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Driven many-body systems typically experience heating due to the lack of energy conservation.
Heating may be suppressed for time-periodic drives, but little is known for less regular drive proto-
cols. In this work, we investigate the heating dynamics in aperiodically kicked systems, specifically
those driven by quasi-periodic Thue-Morse or a family of random sequences with n-multipolar tem-
poral correlations. We demonstrate that multiple heating channels can be eliminated even away
from the high-frequency regime. The number of eliminated channels increases with multipolar order
n. We illustrate this in a classical kicked rotor chain where we find a long-lived prethermal regime.
When the static Hamiltonian only involves the kinetic energy, the prethermal lifetime t∗ can strongly
depend on the temporal correlations of the drive, with a power-law dependence on the kick strength
t∗ ∼ K−2n, for which we can account using a simple linearization argument.

Introduction.— Time-dependent many-body systems
have attracted sustained interest due to their ubiquity in
nature and the potential to realize novel non-equilibrium
phases of matter. One typical example is the discrete
time crystal which spontaneously breaks discrete time
translation symmetry (TTS) [1, 2]. However, due to
the absence of energy conservation, closed driven sys-
tems tend to heat up and lose any non-trivial correla-
tions [3, 4]. Therefore, understanding and controlling
the onset of heating in time-dependent systems is key to
their stabilization, and to the realization of exotic non-
equilibrium phenomena.

While heating generally occurs in time-dependent
many-body systems, it can be parametrically suppressed,
e.g., by using high-frequency drives [5–14] or by using
weak drive amplitudes [15–17] in periodically driven (Flo-
quet) systems. Examples include spin systems with a
bounded local energy scale, where an exponentially long-
lived prethermal regime appears before heating takes
over [15, 18–24]. A similar prethermal phenomenon can
also manifest in kicked systems which have been exten-
sively studied in the context of digital quantum sim-
ulation [9, 25, 26] and the fundamental discussion of
chaos [27–32]. A paradigmatic example is the interact-
ing kicked rotor, where heating takes the form of Arnold
diffusion [33–42]: before their eventual diffusive dynam-
ics with unbounded energy growth [29], heating only oc-
curs with a probability exponentially small in the kick
strength in the prethermal regime [43].

It is natural to ask: can heating be efficiently sup-
pressed in many-body systems without TTS, e.g., when
drives are quasi-periodic, or even random? This is a noto-
riously difficult question as breaking TTS generally opens
up further deleterious heating channels that can destabi-
lize systems rapidly [44–46]. For certain piecewise con-
stant and continuous quasi-periodic drives, this is known
to be possible in the high-frequency regime [47–58]. Rig-
orous bounds on heating rates can also be established by
generalizing the Floquet theory [59, 60]. However, this
becomes obscure for kicked systems as the high-frequency
limit of kicks in principle allows a divergent rate of en-
ergy input into the system. Aperiodically kicked systems

have been most limited to few-body settings [61–65] and
it remains an outstanding challenge to control heating in
the thermodynamic limit.

Here, we give an affirmative answer by investigat-
ing many-body systems kicked by a family of struc-
tured binary random protocols known as random mul-
tipolar drives (RMD) [51]. These drives exhibit a mul-
tipolar correlation indexed by a non-negative integer
n: for n = 0, the drive is purely random and gener-
ated from the binary options {s+0 , s

−
0 } = {+,−}; for

n = 1, it consists of a random sequence of two ele-
mentary dipolar blocks, {s+1 , s

−
1 } = {(−,+), (+,−)}; and

the nth order multipolar blocks are recursively generated
by concatenating two different (n − 1)th order blocks,
{s+n , s−n } = {(s−n−1, s

+
n−1), (s

+
n−1, s

−
n−1)}. In the n → ∞

limit, s±n produces the quasi-periodic Thue-Morse (TM)
sequence [60, 66]. RMD notably suppresses the low-
frequency components in the driving spectrum and it suf-
fices to reduce heating algebraically in the high-frequency
regime [51].

In this work, instead of focusing on the high-frequency
regime, we exploit the self-similarity inherent in the RMD
sequence to demonstrate that heating can be parametri-
cally controlled by the kick strength. Through a per-
turbative expansion, we derive an effective Hamiltonian
that governs the initial time evolution. Remarkably, the
self-similar multipolar structure leads to exact cancel-
lations of numerous terms in the effective Hamiltonian,
thereby eliminating the corresponding heating channels.
This mechanism of heating suppression is independent of
the specific model and is applicable to both quantum and
classical many-body systems.

For numerical efficiency, we demonstrate this effect in a
concrete model, namely a kicked chain of classical rotors.
Starting from low-temperature initial states, the system
exhibits a long-lived prethermal regime before heating
up. The lifetime scaling depends on the microscopic de-
tails of the kicked system and if the static part only in-
volves the kinetic energy, the lifetime scales as a power
law with a tunable exponent 2n. This we account for by
analysing the linear stability of the system. In the quasi-
periodic TM limit, we also show that the lifetime grows
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faster than any power law but slower than exponentially.
In the following, we first consider a general kicked sys-

tem and demonstrate heating suppression in a perturba-
tive expansion of the effective Hamiltonian in the small
kick strength. We then present the results on the chain
of rotors before a concluding discussion.

Setting.— Consider the time-dependent Hamiltonian
H(t) = H + V∆(t), where H denotes the static part
and V defines the kick with ∆(t) =

∑
l Klδ(t − lτ), and

the kick strength Kl with period τ . We focus on the
intermediate frequency regime, i.e. τ is not necessarily
small. Suppose the strength Kl has binary choices ±K
following an n-RMD sequence. For n = 0, there are two
possible unitary time evolution operators:

U+
0 = e−iτHe−iKV , U−

0 = e−iτHeiKV . (1)

We can formally define the time-independent ef-
fective Hamiltonian H±

0 through the relation U±
0 =

exp(−iτH±
0 ). For weak kick strength K, we can per-

turbatively construct the effective Hamiltonian as H±
0 =∑∞

m=0 K
mΩ±

0,m, describing the dynamics at times t = lτ .
Although such an expansion may diverge for many-body
systems, we expect that its truncation at low orders in K
will approximate the initial time evolution. The lowest
order term is simply the static Hamiltonian, Ω±

0,0 = H.
Via the replica resummation of the Baker-Campbell-

Hausdorff series, the leading correction can be expressed
in a compact form [15]

Ω+
0,1 = −Ω−

0,1 := Ω0,1 =
−iadHe−iτadH

e−iτadH − 1
V, (2)

where adX(Y ) = [X,Y ] is the Lie derivative. It can also
be expanded in a power series in τ as

Ω0,1 = V τ−1 − i[H,V ]/2 +O(τ1), (3)

where higher order terms only contain nested commu-
tators of the form [H,V ]s := [H, . . . , [H,V ] . . . ] with a
single kick V but multiple (s) H operators. Generally,
Ω0,1 does not vanish, and initially, the time evolution is
dominated by H ± KΩ0,1. The term Ω0,1 occurs ran-
domly with an amplitude linear in K, and one expects it
to quickly destabilize the system and induce heating in a
short time.

We now use the self-similar structure of RMD proto-
cols to show that many terms of order O(K) in the effec-
tive Hamiltonian can be eliminated. Furthermore, if the
condition

[H,V ]s = 0, (4)

can be satisfied for ∀s ≥ nc with some integer nc, for
n−RMD systems with any n ≥ nc, random perturba-
tions start appearing at a higher order O(K3) and hence
heating can be significantly suppressed.

To see this, we first observe that higher-order mul-
tipolar operators can be recursively obtained using the
relation

U±
n = U∓

n−1U
±
n−1, (5)

where U±
n generates the time evolution over the duration

2nτ [51]. For n-RMD systems, the time evolution is given
by a random sequence of multipolar operators U±

n . Sim-
ilarly, the effective Hamiltonian H±

n is defined through
U±
n = exp(−i2nτH±

n ), governing the stroboscopic time
evolution (t = 2nτ l for integers l). The perturbative ex-
pansion is denoted as H±

n =
∑∞

m=0 K
mΩ±

n,m. Notably,
the time evolution operators in Eq. 1 possess the special
property that U+

0 can be mapped to U−
0 by changing

K → −K. Thus, terms in the effective Hamiltonians co-
incide for even orders in K, while differing by a minus
sign for odd orders, given by

Ω+
n,m = (−1)mΩ−

n,m := Ωn,m. (6)

Similar to the purely random drive (n = 0), the initial
stroboscopic time evolution is governed by H ± KΩn,1,
and the system may still exhibit rapid heating. However,
it is noteworthy that the self-similar construction in Eq. 5
and the symmetry property in Eq. 6 lead to an impor-
tant observation: several terms in Ωn,1 actually vanish,
resulting in the remarkable property

Ωn,1 =

∞∑
s=n

fn,sτ
s[H,Ω0,1]s, (7)

where the summation starts from s = n, although ob-
taining the coefficient fn,s can be a cumbersome task.
Importantly, Eq. 7 suggests that, to the leading order of
O(K), heating can only occur through heating channels
in the form of [H,V ]s with s ≥ n, while all other heating
channels are strictly forbidden. The derivation of this
expression is presented in Sec. SM 1 of the Supplemen-
tary Materials (SM). Now, if the condition given by Eq. 4
is satisfied, all terms in Ωn,1 vanish. Consequently, the
stroboscopic time evolution of the system is effectively
governed by the Hamiltonian H±

n = H̄n ±O(K3), where
the static part is denoted by H̄n = H +K2Ωn,2. There-
fore, the RMD kicked systems first relax to a prethermal
ensemble determined by H̄n before notable heating is in-
duced by random perturbations of order O(K3).
Although we use the perturbative expansion for quan-

tum systems, it is important to note that this mech-
anism of heating suppression equally applies to classi-
cal many-body systems. The Liouville equation, which
describes the phase-space distribution of a classical sys-
tem, exhibits a structural similarity to the Schrödinger
equation in quantum systems. Consequently, the effec-
tive Hamiltonian for classical systems can be obtained by
formally replacing the commutator [. . . ]/i in its quantum
counterpart with the Poisson bracket {. . . } [18]. Due to
the computational efficiency of numerical simulations for
large classical systems, we proceed to demonstrate this
heating suppression in a classical rotor system.

Many-body kicked rotors.— We consider many-body
rotors with the static kinetic energy (H = Hkin) and
the kicked nearest-neighboring interactions (V = Vint),

Hkin =
1

2

∑
j

p2j , Vint =
∑
j

cos (qj+1 − qj) , (8)
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FIG. 1: (a) Time evolution of the averaged kinetic energy
for n−RMD and Thue-Morse (TM) drive with K = 0.03
in a log-log scale. (b) Dependence of the prethermal life-
time t∗ on 1/K in a log-log scale. Dashed lines (K−2n

for n > 0 and K−2 for n = 0) are plotted to guide the
eyes. (c) Prethermal lifetime t∗ scaling for TM drives.

where pj and qj for j = 1, ..., N are the conjugate angular
momenta and angles of N rotors, respectively. Periodic
boundary conditions are used (q1 = qN+1). The interac-

tion preserves the total angular momentum
∑N

j=1 pj .

As we will demonstrate below, the condition in Eq. 4
can be approximately satisfied when the angular momen-
tum distribution is narrow. In the prethermal regime, the
width of the distribution is determined by the tempera-
ture T , which is controllably small and scales with the
kick strength as T ∼ K2.

To begin, we derive the nested Poisson brackets
{H,V }s for kicked rotors, which reduce to

∑
j(pj −

pj+1)
s sin(qj−qj+1) for odd s and

∑
j(pj−pj+1)

s cos(qj−
qj+1) for even s. Therefore, for multipolar order n ≥ 1,
the expression in Eq. 7 implies that the dominant ran-
dom perturbation Ωn,1 only contains terms proportional
to (pj − pj+1) or its higher powers. These terms become
negligible when the kinetic energy distribution is suffi-
ciently narrow. The suppression becomes stronger with
higher multipolar orders, and Eq. 4 can be more effec-
tively satisfied for larger multipolar order n.

When we start from the initial condition pj = p̃ for
all j, Eq. 4 is fulfilled exactly, and the initial time evolu-
tion is governed by the static effective Hamiltonian H̄n =
Hkin + K2Ωn,2. As this Hamiltonian is generally non-
integrable, the angular momentum distribution spreads.
In the prethermal regime, it approximately reaches the

Gibbs distribution
∏N

j=1 exp
[
−(pj − p̃)2/2T

]
[43]. The

width of the distribution is determined by an effective
prethermal temperature T . As shown in Sec. SM 3, this
temperature can be controlled to be small for weak kicks
(T ∼ K2).

Numerical simulation.— We now confirm the possibil-

ity of prethermalization through numerical simulations.
The time evolution of RMD kicked rotors can be gen-
erated using a set of discretized classical equations of
motion (EOM):

pj(t+ 1) = pj(t)±K [sin(qj+1(t)− qj(t))

+ sin(qj−1(t)− qj(t))] ,

qj(t+ 1) = qj(t) + τpj(t+ 1), for j = 1, 2, ..., N,

(9)

where the ± sign follows the RMD sequence and t labels
the number of kicks. We choose τ = 1 for numerical
simulations.
The spreading of the angular momentum distribution

can be quantified by the kinetic energy density Ekin(t) :=
1

2N

∑N
i=1 p

2
i (t), making it a suitable measure of heating

and temperature increase. The initial conditions are cho-
sen such that the angles qj uniformly distribute between
0 and 2π, and the angular momentum pj = 0.1 is fixed for
all rotors, satisfying the condition in Eq. 4. In Fig. 1(a),
we depict the time evolution of the averaged kinetic en-
ergy ⟨Ekin⟩, averaged over 350 noise realizations with dif-
ferent initial states, for a fixed kicking strength K = 0.03
and rotor number N = 500 [67]. For multipolar order
n ≥ 1, the averaged kinetic energy remains almost un-
changed for a long timescale t∗. However, as the kinetic
energy is unbounded, it eventually increases when heat-
ing takes over. We observe that for larger n, the timescale
t∗ remarkably extends by several orders of magnitude,
reaching its largest value in the quasi-periodic TM limit.
In contrast, for the fully random drive (n = 0), un-
bounded diffusion starts even at very early times, and
no prethermal regime can be established.
We quantify the prethermal lifetime t∗ and its depen-

dence on the kicking strength K. To extract t∗, one can
fit the averaged kinetic energy up to time tf with a power
law tb and monitor the power b for different tf [43]. Dur-
ing the prethermal regime, the power b remains close to
zero, and t∗ is determined when b first reaches a thresh-
old. In our numerical simulations, we choose b = 0.05,
but our findings are independent of the specific threshold
value as long as it is small.
Fig. 1(b) illustrates the dependence of t∗ on the kick

strength for different multipolar orders. Using a log-log
scale, a linear fit suggests that the prethermal lifetime
follows an algebraic dependence on the kick strength,
t∗ ∼ (1/K)α. The scaling exponent α can be determined
through numerical fitting. For n = 0, the exponent is
close to 2. It remains approximately the same for n = 1,
although the prefactor differs by three orders of magni-
tude, indicating significant suppression of heating due to
the dipolar structure. Interestingly, for higher multipolar
orders, α notably increases and exhibits a good approxi-
mation to the relation α ≈ 2n for n = 1, 2, 3. In the TM
limit, the lifetime scaling converts to

t∗ ∼ exp(C[ln(K−1/g)]2), (10)

where the constant C ≈ 0.8 and g ≈ 0.3 as shown in
Fig. 1(c). A similar functional form has been reported
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FIG. 2: (a) Trajectories in phase space. The black orbit is
obtained by the area-preserving map M̄ ′. The magenta
curve with a constant expansion rate is generated via
M̄1. The blue curve is a single realization obtained by
stochastically applying the matrixM±

1 . (b) The averaged
radius ⟨rh⟩ matches well with the theoretical prediction

(dashed lineas). F = 0.08 is used in both panels.

in Ref. [60] but in the high-frequency regime. We verify
that this scaling grows faster than any power law (cf.
Sec. SM 5), indicating a significant suppression of heating
in a non-perturbative manner.

Linearization.— Although it is expected that higher
multipolar orders may further suppress heating, the per-
turbative expansion of the effective Hamiltonian is insuf-
ficient to explain the scaling of the prethermal lifetime.
To address this, we develop a simple theory by linearizing
the many-body systems.

Assuming small angular differences between neighbor-
ing rotors, (qj − qj+1) mod 2π ≪ 1, we can expand
the kicked interaction using the quadratic approximation
cos(qj − qj+1) ≈ 1 − 1

2 (qj − qj+1)
2 in the Hamiltonian

Eq. 8. Performing a Fourier transform, we obtain

H(t) =
1

2

∑
w

[
|Pw|2 ± F (w) |Qw|2

∑
l

δ(t− lτ)
]
, (11)

where w := 2πI/N for an integer I, F (w) :=
4K sin2(w/2), and the Fourier components are defined as

Pw =
∑N

j=1 pje
−iwj/

√
N and Qw =

∑N
j=1 qje

−iwj/
√
N .

The ± sign follows the RMD sequence. The system now
decouples into a set of independent kicked harmonic oscil-
lators labeled by w. For each oscillator, we can integrate
its discrete time evolution in a two-dimensional phase
space over one period τ :(

Qw

P−w

)
t+τ

= M±
0 (w)

(
Qw

P−w

)
t

, (12)

whereM±
0 is the elementary evolution matrix (see deriva-

tions in Sec. SM 2A):

M±
0 =

(
1∓ τF τ
∓F 1

)
, (13)

where we drop the label w as the following discussion
equally applies to all w.
Similar to Eq. 5, higher multipolar evolution matri-

ces can be recursively derived as M±
n = M∓

n−1M
±
n−1 to

generate stroboscopic time evolution over the duration
2nτ . Crucially, both M+

n and M−
n have the property

det(M±
n ) = 1, making them area-preserving maps [68].

Therefore, when only M+
n or M−

n is periodically ap-
plied, the system, for weak kicking strength, exhibits
non-chaotic dynamics confined to a closed elliptical or-
bit around its fixed point (Q,P ) = (0, 0). However, the
random concatenation of two slightly different maps M±

n

generally perturbs these stable trajectories, causing them
to deviate indefinitely from their fixed points (Fig. 2(a),
blue). By quantifying such deviation, one can estimate
the heating rate and its relation to the multipolar order.
To analyze this deviation, we define the averaged evo-

lution matrix as M̄n := 1
2 (M

+
n + M−

n ) and the differ-

ence between the two matrices as Dn := 1
2 (M

+
n −M−

n ),

such that M±
n = M̄n ± Dn. It is worth noting that

det(M̄n) = 1 + O((τF )2n) for non-zero n, indicating
that the averaged map M̄n does not preserve area in
phase space. Instead, the trajectory slowly spirals out
with a constant expansion rate scaling as F 2n (magenta
in Fig. 2(a)). Additionally, the stochastic term Dn pos-
sesses eigenvalues that scale as Fn (cf. Sec. SM 2C), and
one would expect it to contribute to a diffusive spiral-out
process with a rate also scaling as F 2n.
To quantify this process, we introduce the normalized

map M̄ ′ = M̄n/
√
det M̄n, ensuring its area-preserving

property with det(M̄ ′) = 1, thus generating a closed
elliptical orbit (Fig. 2(a), black). The matrix elements
of M̄ ′ define the metric of the orbit and determine its
conserved area A(Q,P ) [69]. The radius of the ellipse,

defined as rh =
√
A(Q,P )/π, becomes time-dependent

when M±
n is stochastically applied h times. The expan-

sion rate of the radius can be calculated as ∆rh/rh, where
∆rh = rh+1 − rh. By averaging over different random
realizations and the polar angle of the ellipse, we find
that its leading order contribution scales as F 2n, with
a specific expression ⟨∆rh/rh⟩ ≈ 3τ2F 2/4 for n = 1
and 6τ4F 4 for n = 2, as detailed in Sec. SM 2B. Conse-
quently, the averaged growth of the radius at early times
can be obtained accordingly.
In Fig. 2(b), we present numerical simulations (circles)

of the averaged radius for n = 1 (blue) and 2 (orange),
which closely match our analytical predictions (dashed
lines). As F is proportional to the kicking strength, the
expansion rate scales as K2n, and its inverse corresponds
to the observed prethermal lifetime scaling in Fig. 1.
We note that the strong dependence of the multi-

polar order n in the prethermal lifetime scaling is re-
markably robust, even for initial states that deviate
significantly from the linearization regime where (qj −
qj+1) mod 2π ≪ 1. Indeed, our numerical results in
Fig. 1 are obtained using a random distribution of qj over
a wide range [0, 2π]. In Sec. SM 4, we confirm that this
phenomenon persists as long as the prethermal regime
exhibits a low temperature, leading to a narrow distribu-
tion of angular momenta.
Discussion.— We have proposed a mechanism to sup-

press heating in aperiodically kicked systems by intro-
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FIG. 3: (a) Time evolution of the averaged kinetic energy
density for different multipolar order n withK = 0.005 in
a log-log scale. (b) Prethermal lifetime t∗ as a function of
1/K in a log-log scale. The system starts from the initial
angular momentum pj(0) = 0 with B = 0.01. Other
numerical parameters are same as in Fig. 1. Dashed lines

correspond to the scaling K−2.

ducing self-similar multipolar structures. This mecha-
nism brings about significant changes in the thermaliza-
tion pathways and effectively blocks a series of heating
channels. As a result, it supports the existence of a long-
lived prethermal regime even in the absence of TTS and
away from the high-frequency regime.

To demonstrate this mechanism, we have considered
classical many-body rotor systems, where we have dis-
covered a characteristic prethermal lifetime scaling of
(1/K)2n. In the quasi-periodic TM limit, the heating
suppression becomes non-perturbative, leading to the
scaling given by Eq. 10, which does not follow an ex-
ponential or algebraic form. A similar functional form
has been rigorously proven in the high-frequency regime
[60]. However, it remains an interesting open question to
justify such a dependence on the kicking strength.

The Hamiltonian Eq. 8 can be experimentally realized,
e.g., using an array of bosonic Josephson junctions [42,
70, 71]. This opens up possibilities for the experimental
exploration of prethermalization with RMD kicks.

It is important to note that while heating channels

can be suppressed by the RMD sequence, the life-
time scaling is not universal and can strongly depend
on the microscopic details of the kicked system. The
strong dependence of the multipolar order n in the
lifetime scaling may not occur if interaction terms are
also present in the static Hamiltonian, such as H =
Hkin+Vint. The leading order perturbation Ωn,1 involves
terms with more than one Vint, e.g., {Vint, {Vint, Hkin}} ∼∑

j [sin(qj − qj+1)− sin(qj−1 − qj)]
2
. These terms are

independent of angular momenta and cannot be sup-
pressed even at low prethermal temperatures. Hence,
the condition Eq. 4 cannot be satisfied in this case.

We implemented a kicked protocol with a modified
kick strength Kl = ±K + B such that the additional
static interaction can be efficiently simulated at strobo-
scopic times [72]. In Fig. 3(a), we illustrate the results
with B = 0.01. The prethermal plateau is still observed,
and the corresponding lifetime is shown in panel (b). It
is evident that for n > 0, heating can still be signifi-
cantly suppressed. However, its dependence on the kick-
ing strength now follows t∗ ∼ (1/K)2 regardless of the
multipolar order. A similar linearization analysis can be
performed, and the expansion rate for each decoupled os-
cillator is K2, as detailed in Sec. SM 2C. Identifying a
general mechanism for further suppressing heating with
a better scaling remains an intriguing open question.

Finally, we note that the perturbative expansion pre-
dicting the suppression of heating also applies to RMD
kicked quantum systems. A systematic study of quantum
thermalization in kicked systems and its relation to their
classical counterparts is an intriguing subject for future
study.
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SM 1. MANY-BODY EFFECTIVE HAMILTONIAN FOR KICKED SYSTEMS

For the quantum kicked system, we have two different unitary time evolution operators

U+
0 = e−iτHe−iKV , U−

0 = e−iτHeiKV , (S.1)

One can obtain a time-averaged Hamiltonian H±
ave = H ± K

τ V as the effective Hamiltonian to approximate the early
time dynamics. However, this is not a suitable expansion if τ is not sufficiently small and one wants to study the
perturbative expansion with respect to the kick strength K. For instance, the term [H,V ]s all have an amplitude
scaling of O(K) but they are not captured in the averaged Hamiltonian. Instead, it is necessary to perform the
replica resummation, whose general expression can be cumbersome to obtain, but there is a systematic approach to
achieve it [15], see also examples in [16]. For the same reason, the previous heating analysis on RMD systems in the
high-frequency regime and the expansion of order O(τ) will not be applicable here.

To explore the heating effect in RMD kicked systems, we consider the expansion in O(K) as H±
n =

∑∞
m=0 K

mΩ±
n,m

such that U±
n = exp(−i2nτH±

n ). The symmetry H+
n → H−

n (under K → −K) implies that

Ω+
n,m = (−1)mΩ−

n,m := Ωn,m (S.2)

for all n. For n = 0, a systematic method has been established for constructing the expansion U±
0 = exp[−iτ(H0 ±

KΩ0,1 +O(K2))] and the O(K) term is presented in Eq. 2 [15] . For larger values of n we still begin by considering
the leading-order correction with m = 1, and we assume a general structure for n ≥ 1 as

Ω±
n,1 =

∞∑
s=0

f±
n,sτ

s[H,Ω0,1]s, [H,Ω0,1]s := [H, . . . , [H︸ ︷︷ ︸
s

,Ω0,1] . . . ]. (S.3)

From Eq. S.2 we know for any n and s, we have f+
n,s = −f−

n,s for m = 1. Note, we do not require the specific

expression for each coefficient f±
n,s. Instead, it suffices to demonstrate that some of them become exactly zero, thereby

prohibiting certain heating channels. A similar expansion can be derived for higher-order multipolar operators

U∓
n+1 = U±

n U∓
n =exp

{
− i2n+1τ

[
H +K(f±

n,s + f∓
n,s)

∞∑
s=0

τs[H,Ω0,1]s/2

− (−i2n−1)K

∞∑
s=0

τs+1f±
n,s[H,Ω0,1]s+1 +K

∞∑
l=2

∞∑
s=0

τs+lg±n,s,l[H,Ω0,1]s+l +O(K2)
]}, (S.4)
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where gn,s,l are some coefficients, and importantly, f±
n,s + f∓

n,s = 0 in the first line cancels. By comparing it with the
assumption Eq. S.3 but for n = 1, we have

U∓
n+1 =exp

{
−i2n+1τ

[
H +K

∞∑
s=0

τsf∓
n+1,s[H,Ω0,1]s

]
+O(K2)

}
, (S.5)

and by matching the coefficients of τs, we can establish the following relation for the coefficients

f+
n,s = 0, for s ≤ n− 1,

f+
n,s = (−i)2n−2f+

n−1,s−1, for s = n,
(S.6)

and obtaining f+
n,s for s ≥ n + 1 can be cumbersome. Therefore, the first line in Eq. S.6 implies Eq. 7 in the main

text. It suggests that, to the leading order of O(K), heating can only occur via the process [H,V ]s with s ≥ n, while
all other heating channels are strictly forbidden.

Higher-order terms with an even order of K do not introduce random perturbations. However, they still contribute
to heating in the form of Arnold diffusion, similar to periodically driven systems, but their contribution is exponentially
small in the kick strength [43]. As a result, the next significant random heating channels emerge at order O(K3).
It can also be shown that the self-similarity of the RMD sequence leads to the exact suppression of these heating
channels. To see this more easily, we consider a special case where higher-order nested commutators have negligible
contributions

[H,V ]s = 0, (S.7)

for ∀s ≥ nc with a certain integer nc. Consequently, Ωn,1 = 0 and the stroboscopic time evolution of the system is
effectively governed by the Hamiltonian H±

n = H +K2Ωn,2 ±K3Ωn,3 +O(K4), where

Ωn,3 =

∞∑
s=0

hn,sτ
s[H,Ωk,3]s, (S.8)

for n > k and a certain integer k. By using U∓
n+1 = U±

n U∓
n , one can again observe the vanishing coefficients

hn,s = 0, for s ≤ n− k − 1, n ≥ k + 1. (S.9)

SM 2. LINEARIZATION OF THE MANY-BODY HAMILTONIAN

A. Time evolution matrix

Following [73], we can express the Hamiltonian of our model as a collection of decoupled kicked harmonic oscillators
in a quadratic approximation: cos(qj − qj+1) ≈ 1 − (qj − qj+1)

2/2, provided that the two neighbouring rotor angles
are sufficiently close (qj − qj+1) mod 2π ≈ 0. Thus, we have

H(t) =

N∑
j=1

[
p2j
2

− (B ±K) cos(qj − qj+1)

+∞∑
l=−∞

δ(t− lτ)

]

=
1

2

∑
w

[
|Pw|2 + F±(w)|Qw|2

+∞∑
l=−∞

δ(t− lτ)

]
,

(S.10)

where w := 2πI/N , F±(w) := 4(B ± K) sin2(w/2) (the choice of F±(w) depends on the RMD sequence), Pw =
1√
N

∑N
j=1 pje

−iwj and Qw = 1√
N

∑N
j=1 qje

−iwj are the Fourier transforms of pj and qj , respectively. Note that Eq. 11

in the main text is a simplified version of the Hamiltonian above with B = 0. Here we use the general expression with
non-zero B such that the linear stability of the dynamics in Fig. 3 can also be discussed.
Since pj and qj are real, we have P ∗

w = P−w and Q∗
w = Q−w (here star denotes complex conjugate). For each w,

the classical equations of motion are given by

d

dt

 Qw

Q−w

Pw

P−w

 =

 P−w

Pw

−F±(w)Ω(t)Q−w

−F±(w)Ω(t)Qw

 =

 0 0 0 1
0 0 1 0
0 −F±(w)Ω(t) 0 0

−F±(w)Ω(t) 0 0 0


 Qw

Q−w

Pw

P−w

 =: M±(t)

 Qw

Q−w

Pw

P−w

 , (S.11)
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where Ω(t) =
∑+∞

k=−∞ δ(t− kτ).
Consider the evolution of the system over one time period, from t = −ϵ to t = τ − ϵ with ϵ ≪ τ . The solution to the
above equation is  Qw(τ − ϵ)

Q−w(τ − ϵ)
Pw(τ − ϵ)
P−w(τ − ϵ)

 ∼ exp

[∫ τ−ϵ

−ϵ

M±(t)dt

] Qw(−ϵ)
Q−w(−ϵ)
Pw(−ϵ)
P−w(−ϵ)

 . (S.12)

During the first part of the period (when t ∈ (−ϵ, ϵ)), the rotor is kicked and the time evolution is determined by the
matrix

M±
kick,w = lim

ϵ→0
exp

[∫ +ϵ

−ϵ

M±(t)dt

]
= exp

 0 0 0 0
0 0 0 0
0 −F±(w) 0 0

−F±(w) 0 0 0

 =

 1 0 0 0
0 1 0 0
0 −F±(w) 1 0

−F±(w) 0 0 1

 . (S.13)

In the second part of the time period (when t ∈ (ϵ, τ − ϵ)), the rotor experiences a free motion, described by the
matrix (with ϵ → 0)

Mfree =

1 0 0 τ
0 1 τ 0
0 0 1 0
0 0 0 1

 . (S.14)

As a result, the phase space evolution of the kicked rotor over one time period is given by the matrix

M±
w = MfreeM

±
kick,w =

1− F±(w)τ 0 0 τ
0 1− F±(w)τ τ 0
0 −F±(w) 1 0

−F±(w) 0 0 1

 . (S.15)

Notice that the matrix M±
w can be reduced to 2× 2 matrix

M±
0 =

(
1− τF± τ
−F± 1

)
, (S.16)

where the subscript w is dropped from now on. The evolution matrices for higher multipolar orders n can be derived
recursively as M±

n = M∓
n−1M

±
n−1, which determines the time evolution of duration 2nτ . For example, when B = 0,

n = 1 we have

M+
1 =

(
−τ2F 2 − τF + 1 τ2F + 2τ

−τF 2 τF + 1

)
, M−

1 =

(
−τ2F 2 + τF + 1 −τ2F + 2τ

−τF 2 −τF + 1

)
, (S.17)

where we have denoted F := F+ = −F−.

B. Stability of integrable orbits

We use the method proposed in Ref. [68] to analyse the stability of the elliptical orbits. Let us denote

M̄n :=
1

2

(
M+

n +M−
n

)
and Dn :=

1

2

(
M+

n −M−
n

)
, (S.18)

such that M±
n = M̄n + ξDn where ξ is a random variable, being either +1 or −1 with the same probability. Hence,

its average vanishes ⟨ξ⟩ = 0 and the variance reads ⟨ξ2⟩ = 1. We note that det(M̄n) = 1 +O((τF )2n) for non-zero n,

implying that the averaged map M̄n is not area-preserving. We therefore define a new matrix M̄ ′ := M̄n/
√
det M̄n so

that det(M̄ ′) = 1 and this new matrix can be used to define the area of a closed orbit in the linearized system. This
orbit is generally a rotated ellipse centered around the fixed point (0, 0). Note, M̄ ′ also depends on the multipolar
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order n but the following method equally applies for all n. For now we drop it for simplicity. With the matrix elements
Mij of M̄ ′ its area can be defined as [74]

A(Qw, P−w) =
π
[
M12P

2
−w −M21Q

2
w + (M11 −M22)QwP−w

]√
1−

(
M11+M22

2

)2 , (S.19)

which is conserved if M̄ ′ is repeatedly applied. Qw and P−w are generally time-dependent, and in the following, we
drop w for simplicity and introduce h to label their time-dependence. We only focus on stroboscopic time evolution
and use (Qh, Ph) to represent the trajectory at time h2nτ . One can use the polar angle ϕh to parametrize the points
(Qh, Ph) on the rotated ellipse as

Qh = Rq cos(θ) cos(ϕh)−Rp sin(θ) sin(ϕh),

Ph = Rq sin(θ) cos(ϕh) +Rp cos(θ) sin(ϕh),
(S.20)

where Rq/p defines length of the major or minor axis, and θ defines the rotation angle with respect to the axis. It can
be determined by

tan(2θ) = −M11 −M22

M12 +M21
. (S.21)

One can also convert the variables back as

cosϕh =
Qh cos θ + Ph sin θ

Rq
, sinϕh =

−Qh sin θ + Ph cos θ

Rq
. (S.22)

The lengths of the major and minor axes are given by

Rq =

√
2r0
β

[
M11 −M22

sin 2θ
+M12 −M21

]−1/2

, Rp =

√
2r0
β

[
−M11 −M22

sin 2θ
+M12 −M21

]−1/2

, (S.23)

with the constant

β := (1− (M11 +M22)
2/4)−1/4. (S.24)

It is worth noting that for n = 1, Rq ∼ O(F−1), Rp ∼ O(F 0), so for a weak kick strength, Rq can be large. This
stretches the ellipse in the Q-direction much more strongly than in the P -direction.

For RMD drives where M±
n is applied stochastically, the area of the closed orbit becomes time-dependent. For a

single random realization and at a certain time, this area can either expand or contract. However, if we average over
many different random realizations, it generally expands. We can quantify this expansion by first defining the ellipse’s
radius rh =

√
A(Qh, Ph)/π, and calculating the expansion rate ∆rh/rh, where ∆rh := rh+1 − rh. We use the same

metric to define the ellipse’s area but now the trajectory updates stochastically as(
Qh+1

Ph+1

)
= M±

n (w)

(
Qh

Ph

)
, (S.25)

The expansion rate now reads

∆rh
rh

:=
rh+1

rh
− 1 =

√
M12P 2

h+1 −M21Q2
h+1 + (M11 −M22)Qh+1Ph+1

M12P 2
h −M21Q2

h + (M11 −M22)QhPh
− 1. (S.26)

We now insert Eq. S.25 into Eq. S.26 to obtain the general expression as a function of the polar angle ϕh, the kick
strength F and the kick duration τ . Unfortunately, it is usually very complicated and not enlightening. However,
if the kick strength F is small, one can perform a Taylor expansion to obtain the most relevant contributions. For
our purpose, a Taylor expansion up to the order O(F 2n) would be sufficient. This process can be done by employing
symbolic computation tools such as Wolfram Mathematica.

For n = 1, to the second order of F , we have

∆rh
rh

≈

(
τF cos 2ϕh + τ2F 2

√
2

2
sin 2ϕh

)
ξ +

(
1 + ξ2(1− cos2 2ϕh)

) τ2F 2

2
. (S.27)
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Terms that are linear in ξ vanish after averaging over different random realizations. Contributions that are quadratic
in ξ generally do not vanish, unless for special polar angles, e.g., cos2 2ϕh = 1. Also note that there is a term of
order O(F ) which does not depend on ξ. It arises from the fact that the average map M̄n is not area-preserving,
contributing a constant expansion rate as shown in Fig. 2 (the magenta line).

To further remove the angular dependence in the expansion rate, one can assume that the change in the radial
direction is much slower than in the angular direction and integrate the angle ϕh over the full range [0, 2π]. We further
use ⟨ξ⟩ = 0 and ⟨ξ2⟩ = 1 to obtain the averaged expansion rate that is proportional to F 2

⟨∆rh
rh

⟩ = 1

2π

∫ 2π

0

∆rh
rh

dϕh ≈ 1

4
τ2F 2

(
2 + ⟨ξ2⟩

)
=

3

4
τ2F 2. (S.28)

This provides an approximation for the mean radius evolution for small h (and small τF ): ⟨rh⟩ ≈ r0(1 +
3
4τ

2F 2h).
Similarly for n = 2

∆rh
rh

≈

((
37
√
2

8
τ2F 2 − 2

√
2

)
τ2F 2 sin 2ϕh − 6τ3F 3 cos 2ϕh

)
ξ +

(
2ξ2 cos 4ϕh + 2ξ2 + 4

)
τ4F 4, (S.29)

and ⟨∆rh
rh

⟩ ≈ 2
(
2 + ⟨ξ2⟩

)
τ4F 4 = 6τ4F 4.

Lastly for n = 3, to the sixth order of F ,

∆rh
rh

≈

(
−16τ3F 3 cos 2ϕh + 56

√
2τ4F 4 sin 2ϕh + 206τ5F 5 cos 2ϕh − 429

√
2

2
τ6F 6 sin 2ϕh − 2

√
2τ4F 6 sin 4ϕh

)
ξ

+
(
−ξ2 cos 4ϕh + ξ2 + 2

)
64τ6F 6,

(S.30)
and the average ⟨∆rh

rh
⟩ ≈ 64

(
2 + ⟨ξ2⟩

)
τ6F 6 = 192τ6F 6.

C. Eigenvalues of the matrices M̄n and Dn

Instead of rigorously calculating the expansion rates and their dependence on n, one can also estimate them by
studying the scaling of eigenvalue properties of the update matrix. We first assume B = 0 and then obtain M̄n

recursively as

M̄0 =

(
1 τ
0 1

)
,

M̄1 =

(
1− τ2F 2 2τ
−τF 2 1

)
,

M̄2 =

(
1− 5τ2F 2 + τ4F 4 2τ(2− τ2F 2)
τF 2(−2 + τ2F 2) 1− 3τ2F 2

)
,

M̄3 =

(
1− 18τ2F 2 + 27τ4F 4 − 11τ6F 6 + τ8F 8 2τ(4− 18τ2F 2 + 10τ4F 4 − τ6F 6)
τF 2(−4 + 18τ2F 2 − 10τ4F 4 + τ6F 6) 1− 14τ2F 2 + 9τ4F 4 − τ6F 6

)
,

(S.31)

with eigenvalues

λ̄0,± = 1,

λ̄1,± =

(
1− 1

2
τ2F 2

)
±
(
−1

2
τF

)√
−8 + τ2F 2,

λ̄2,± =

(
1− 4τ2F 2 +

1

2
τ4F 4

)
±
(
−τF +

1

2
τ3F 3

)√
−8 + τ2F 2,

λ̄3,± =

(
1− 16τ2F 2 + 18τ4F 4 − 6τ6F 6 +

1

2
τ8F 8

)
±
(
−2τF + 9τ3F 3 − 5τ5F 5 +

1

2
τ7F 7

)√
−8 + τ2F 2.

(S.32)

Since τ2F 2 ≪ 8 the eigenvalues of M̄n for each n > 0 form a complex conjugate pair. Furthermore, as det(M̄n) > 1,
the deviation from one determines the rate of constant expansion of the dynamics generated by M̄n. Specifically, we
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calculate
√
det(M̄n) for different values of n, which correspond to the norms of the eigenvalues of Mn,

|λ̄1,±| = 1 +
1

2
(τF )2 − 1

8
(τF )4 +O((τF )6),

|λ̄2,±| = 1 + 4(τF )4 − 1

2
(τF )6 +O((τF )8),

|λ̄3,±| = 1 + 128(τF )6 − 160(τF )8 +O((τF )10).

(S.33)

Note that for a weak kick strength, we have (|λ̄n,±| − 1) ∼ (τF )2n for a small value of n, and higher-order terms
are negligible. Therefore, we expect the constant expansion rate to scale as F 2n as discussed in the previous section
Sec. SM 2B. However, we also observe that the prefactor for higher powers of F tends to increase for n = 3, suggesting
that the perturbative expansion in orders of F may not converge for a large value of n.

We also compute the matrix Dn

D0 =

(
−τF 0
−F 0

)
,

D1 =

(
τF −τ2F
0 −τF

)
,

D2 =

(
τ3F 3 τ2F (4− τ2F 2)
2τ2F 3 −τ3F 3

)
,

D3 =

(
−16τ3F 3 + 10τ5F 5 − τ7F 7 τ4F 3(16− 10τ2F 2 + τ4F 4)

0 16τ3F 3 − 10τ5F 5 + τ7F 7

)
;

(S.34)

with eigenvalues

µ0,± = 0,−τF,

µ1,± = ∓τF,

µ2,± = ±τ2F 2
√
8− τ2F 2,

µ3,± = ±(16τ3F 3 − 10τ5F 5 + τ7F 7),

(S.35)

which scales as |µn,±| ∼ (τF )n for n > 0. As Dn appears stochastically in time, we expect its leading-order
contribution to vanish. Its second-order effects lead to a diffusive spiral-out process with an expansion rate that scales
as F 2n.

We perform a similar calculation for non-zero B and by defining F± ∼ (±K +B), we obtain

|λ̄1,±| =
√

1 +
τ4

4
(F+ − F−)2 = 1 +

τ2

8
(F+ − F−)2 +O((F+ − F−)3),

|λ̄2,±| = 1 +
τ3

8
(F+ − F−)2

(
8− 3τ(F+ + F−) + τ2F+F−) (F+ + F− − τF+F−)+O((F+ − F−)3),

|λ̄3,±| = 1 +
τ4

8
(F+ − F−)2(F+ + F− − τF+F−)2

(
8− 3τ(F+ + F−) + τ2F+F−)2 (2− 2τ(F+ + F−) + τ2F+F−)2

+O((F+ − F−)3).

(S.36)

Importantly, one always finds (|λ̄n,±−1|) ∼ K2, where the scaling exponent does not depend on the multipolar order.
This scaling relation corresponds to the observed heating rate scaling of K2 in Fig. 3 in the main text.

SM 3. TEMPERATURE AT THE PRETHERMAL STAGE

Here we analyse the dependence of the prethermal temperature on the kick strength and we demonstrate that it
follows T ∼ K2. For the initial condition pj = p̃, the initial kinetic energy density is given by p̃2/2. In the prethermal
regime with a weak kick, we assume that the distribution for pj and qj decouples [43]. The angular momentum

distribution approaches the Gibbs distribution Z−1
∏N

j=1 exp
[
−(pj − p̃)2/2T

]
with a normalization factor Z−1. The

corresponding kinetic energy density is E∗
kin = (T + p̃2)/2. We numerically study the dependence of the temperature
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FIG. S1: The averaged prethermal kinetic energy density ⟨E∗
kin⟩ for n = 1 RMD for (a) B = 0 with p̃ = 0.1, (b)

B = 0 with p̃ = 0 and (c) B = 0.01 with p̃ = 0. The prethermal temperature scales as T ∼ K2 for (a) and (b) when
the kick is weak. In the last case it is fixed by B, so all the plateau parts of energy curves are at the same value

⟨E∗
kin⟩ = 0.0048. The rest numerical settings are the same as in Fig.1. All plots use a log-log scale.

T on the kick strength K in Fig. S1 (a) and (b) for two different initial conditions: p̃ = 0.1 and p̃ = 0, respectively.
The numerical results fit well with a straight line in a log-log scale, with a slope around 2. This suggests that the
temperature follows T ∼ K2.

In contrast, for the modified kicked protocol used in Fig. 3 with a non-vanishing B, the averaged prethermal kinetic
energy linearly depends on B but does not notably change with K. We verify this in Fig. S1, panel (c).

SM 4. DISTRIBUTION OF ANGULAR MOMENTA

In the main text, we linearize the many-body Hamiltonian and explain the characteristic scaling of the prethermal
lifetime. We note that such scaling can be very stable and persist even away from the linearization regime (qj −
qj+1) mod 2π ≪ 1, as shown in Fig. 1 where a wide initial distribution of qj is used. Interestingly, we notice that this
lifetime scaling is not sensitive to the angular dependence, but strongly relies on the angular momentum distribution
during the prethermal regime. As discussed in Sec. SM 3, this distribution is governed by the prethermal temperature.
We find that, as long as the prethermal regime exhibits a low temperature, or equivalently, a narrow distribution of
angular momenta, the prethermal regime can be sufficiently long-lived, and the dependence on n should manifest.

-0.2 0 0.2
0

0.02  = 0.1
 = 0.01
 = 0.001

101 102 103102

104

106

 = 0.001
 = 0.01
 = 0.1

(a) (b)

FIG. S2: (a) Momentum distribution at the end of the prethermal stage for a Gaussian initial momentum distribution
with a zero mean and a standard deviation σ indicated in different colours, and (b) corresponding prethermal lifetime

t∗ as a function of 1/K for n = 20 in log-log. The rest numerical settings are the same as in Fig.1.

The prethermal temperature can be adjusted by the initial condition. For instance, we consider initial an angular
momentum distribution following a Gaussian distribution with a zero mean and a standard deviation σ. A larger
standard deviation generally increases the prethermal temperature, resulting in a broader angular momentum dis-
tribution during the prethermal regime. This is confirmed in Fig. S2, panel (a), where three different values of the
initial standard deviation σ are used. Note that we use n = 1 to generate the dynamics but this figure qualitatively
represents other multipolar order as well. The kick strength K is chosen such that the prethermal lifetimes are ap-
proximately the same for all σ, with values of K set as 0.012, 0.008 and 0.005 for σ = 0.001, 0.01 and 0.1, respectively.
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The probability distributions are extracted at t = 1500 just before the system notably heats up.
We now illustrate the dependence of the prethermal lifetime scaling on different initial conditions, focusing on the

TM drive. For a fixed kick strength K, it typically determines the longest possible prethermal lifetime for the entire
family of n-RMD protocols. Therefore, if we fit t∗ versus 1/K on a log-log scale, the scaling exponent also sets the
upper bound for other n-RMD protocols. As long as the TM drive exhibits a sufficiently large scaling exponent α,
n-RMD with any finite n should exhibit the n-dependence in the lifetime scaling.

In Fig. S2, panel (b), we present the prethermal lifetime scaling for different initial conditions. For narrow dis-
tributions, such as σ = 0.001 and 0.01, the scaling exponents are still very large, approximately α ≈ 7.9 and 7.2,
respectively. We expect that these fitted scaling exponents may increases further if we perform the fit using larger
1/K and longer time windows, similar to Fig. 1(c). However, for a larger standard deviation, such as σ = 0.1, the
scaling exponent notably decreases to α ≈ 3.1, and we expect that n-RMD systems with finite n would heat up faster.

Therefore, we expect that as long as the prethermal regime has a low temperature, a long-lived prethermal regime
and the n-dependence in the lifetime scaling should emerge. Further systematic investigations of the temperature
dependence of the prethermal lifetime scaling will be explored in future work.

SM 5. SCALING OF THE THUE-MORSE PRETHERMAL LIFETIME

In the main text we show that for the TM drive, the lifetime scaling becomes t∗ ∼ exp(C[ln(K−1/g)]2) with
constants C and g. Here, we compare this result with other fitting methods. For instance, in Fig. S3(a) we use a
log-log scale and clearly the numerical data tends to curve up. In contrast, panel (b) depicts the same data but in log
scale and the numerical result bends down. Therefore, this scaling grows faster than any power-law but slower than
exponentially.

(a) (b)

20 40 60 80
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108

20 40 60 80

104
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FIG. S3: (a) and (b) depict the power-law and exponential fitting of the prethermal lifetime t∗(1/K) for the TM
drive.

A. Finite size effects

In Fig. S4 we compare the dynamics using the TM drive for different system sizes. The simulations converge as the
system size increases. In the main text, we use N = 500 to generate the data, which is already sufficient to mimic the
heating behaviour in thermodynamically large systems.
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FIG. S4: Time evolution of the averaged kinetic energy for the TM drive. The simulation results converge for large
systems and N = 500 is already sufficient to produce thermodynamically large systems. Here we use the kick strength

K = 0.07 and the results are averaged over 200 random realizations. Initial states are the same as in Fig. 1.
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