 mM NaCl, 20 mM Tris/HCl
(pH 7.4), and concentrated to 10 mg/ml.

Crystallization conditions were 100 mM imidazole (pH 8.0),
30% PEG8000, 200 mM NaCl for xhNup93-Nb4i (PDB 8CDS), and
100 mM CAPS (pH 10.5), 1.2 M sodium phosphate, 0.8 M
potassium phosphate, 200 mM lithium sulfate for xNup93-Nb2t
(PDB 8CDT) at 20 °C. Crystals were cryoprotected in the
precipitant solution containing 15 or 25% glycerol (v/v), respec-
tively, and plunge-frozen in liquid nitrogen.

Diffraction data were collected at the PXII-X10SA beamline at
the Swiss Light Source (SLS, Paul Scherrer Institute, Villigen,
Switzerland) at 100 K, using an EIGER2 X 16M detector
(DECTRIS). The datasets were processed in XDS (Kabsch, 2009)
and the Phenix Package (Liebschner et al, 2019) was used
throughout structure solving. The structures were solved by
molecular replacement in Phaser (McCoy, 2006). The search model
was generated in Sculptor (Bunkóczi and Read, 2011) with the
nanobody Re5D06 (PDB 7ON5) as a structural template (Güttler
et al, 2021). Iterative cycles of model building/adjustment in Coot
(Emsley et al, 2010) and refinement in phenix.refine (Afonine et al,
2018; Liebschner et al, 2019) were performed until convergence to
the final models (Appendix Table S2). Water molecules were built
manually in Coot, where the 2Fo−Fc and Fo−Fc maps (contoured
at 1σ or 3σ, respectively) showed a peak within a 2.2–3.5 Å distance
to oxygen or nitrogen atoms of the protein molecules or other water
molecules/ligands. Secondary structure restraints (with isotropic
B-factor refinement) were used in early cycles, and restraints were
relaxed in later iterations, for which B-factors of all non-water
atoms were refined anisotropically.

Cryo-EM structure of the Nup93·xhNup93-Nb4i·xNup93-
Nb2t complex (Fig. 10)

Purified untagged xNup93 (α-solenoid domain, corresponding to
residues 168–820) was incubated with a molar excess of purified
untagged xNup93-Nb2t and His14-bdNEDD8-xhNup93-Nb4i.
After immobilization to a Ni2+ chelate matrix and washing off
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excess components, the equimolar trimeric xNup93·xhNup93-
Nb4i·xNup93-Nb2t complex was eluted by NEDP1 protease and
further purified by size-exclusion chromatography using a Hi-Load
26/60 Superdex 200 column in 50 mM NaCl, 20 mM Tris/HCl (pH
7.5), 2 mM DTT.

For cryo-EM analysis, the purified complex was diluted to 1.7 mg/
ml with 25mM Tris/HCl (pH 8.0), 50mM NaCl, 1 mM DTT. Two μl
of the diluted complex were applied to freshly glow-discharged R 2/2
holey carbon grids (Quantifoil), which were blotted with a force of 6
for 5 s and immediately vitrified by plunge-freezing in liquid ethane
using a Vitrobot Mark IV (Thermo Fisher) operating at 4 °C and 100%
humidity. The samples were initially screened using a Glacios cryo-
electron microscope (Thermo Fisher) operated at 200 kV with a
Falcon-III direct electron detector (Thermo Fisher). Next, a Titan
Krios transmission electron microscope (Thermo Fisher) operating at
300 kV with a K3 Summit direct detector (GATAN) and a GIF
Quantum Filter was used to obtain the final cryo-EM data. Data were
acquired using SerialEM (Mastronarde, 2005) in EFTEM mode with
an energy filter slit width of 20 eV and recorded as counting image
stacks of 40 movie frames, with a total electron dosage of 54.41 e−/Å2 at
a magnification of 105,000×, equivalent to a calibrated pixel size of
0.834 Å. 13 001 movie stacks were imaged with a defocus range of−1.5
to −2.5 μm. Warp (Tegunov and Cramer, 2019) was used for motion
correction, dose weighting, contrast-transfer function estimation, and
particle selecting on the fly. RELION 3.1. (Zivanov et al, 2020) was
used for the rest of the image processing. Particles were extracted in a
128-pixel box, binned by 2 at 1.668 Å per pixel, and subjected to
reference-free two-dimensional (2D) classifications. A de novo model
was created from the good 2D class averages using the 3D Initial
Model function, and it was then lowpass filtered and utilized as a low-
resolution reference for two rounds of three-dimensional classification,
yielding 202,725 particles. These particles were re-extracted in a box of
256 pixels without binning and subjected to global 3D auto-
refinement, yielding a 4.8 Å map. The set of particles was subject to
one round of CTF refinement and Bayesian polishing. The final global
3D refinement was carried out using the polished particles, which
resulted in a 4.4 Å reconstruction.

To build an initial model for the trimeric complex, an
AlphaFold2 model (Jumper et al, 2021) of the Nup93 structure
(AF-Q7ZX96) and the crystal structures of xNup93-Nb2t and
xhNup93-Nb4i were rigid-body fitted in the 4.4 Å map using UCSF
Chimera (Pettersen et al, 2004). The fitted models were subse-
quently subjected to several rounds of MDFF flexible fitting in
Namdinator (Kidmose et al, 2019). The final model was modified
using Coot (Casañal et al, 2020). PHENIX (Afonine et al, 2018) was
used to refine the model in real space and MolProbity (Williams
et al, 2018) was used to assess it. Details for data collection and
refinement statistics are listed in Appendix Table S3.

Crystallization and structure determination of the
xNup98-APD·xhNup98-Nb2i and xNup98-
APD·xhNup98-Nb3i complexes (Fig. 11)

Purified untagged xNup98-APD (residues 714–864) was incubated
with a molar excess of either His14-NEDD8- xhNup98-Nb2i or
His14-NEDD8-xhNup98-Nb3i. Next, the formed complexes were
immobilized onto a Ni2+ chelate matrix and eluted by the addition
of 0.5 µM NEDP1 protease. The obtained complexes were further
purified by size-exclusion chromatography on a Hi-Load Superdex

75 16/60 column ÄKTA column, equilibrated in 100 mM NaCl,
10 mM Tris/HCl (pH 7.5), concentrated to 10 mg/ml, and screened
for crystallization.

The optimal crystallization condition was 2.5% PEG6000, 25%
(v/v) PEG MME500, 100 mM Tris/HCl (pH 9). Crystals were flash-
frozen in liquid nitrogen without additional cryoprotection.
Diffraction data was collected remotely from the beamline
PXII at the Swiss Light Source (SLS; Paul Scherrer Institute,
Switzerland) and the structure was solved by molecular replace-
ment using the previously published structure of the xNup98-
APD·xNup98-Nb1t complex (PDB: 5E0Q) as a search model. Data
collection and final refinement statistics are detailed in Appendix
Table S4.

Software used for the preparation of figures

Adobe Illustrator was used for assembling figures, GraphPad Prism
(version 9) for plotting data, ImageJ2 (version 2.3.0)/Fiji for
analyzing and quantifying microscopic images, Photoshop for the
proportional adjustment of brightness of SDS-PAGE gels (original
images are included with the source data), and PyMOL for
visualization of protein structures.

Data availability

The coordinates and structure factors of the here reported
structures have been deposited in the PDB database
(www.rcsb.org) with the following accession codes: 8OZB
(xhNup35-Nb1t complexed to the human Nup35 RRM homo-
dimer); 7NQA (xNup98-APD·xhNup98-Nb2i complex); and
7NOW (xNup98-APD·xhNup98-Nb3i complex).); 8CDS
(xhNup93-Nb4i); 8CD7 (xNup93-Nb2t); 7ZOX
(xNup93·xhNup93-Nb4i·xNup93-Nb2t complex). EMD-14849 is
the corresponding accession code for the Nup93·xhNup93-
Nb4i·xNup93-Nb2t complex in the EMDB (www.ebi.ac.uk/emdb/).

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44318-024-00081-w.

Peer review information

A peer review file is available at https://doi.org/10.1038/s44318-024-00081-w
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Figure EV1. HeLa cell nuclei grow in volume in the presence of Xenopus egg extracts.

(A) Interphase insertion of Xenopus NPCs from egg extract into human nuclei was performed as in Fig. 3. 3D reconstructions of nuclei were obtained from the acquired
3-channel z-stacks using the Arivis Vision4D software (version 3.1.3; VisionVR, 2020). (B) Volumes of 4 individual nuclei per condition from two independent experiments
were integrated in the GFP channel using FiJi and plotted. Incubation with egg extract increased the average nuclear volume from 1500 to 3000 µm3. *** significant
difference with a P value of 0.008 (unpaired t test). (C) Quantification of new NPC insertion during interphase assembly. NPCs were detected and quantified using a FiJi
script. Numbers are normalized to the number of pre-existing human NPCs (= 100%). Each dot represents one quantified nucleus. Source data are available online for this
figure.
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A Arg103 at the CDR3 of xNup98-Nb1t is shape-complementary to xNup98 but clashes with a Lys residue on hNup98

xNup98-Nb1t

xNup98 APD (715-866)
(from PDB 5E0Q)

Alignment of PDB 5E0Q with 
hNup98 APD (712-861) from PDB 1KO6Arg103

Arg103

Asn742
Lys742

B

xNup93 (168-820)
from PDB 7ZOX

Alignment of PDB 7ZOX with hNup93 (173-815) 
from PDB 5ĲO

xhNup93-Nb4i

xNup93-Nb2t

xNup93-Nb2t is shape-complementary to xNup93 but clashes with the protein backbone of hNup93

xhNup93-Nb4i

xNup93-Nb2t

N-ter 
C-ter

Figure EV2. Xenopus-specific anti-Nup nanobodies are incompatible with the corresponding human Nup targets.

(A) The crystal structure of the xNup98-xNup98-Nb1t complex shows that an arginine residue at the nanobody’s CDR3 interacts with an asparagine residue at the APD of
Xenopus Nup98 (left) (PDB 5E0Q; Pleiner et al, 2015). However, this arginine would clash with a lysine at the same position in hNup98, preventing its binding (right). (B)
xNup93-Nb2t fits well to a pocket at the C-terminus of Xenopus Nup93 (PDB 7ZOX, Fig. 10), but would clash with the backbone of human Nup93 at the same protein
region.
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Figure EV3. Human membrane Nups get assembled into Xenopus NPCs.

Cells were stained with Xenopus-specific x-Ycmplx-Nb1t coupled to Alexa Fluor 647 and antibodies against human Ndc1 and human Gp210 (Stavru et al, 2006a, 2006b).
Images were acquired as in as in Fig. 4. Circles or rectangles mark newly inserted pores. Scale bar, 0.25 µm. Source data are available online for this figure.
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180°

hNup35 RRM dimer
(residues 173-248)

xhNup35-Nb1t

xhNup35-Nb1t

hNup35 RRM dimer
(residues 173-248)

xhNup35-Nb1t

xhNup35-Nb1t

180°

Epitope of xhNup35-Nb1t

Conserved residues between human and Xenopus

Mutations to a residue with different characteristics
Mutations to a residue with similar characteristics

A B

C

Figure EV4. xhNup35-Nb1t recognizes a conserved epitope at the RRM domain of Nup35.

(A) Crystal structure of the homodimeric RRM domain of Homo sapiens (h)Nup35 (gray) in complex with xhNup35-Nb1t (blue). The nanobody paratope is highlighted in
red. See Appendix Table S1 for crystallographic statistics. (B) Surface representations of the Nup35 RRM domain color-coded according to amino acid conservation
between human and Xenopus Nup35. The RRM domain and the nanobody epitope are highly conserved, as also indicated by the nanobody’s cross-reaction between human
and Xenopus Nup35 (see Figs. 4 and 6A, B). (C) The xhNup35-Nb1t epitope is highlighted in blue to allow for a straightforward comparison with (B). Although the Nup35
RRM domain mediates Nup35 homodimerization, which is necessary for the assembly of functional NPCs (Vollmer et al, 2012), xhNup35-Nb1t recognizes an epitope
distant from the dimerization interface and is compatible with the Nup35 dimerization, explaining why it does not interfere with the formation of functional NPCs. In
addition, the Nup35 dimer associates with membranes directly or through Ndc1 at very early assembly steps (Vollmer et al, 2012; Eisenhardt et al, 2014), and it links
Nup93 to the β-propeller of Nup155, which is essential for the organization of the NPC inner ring and the assembly of the NPC scaffold (Hawryluk-Gara et al, 2008; De
Magistris et al, 2018). However, these critical interactions occur through short linear motifs located at the Nup35 disordered termini (Vollmer et al, 2012; Eisenhardt et al,
2014; Mosalaganti et al, 2022), again explaining why xhNup35-Nb1t does not impede NPC assembly. Indeed, the lack of a phenotype is consistent with homodimerization
being the only essential function of this RRM domain.
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Figure EV5. Inhibitory anti-Nup nanobodies disrupt NPC assembly but do not block nuclear transport directly.

(A) 2 µM nanobodies were added to postmitotic NPC assembly reactions (as in Figs. 7 and 8). xhNup93-Nb3t had no deleterious effect. The presence of xhNup98-Nb2i
and xhNup98-Nb3i, however, resulted in pseudonuclei that failed in active nuclear import of the IBB-MBP-GFP fusion (left) and in Nup recruitment to the NE (right). The
coherent phenotype of the two inhibitory anti-Nup98 nanobodies is a stringent specificity control to rule out off-target effects as a cause, since the two belong to different
classes and recognize different, though overlapping, epitopes (Fig. 11). They probably act by preventing the interaction of Nup98 with the Y-complex component Nup96
and with Nup88 (Fig. 11). Scale bar, 5 µm. (B) Nuclei were assembled as in Figs. 7 and 8, and inhibitory nanobodies were added either prior to chromatin addition and
assembly initiation (0’) or thereafter (30min after membrane addition). Next, IBB-MBP-GFP and DAPI were added, and nuclei were imaged 90min later. Note that the late
addition of inhibitory nanobodies allowed for very efficient active import, ruling out that the nanobodies interfere directly with import through functional NPCs. Scale bar,
5 µm. Source data are available online for this figure.
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Figure EV6. The assembly-inhibited ‘NPCs’ are decreased in number and altered in composition.

Postmitotic nuclear assembly in the presence of inhibitory nanobodies was as in Figs. 7 and 8, but 3-channel close-up views with single NPC resolution are shown. The
following tracking nanobodies were used for staining: xY-Nb1t, xNup155-Nb1t, xNup93-Nb1t, xhNup35-Nb1t, xNup98-Nb1t, xNup62-Nb1t, xhNup214-Nb1t or xNup358-
Nb1t. The non-inhibitory nanobodies used as controls were xhNup93-Nb3t, xNup93-Nb1t, xhNup35-Nb1t, xNup155-Nb1t, xNup358-Nb1t or xNup62-Nb1t. Pore-like
structures, in which all three simultaneously probed Nup components were detected, are highlighted with white solid lines. Arrested structures with missing Nup
components are highlighted with white dashed lines. A false-color representation (LUT) is shown to facilitate a comparison between the different images. Scale bar, 1 µm.
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