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Fabry–Perot cavities are widely used in precision interferometric applications. Various techniques have been devel-
oped to achieve the resonance condition via the direct interrogation of the cavity with the main laser field of interest.
Some use cases, however, require a surrogate field for cavity control. In this study, we construct a bichromatic cavity
to study the surrogate control approach, where the main and the surrogate fields are related by the second-harmonic
generation with nonlinear optics. We experimentally verify the temperature dependence of the differential reflec-
tion phase of a dielectric coating design optimized for the surrogate control approach of the optical cavities of the
light-shining-through-a-wall experiment Any Light Particle Search II and develop a comprehensive cavity model
for quasi-second-harmonic resonances that considers also other important factors, such as the Gouy phase shift, for
a detailed analysis of the surrogate control approach.
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1. INTRODUCTION

Fabry–Perot cavities find many use cases in precision interfer-
ometry and are at the forefront of several fundamental scientific
explorations. An outstanding instance are the laser interferomet-
ric gravitational wave detectors, in which Fabry–Perot cavities
are exploited for their intracavity power buildup, spatial-mode
selectivity, noise filtering property, and/or signal enhancement
property [1–3].

In most cases, the resonance condition between the
continuous-wave laser field of interest and the optical cavity
is achieved via their direct interaction. Some form of error signal
is generated for the control loop that actuates on either the opti-
cal frequency of the laser field or the length of the optical cavity.
The error signal can be based on the transmission/reflection
fringes, the introduction of modulation sidebands and hetero-
dyne techniques [4,5], polarization spectroscopy [6], and spatial
mode interference [7].

For the first observation of gravitational waves from a binary
black hole merger [8], the Laser Interferometer Gravitational-
Wave Observatory (LIGO) achieved a strain sensitivity of
better than 10−23/

√
Hz at around 100 Hz [9]. Further

improvements to the strain sensitivity of gravitational wave
detectors are planned, and one of the promising techniques is

the injection of frequency-dependent squeezed vacuum state
of light into the detector [10]. Typically, this involves first the
generation of squeezed vacuum states whose squeeze angle
is frequency-independent. A detuned (from exact resonance
with the laser field) optical cavity is then used to generate the
frequency-dependent rotation of the squeeze angle [11,12].

Since there is no coherent amplitude associated with the
squeezed vacuum state, a surrogate field is required to achieve
the resonance condition, with controlled detuning, between the
squeezed vacuum state and the optical cavity. A quasi-second-
harmonic field is currently used for such a surrogate task to
generate the frequency-dependent squeezed vacuum state for
the advanced gravitational-wave detectors [13–15].

High-finesse Fabry–Perot cavities can also be exploited to res-
onantly enhance the sensitivity of light-shining-through-a-wall
experiments [16–18] searching for ultralight bosonic dark mat-
ter candidate particles such as the axion and the axion-like parti-
cles (ALPs) [19–22], as illustrated in Fig. 1.

In a light-shining-through-a-wall experiment, the hypo-
thetical ALPs are produced via their interaction with photons
in the presence of a magnetic field. Conversely, ALPs can also
regenerate into photons in the presence of a magnetic field.
Enclosing the ALPs’ production and the photon regeneration
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Fig. 1. Schematic of a dual optical cavity enhanced light-shining-
through-a-wall experiment and its Feynman diagram representation,
where γ denotes a photon, a denotes the axion-like particles (ALPs)
and B denotes the magnetic field. M: Mirror; M1 and M2 form the
(axion-) production cavity, and M3 and M4 form the (photon-)
regeneration cavity; SPD: single-photon detector; solid red lines, input
and circulating laser beams; gray dotted line, axion-like particles; red
dotted line, regenerated photons.

areas with optical cavities increases the probability of a laser
photon reaching the single-photon detector (Fig. 1).

With a symmetric lossless optical cavity, the probability is
increased by a gain factor of 1/T , where T is the transmissiv-
ity of the cavity mirrors [23]. The Any Light Particle Search
II (ALPS II) experiment will be the first dual optical cavity
enhanced light-shining-through-a-wall experiment, and antic-
ipates a combined signal enhancement factor of 2× 108 from
two optical cavities [24].

The projected signal power on the single-photon detector
at the targeted search sensitivity of the ALPS II experiment is
of the order of two photons per day. This can be detected with
a transition edge sensor, which is a calorimeter that operates
at cryogenic temperatures capable of detecting single-photon
energies on the order of≈ 1 eV, and has been shown to exhibit
an intrinsic background rate as low as 6.9× 10−6 Hz [25,26].

The feeble signal power also poses challenges in controlling
the optical cavity. The shot noise of a sensible laser beam that is
used to interrogate the cavity will overwhelm the feeble signal.
A quasi-second-harmonic surrogate field for optical cavity
control is therefore also planned for the ALPS II experiment
[24]. Dichroic optics can then be used to attenuate the surrogate
field, or ideally, to prevent the surrogate field from reaching the
transition edge sensor. In practice, any residual surrogate field
that reaches the transition edge sensor can also be vetoed by the
calorimetric difference between the fundamental signal field and
the quasi-second-harmonic surrogate field. For instance, the
transition edge sensor being developed for ALPS II has achieved
an energy resolution of around 11% [26].

In general, there exists a temperature dependence of the
differential reflection phase between the fundamental and the
quasi-second-harmonic fields of the dielectric coatings that
constitute the optical cavity. Uncontrolled temperature in
conjunction with such temperature dependence can harm the
fidelity of the surrogate cavity control scheme [27]. In this paper,
we present our work on the experimental verification of the tem-
perature optimized dielectric coating design proposed in [27].
In addition, to better understand the results of our experiment,
we construct a comprehensive model that considers also the
effect of the length and the geometry of the optical cavity on its
control with a surrogate quasi-second-harmonic field.

2. SURROGATE OPTICAL CAVITY CONTROL

Figure 2 shows a generic schematic for surrogate optical cavity
control. The relation in optical frequency ν between Laser 1
and Laser 2 is maintained by a phase-locked loop (PLL). Laser
2 is frequency-doubled by a second-harmonic generation unit
and injected to the bichromatic cavity that consists of mirrors
M1 and M2 at a distance L apart. The resonance condition
between Laser 2 and the cavity can be maintained using, e.g., the
Pound–Drever–Hall (PDH) technique [4,5]. A frequency offset
in the PLL is generally required to account for dispersive effects.
This is to account for the fact that bichromatic cavity resonance
is generally not possible for exact harmonic fields, as we will see
in the following.

One dispersive effect is the reflection phase of dielectric
coatings, which would require, to first order, a frequency offset
of [27]

f =
c

2L
·

1

2π
· 2 · φdiff, (1)

where

φdiff ≡
φ(ν2)

2
− φ(ν1), (2)

denote the difference in the reflection phase between the funda-
mental field ν1 and its quasi-second-harmonic field ν2.

In the surrogate control scheme, a frequency offset f for
bichromatic cavity resonance is not an issue by itself. The
important requirement is that f remains constant such that
ν1 is always resonant with the bichromatic cavity as long as the
frequency-offset PLL between Laser 1 and Laser 2, and the PDH
control loop between Laser 2 and the bichromatic cavity are in
operation.

In the presence of temperature fluctuations 1T, the offset
frequency f will change by

1 f =
c

2L
·

1

2π
· 2 ·

dφdiff

dT
·1T. (3)

To maintain a constant offset frequency f for bichromatic
cavity resonance, the temperature dependence of the coating
reflection phase of the quasi-second-harmonic field needs to be
twice that of the fundamental field.

In the ALPS II experiment, optical cavities of≈ 120 m base-
line have been set up [28], and target at finesse values of up to

Fig. 2. The bichromatic cavity and the surrogate control scheme.
The resonance condition between ν1 and the bichromatic cavity
depends on the resonance condition between ν2 and the bichromatic
cavity, as well as the frequency offset of the phase-locked loop between
ν1 and ν2. M: mirror; SHG: second-harmonic generation; PLL:
phase-locked loop; PDH: the Pound–Drever–Hall sensing and control
technique.
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120,000 [24]. The combination results effectively in a cavity
linewidth as narrow as ≈ 10 Hz, and therefore enforces strict
control requirements on1 f .

Equation (3) indicates that1 f can be contained by having a
stable temperature and/or a coating with minimized dφdiff/dT.
The latter can be achieved by using different bilayers to con-
struct the coating as presented in [27]. One of the main goals
of this study is to experimentally verify such coating design
concept.

3. EXPERIMENTAL SETUP AND
MEASUREMENT DATA

In this study, we construct a plano–concave bichromatic optical
cavity to experimentally examine the surrogate control scheme.
The experimental setup is shown in Fig. 3. One-inch (25.4 mm)
optics are used for our experiment.

The concave mirror of the bichromatic cavity has a radius
of curvature of 2 m. The planar and the concave mirrors are
attached to an aluminum spacer with a nominal length of
0.2715 m. Both cavity mirrors are coated with seven multiband
reflector (MBR) bilayers on top of 11 quarter-wave stack (QWS)
bilayers, and capped with a customary half-wave layer (HW)
at ν1; the dual-band reflector stack has a center wavelength at
optical frequency (ν1 + ν2)/2, and the quarter-wave stack has
a center wavelength at optical frequency ν1 [27]. Silica (SiO2)
is used as the low-index coating material and tantala (Ta2O5) is
used as the high-index coating material. The mirror substrate
material is silica. The coating design is illustrated in Fig. 4.

The refractive indices of the coating materials from the
vendor of the coating are used to simulate the nominal char-
acteristics of the cavity mirror coating and its sensitivity to
manufacture tolerances with Monte Carlo methods. The results
with 1000 trials are shown in Fig. 5 and summarized in Table 1.

Fig. 3. Schematic of the experimental setup. Mode-matching
optics are not shown for conciseness. NPRO, nonplanar ring
oscillator; EOM: electro-optical modulator; PPKTP: periodi-
cally poled potassium titanyl phosphate (KTiOPO4); PID,
proportional–integral–derivative.

Fig. 4. Dielectric coating for the bichromatic cavity mirrors in this
study. The mirror substrate material is silica. QWS, quarter-wave stack;
MBR, multiband reflector; HW, half-wave.
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Fig. 5. Distributions of the coating parameters extracted from
Monte Carlo simulations in the presence of systematic and random
errors in layer thickness: T1064 nm and T532 nm are the transmissivity val-
ues at 1064 and 532 nm wavelengths, respectively; φdiff and dφdiff/dT
are the difference in reflection phase [Eq. (2)] and its temperature
dependence. On the left panel, the x axis is the systematic error, the y
axis is the parameters of interest, and the contour denotes the proba-
bility value of the normalized histograms of the Monte Carlo results
at each systematic error value; normally distributed random errors
with 1% standard deviation are used in the left panel. The data with
different systematic errors are then combined to produce the accumu-
lated histograms in the right panel; the systematic error is assumed to
be uniformly distributed. Data using random errors with 3% and 5%
standard deviation are additionally plotted in the right panel. The bin
widths for T1064 nm, T532 nm, φdiff, and dφdiff/dT are 0.5 ppm, 0.2%,
2 mrad, and 2 µrad/K, respectively. We note that in order to have a
clearer illustration on the distribution of the parameters within the
requirements, the histograms are clipped.

More details on the Monte Carlo simulations can be found
in [27].

Two NPRO lasers [29] at ≈ 1064 nm wavelength are used
to provide light with optical frequencies ν1 and ν2/2 and to
adjust the frequency offset f = ν2/2− ν1. NPRO 2 is sent to
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Table 1. Summary of the Simulated Characteristics of
the Bichromatic Cavity Mirror Coating Shown in Fig. 5

a

ν1 ν2

Wavelength 1064 nm 532 nm
T 24.7+3.0

−1.8ppm 2.34+1.71
−0.62%

φdiff 4.1251+0.0085
−0.0246rad

dφdiff/dT (−0.342± 1.709)× 10−5 rad/K
aThe uncertainty range corresponds to 95% inclusion of the Monte Carlo

data points with random errors of 1% standard deviation. The uncertainty
range is derived symmetrically about the nominal values and capped with the
maximum/minimum values of the simulated data set.

a periodically poled KTiOPO4 (PPKTP) crystal for its second-
harmonic generation to ≈ 532 nm wavelength. The PPKTP
crystal is temperature-stabilized for optimal phase matching and
conversion efficiency.

The optical frequencies of NPRO 1 and NPRO 2 are stabi-
lized to the length of the test cavity with the PDH technique
[4,5], at ≈ 1064 nm (ν1) and ≈ 532 nm (ν2) wavelengths,
respectively. NPRO 1 and the fundamental field of NPRO 2
are spatially overlapped to generate an interference beat note
focused on a fast photodiode.

A heating foil, a thermistor, and two thermocouples are
attached to the cavity spacer. The test cavity is mounted on an
optical breadboard and placed in a vacuum tank. Insulating
elastomer supports are used in between the breadboard and
the base plate of the vacuum tank. The thermal time constant
of the entire in-vacuum assembly is measured to be ≈ 5.56 h.
The flexibility of the elastomer allows the cavity spacer and the
optical breadboard, both made of aluminum, to expand and
contract with minimal constraints, thereby reducing thermally
induced deformation other than length changes. The cavity
mirrors are spring-loaded to the cavity spacer to minimize the
deformation of the mirrors under temperature changes. The
vacuum tank is mounted on the optical table where all other
optical components are placed.

The cavity spacer is heated to various temperatures with
the heating foil. Upon reaching thermal equilibrium, the
two NPRO lasers are frequency-stabilized to the length of
the bichromatic cavity, and the difference in their optical
frequencies is measured with a frequency counter of 350 MHz
bandwidth.

Taking into account the coating reflection phase φ(νi ), the
resonant optical frequencies for a linear cavity with identical
mirror coatings are, in plane-wave formulation,

νi =
c

2L
·

[
Ni +

2 · φ(νi )

2π

]
, (4)

where N is an integer and i denotes the fundamental field (i =
1) and the quasi-second-harmonic (i = 2) field. The frequency
offset f required for surrogate cavity control is

f =
ν2

2
− ν1 =

c
2L

[
N2

2
− N1 +

1

2
·

2 · φ(ν2)

2π
−

2 · φ(ν1)

2π

]
.

(5)
Equation (5) reiterates that a nonzero offset frequency f is

generally required for surrogate cavity control with a harmonic
field. Furthermore, as a consequence of the frequency-doubling
process (i.e., ν2 ≈ 2 · ν1), when the optical frequencies of

Fig. 6. Relation between the resonant optical frequencies of the
bichromatic cavity.

NPRO 1 and NPRO 2 are scanned simultaneously, we will see
two resonances of ν2 per each free spectral range (FSR) of ν1

(see Fig. 6). This also means that every time N1 increases by 1 in
Eq. (5), N2 needs to increase by 2 to result in roughly the same
offset frequency f .

Similarly, with the increment or decrement of 1 in N2, the
offset frequency f can either become positive or negative.
The sign of the beat note frequency cannot be determined by
the frequency counter, and is instead calibrated to the PZT and
temperature tuning coefficients of the NPRO laser crystals. We
refer to the positive and the negative frequency offsets with the
least absolute values as f + and f −, respectively.

The change in f with an increment of 1 in N1 or an incre-
ment of 2 in N2 corresponds to the cavity FSR and allows
for a direct frequency-based measurement of the cavity FSR.
The FSR of our 0.2715 m long cavity is f ≈ 552.1 MHz and
therefore exceeds the detection bandwidth of 350 MHz of the
frequency counter in our setup. A change in f with an incre-
ment of 1 in N2 corresponds to one-half of the cavity FSR,
which is then measurable by our frequency counter. In practice,
this is done via the measurements on f +, f −, and the relation

fFSR ≡ c/(2L)= 2 · ( f + − f −). (6)

The resonant optical frequencies ν1, ν2 of the bichromatic
cavity are illustrated in Fig. 6. The measured f +, f −, and the
derived fFSR at various temperatures of our test cavity setup are
shown in Fig. 7.

4. DATA ANALYSIS AND PARAMETER
EXTRACTION

For quasi-harmonic fields, N2 = 2 · N1, and Eq. (5) can be sim-
plified to

f ≈
c

2L
·

1

2π
·
[
φ(ν2)− 2 · φ(ν1)

]
≡

c
2L
·

1

2π
· 2 · φdiff. (7)

Taking the derivative of Eq. (7) with respect to T, we have

d f
dT
=−

c
2L2

dL
dT

2 · φdiff

2π
+

c
2L

1

2π

2 · dφdiff

dT
, (8)

=− f · αCTE +
c

2L
1

π

dφdiff

dT
. (9)

The temperature dependence measurements of f therefore
contain information on dφdiff/dT.
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Fig. 7. Temperature dependence measurements (circle) of f +, f −,
and fFSR, with linear fits y = a + bx (dotted line) denoted as (a , b).
The rmses of the linear fits are 20.1 kHz for f +, 18.7 kHz for f −, and
8.2 kHz for 2( f + − f −).

In our setup, the length of the test cavity L is not held con-
stant with a stabilization scheme. As the setup is heated, the
cavity elongates, resulting in a decrease in FSR. The expected
slope can be derived by

d fFSR

dL
dL
dT
=−

c
2L2
· L · αCTE =−

c
2L
· αCTE, (10)

where αCTE is the coefficient of thermal expansion. The slope of
the linear fit of our measurement (see Fig. 7, bottom subplot) on
fFSR is≈−13.5 kHz/K, which for our 0.2715 m long bichro-
matic optical cavity projects to anαCTE of 24.5 ppm/K, which is
slightly higher than the typical value of 24 ppm/K for aluminum
[30]. The discrepancy is likely in part due to errors in our tem-
perature measurements based on an NTC 10 K thermistor,
which has a typical uncertainty of±1%. The root-mean-square
error (rmse) of the linear fit is 8.2 kHz.

The value of the first term in Eq. (9) can be derived
from the measured f +, f −. Using f + ≈ 141.7 MHz and
f − ≈−134.4 MHz, we have

− f + · αCTE ≈−3.46 kHz/K, (11)

− f − · αCTE ≈+3.29 kHz/K. (12)

The net slopes after removing the effect from cavity
elongation are

d f +

dT
+ f + · αCTE ≈−0.55 kHz/K, (13)

d f −

dT
+ f − · αCTE ≈−0.57 kHz/K. (14)

The second term in Eq. (9) does not depend on the offset
frequency, so an ideal measurement should result in the same
net slope from f + and f −. Our measurement results can be
combined into

c
2L

1

π

dφdiff

dT
≈ (−0.56± 0.01) kHz/K, (15)

which corresponds to

dφdiff

dT
≈ (−3.20± 0.05) µrad/K. (16)

The measured temperature dependence in differential reflec-
tion phase of the bichromatic cavity mirror coatings matches
closely the nominal value given in Table 1. This not only ver-
ifies the coating design concept in [27] but also indicates that
the manufacture errors are well contained during the coating
process.

A temperature dependence in differential reflection phase of
around 114 Hz/K was reported for the 285 m long Advanced
Virgo filter cavity [15]. If we assume identical contribution from
the two cavity mirrors, in analogy to Eq. (15), we have

c
2 · 285 m

1

π

dφdiff

dT
≈ 114 Hz/K, (17)

dφdiff

dT
≈ 681 µrad/K. (18)

Our optimized bichromatic dielectric coating design exhibits
a reduction of over factor 200 in comparison.

5. EXTENDED MODEL FOR IMPROVED DATA
ANALYSIS

As can be seen in Fig. 7, in comparison to the measurement
of fFSR, the departure of the measured data points of f + and
f − from their respective linear fits is more pronounced. The
rmse is 20.1 kHz for f + and 18.7 kHz for f −. Additionally,
the measured offset frequencies f + and f − cannot be correctly
calculated from Eq. (7) with the parameters specified in Table 1.

This prompts further generalization in modeling the bichro-
matic optical cavity, for which we consider the inclusion of the
Gouy phase shiftψ that is characteristic to Gaussian beams, and
elevate the length of the cavity to be a variable that can also be
different for the two wavelengths. In our definition, the cavity
length is the effective distance between the surfaces of the mir-
rors as seen by the Gaussian beams, which could be different for
the two wavelengths due to the different sampled areas on the
mirror surfaces. Equation (4) is thus expanded to

νi =
c

2L(νi )
·

[
Ni +

2 · φ(νi )

2π
+

2 ·ψ(νi )

2π

]
≡

c
2(L +Mi )

[Ni + 28i + 29i ] , (19)

where, for conciseness, we have introduced the following:
L(νi )≡ L +Mi , 8i = φ(νi )/(2π), 9i =ψ(νi )/(2π).
Consequently, the offset frequency f becomes

f =
ν2

2
− ν1 =

c
2(L +M2)

(N2 + 282 + 292)

2

−
c

2(L +M1)
(N1 + 281 + 291) . (20)

We introduce
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Ndiff ≡ N2 − 2N1, 8diff ≡
82

2
−81, 9diff ≡

92

2
−91,

(21)
and

εi ≡
Mi

L
� 1, εdiff =

M2 −M1

L
� 1, (22)

to recast Eq. (20) into the approximation

f ≈
c

2L

[
Ndiff

2
+ 2 ·8diff + 2 ·9diff − εdiff · N1

]
. (23)

A. Gouy Phase Shift and the Frequency Offset

The first two terms in the square brackets of Eq. (23) have
already been discussed so far. The second term 8diff is readily
available from Table 1,

8diff =
φdiff

2π
≈ 0.656530+0.001353

−0.003915. (24)

The third term accounts for the Gouy phase shift ψ = z/zR

of a fundamental Gaussian beam with Rayleigh range zR at a
distance z from the beam waist. The Rayleigh range zR and
the distance z also determine the radius of curvature of the
wavefront, which needs to match those of the cavity mirrors.
The zR of the resonant Gaussian beam is therefore deter-
mined by the geometry of the optical cavity and is in principle
wavelength-independent. This means that we can generally take
the assumption that91 ≈92, and this leads to

9diff ≈−
91

2
≈−

92

2
. (25)

For our plano–convex cavity with length L = 0.2715 m and
curved mirror radius of curvature R = 2 m, we have

91 ≈92 ≈
1

2π
· acos

(√
1−

L
R

)
≈ 0.060054. (26)

Neglecting the fourth term of Eq. (23), the nominal fre-
quency offsets f for Ndiff = 0 . . .− 4 are summarized in
Table 2.

The two f ’s that fall into our detection bandwidth match
well with the measured f + and f − shown in Fig. 7; the differ-
ence is around 2.0 MHz for both f + and f −. Using Eq. (23),
the uncertainty onφdiff in Table 1 corresponds to an uncertainty
range of around [−4.3 MHz,+1.5 MHz] on f . The measured
f ’s are therefore slightly outside the uncertainty range given by
the coating simulations.

Table 2. Nominal and Measured Frequency Offsets
for our Bichromatic Optical Cavity at Room
Temperature

Ndiff fnominal Remark

0 +691.79 MHz
−1 +415.74 MHz
−2 +139.68 MHz f +measured ≈ 141.7 MHz
−3 −136.37 MHz f −measured ≈−134.4 MHz
−4 −412.42 MHz

B. Differential Cavity Lengths and Mirror Radius of
Curvature

The term that contains εdiff in Eq. (23) can be rewritten as

fε ≡−
c

2L
· εdiff · N1 =−ν1 · εdiff,

fε
ν1
≡−εdiff, (27)

which resembles the perturbative cavity resonance condition of

δν

ν
=−

δL
L

. (28)

This indicates that, to result in a change of f of ≈ 2 MHz,
a ≈ 2 nm difference between M1 and M2 is required. For the
excess of about 0.5 MHz discussed above, a ≈ 0.5 nm differ-
ence between M1 and M2 is required, which is within the range
reported in [31].

We note that in the case of M1 6=M2, the thermal elongation
of the cavity also causes the frequent offset f to change by

∂ f
∂L

∂L
∂T
= ν1 · εdiff · αCTE, (29)

which is on the order of 25 Hz/K per nanometer difference
between M1 and M2 for our bichromatic cavity.

Changes in the cavity length can also lead to changes in the
Gouy phase shift, and in turn lead to changes in the frequency
offset. For a plano–concave cavity, it can be shown that

dψ

dL
=

1

2
√

L · (R − L)
=

1

2zR
, (30)

The Rayleigh range zR of our bichromatic optical cavity is≈
0.685 m. As this is a second-order effect, a 2 nm change in L cor-
responds to a negligible change of 0.128 Hz in f .

Changes in the radius of curvature of the curved mirror also
lead to changes in the frequency offset as

dψ

dR
=−

1

2zR
·

L
R

. (31)

A change of ≈ 2 MHz in the frequency offset requires
a common mode δR/R of ≈ 11.5%. The higher-order
mode spacing of our bichromatic cavity is measured to be
(66.50± 0.07)MHz at 1064 nm, which corresponds to a one-
way Gouy phase shift of 9 ≈ 0.060226± 0.000063, which
matches the value in Eq. (26) to within 0.3%. Assuming the
other mirror to be perfectly planar, the corresponding radius of
curvature of the curved mirror is R ≈ (1.989± 0.004)m.

It is possible that the radius of curvature sensed by the two
quasi-harmonic wavelengths differ from each other, as the beam
spot radius on the curved mirror is different for the two wave-
lengths. We have only measured the radius of curvature with the
fundamental field and therefore cannot draw any conclusions
on this.

C. Gouy Phase Shift and the Temperature
Dependence of the Frequency Offset

In Section 4, we have derived the temperature dependence in
differential reflection phase result of our experiment [Eq. (16)]
in plane-wave formulation.
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For Gaussian beams, as Eq. (23) indicates, temperature-
induced changes in the Gouy phase shift also contributes to
the temperature dependence of f . For our bichromatic cavity,
considering also Eqs. (25) and (30), the contribution of the
Gouy phase shift term due to temperature-induced cavity length
change can be derived as

∂ f
∂9diff

∂9diff

∂L
∂L
∂T
=−

1

2

∂ f
∂9diff

∂91

∂L
∂L
∂T

=−
1

2
·

c
L
·

1

2zR · 2π
· L · αCTE

=−
c

8πzR
· αCTE

≈−0.43 kHz/K, (32)

which should be accounted for in deriving Eqs. (15) and (16).
After correcting for the contribution of the Gouy phase shift

term derived in Eq. (32), the measured temperature dependence
in differential reflection phase of the bichromatic cavity mirror
coatings further reduces in terms of absolute value to

dφdiff

dT
≈ (−0.75± 0.05) µrad/K. (33)

On the other hand, we have to note that the contribution of
the Gouy phase shift term due to temperature-induced change
in mirror radius of curvature may also be considered when the
mirror is confined. In our bichromatic cavity, the mirrors are
spring-loaded and therefore we do not consider such an effect.

D. Wavelength Dependence

Equations (20) and (23) indicate that, in the case of M1 6=M2,
when N1 takes an increment of 1, even with an increment of 2 on
N2, the frequency offset f is slightly perturbed. In other words,
the frequency offset f depends on the absolute optical frequen-
cies of the lasers.

Even in the case of M1 =M2, the wavelength dependence of
coating reflection phase leads to a similar effect. To show this, we
expand Eq. (4) into

νi +1νi =
c

2L
·

[
Ni +1Ni +

2 · φ(νi +1νi )

2π

]
, (34)

and have the reflection phase term approximated to first order

φ(νi +1νi )≈ φ(νi )+ 2π · τi · νi , (35)

where τ = dφ/dω is the group delay and ω= 2π · ν is the
angular frequency. To maintain an f that is least changed, if ν1

is changed by one FSR, i.e., 1N1 = 1 and 1ν1 = fFSR, due to
the frequency-doubling process, ν2 has to change by two FSR’s,
i.e., 1N2 = 2 and 1ν2 = 2 · fFSR. Under this condition, the
change in f for1ν1 = fFSR is

1 f =
1ν2

2
−1ν1 = 2π · f 2

FSR ·

[τ2

2
− τ1

]
. (36)

Our bichromatic cavity mirror coating is simulated to have
τ1 = 5.97 fs and τ2 = 6.70 fs. Plugging these numbers into

Eq. (36), we have1 f ≈−0.8 kHz. In other words, when ν1 is
changed by one FSR (≈ 552.1 MHz) in our setup, f changes by
around−0.8 kHz.

Such dependence on absolute optical frequencies is derived
in hindsight with respect to our measurement data. We estimate
the optical frequencies of the NPRO lasers to fall in a total range
of about±5 · fFSR on the basis of the typical temperature tuning
coefficient of the NPRO laser (≈−3 GHz/K) in conjunction
with the temperature range used in our measurements. The
corresponding uncertainty in the measurement of f + and f −

is around ±4 kHz, which in combination with the rmse of the
linear fit of the fFSR measurement in Fig. 7 still falls short of the
rmse of the linear fits of the f + and f −measurements.

It is therefore plausible to argue that there might be additional
systematic errors in our measurements that are common mode
to f +, f − and cancel out in fFSR.

6. CONCLUSIONS

We have constructed a bichromatic optical setup to measure
the temperature dependence of the difference in the coating
reflection phase between two quasi-harmonic wavelengths.
Our measurement result confirms our coating design approach,
and the Monte Carlo simulations that take into account coating
manufacturer errors [27]. The constrained temperature depend-
ence is essential for the success of the surrogate control scheme
anticipated for high-finesse cavity applications such as the
dual-cavity enhance light-shining-through-a-wall experiments
searching for axion-like particles. One other notable applica-
tion, as mentioned in the introduction, is the control of the
detuned optical cavity used to provide the frequency-dependent
rotation of the squeeze angle of the squeezed vacuum state.

To better explain the experiment data, we have developed an
extended model. The expected frequency differences, i.e., f +

and f −, calculated from the extended model agree well with
the experiment data. The slight discrepancy is analyzed to most
likely arise from the difference in cavity length sensed by the
two quasi-harmonic fields. The extended model also shed light
on the elevated rmse of the measurements of f + and f − in
comparison to those of fFSR, but does not provide a full account.

The main results of our experiment match well our models
on the bichromatic cavity and its constituent dielectric coatings.
The developed model can be applied to the generalized design of
surrogate cavity control schemes for optimal performance.
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