Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Poster

Dynamic measurement of concurrent BOLD and brain tissue displacement quantification in vivo at 7T using motion-encoded stimulated-echo EPI

MPG-Autoren
/persons/resource/persons84187

Scheffler,  K       
Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Strom, A., Berman, A., Reese, T., Dong, Z., Scheffler, K., Lewis, L., et al. (2024). Dynamic measurement of concurrent BOLD and brain tissue displacement quantification in vivo at 7T using motion-encoded stimulated-echo EPI. Poster presented at ISMRM & ISMRT Annual Meeting & Exhibition 2024, Singapore.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-39A6-6
Zusammenfassung
Motivation: Understanding the spatiotemporal relationships between blood volume changes, tissue displacement, and CSF flow is important for elucidating brain waste clearance mechanisms, and measuring these compartments concurrently would enable effective analysis. Goal(s): To demonstrate the feasibility of leveraging both magnitude-valued and phase-valued data to measure BOLD fMRI and tissue motion simultaneously. Approach: We apply a combination of computer simulations and in vivo imaging with visual stimulation using the Displacement Encoding with Stimulated Echoes (DENSE) pulse sequence. Results: DENSE magnitude-valued data show significant response to visual stimulation in the visual cortex, while the phase-valued data show typical cardiac-gated motion in both cortex and brainstem. Impact: BOLD fMRI can be acquired simultaneously with brain tissue displacement quantification using the DENSE pulse sequence, enabling future spatiotemporal analyses of concurrent blood volume changes, tissue displacement, and CSF flow for understanding waste clearance mechanisms.