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ABSTRACT 
Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of ep-
ilepsy, with a mounting body of previous research focusing on elucidating its cellular manifestations. 
However, there are limited studies into E/I imbalance at macroscale and its microcircuit-level mech-
anisms and clinical associations. In our current work, we computed the Hurst exponent—a previously 
validated index of the E/I ratio—from resting-state fMRI time series, and simulated microcircuit pa-
rameters using biophysical computational models. We found a broad reduction in the Hurst exponent 
in pharmaco-resistant temporal lobe epilepsy (TLE), indicative of a shift towards more excitable net-
work dynamics. Connectome decoders pointed to temporolimbic and frontocentral areas as plausible 
network epicenters of E/I imbalance. Computational simulations further revealed that enhancing cor-
tical excitability in patients likely reflected atypical increases in recurrent connection strength of local 
neuronal ensembles. Moreover, mixed cross-sectional and longitudinal analyses revealed heightened 
E/I elevation in patients with longer disease duration, more frequent electroclinical seizures and inter-
ictal epileptic spikes, and worse cognitive functioning. Replicated in an independent dataset, our work 
provides compelling in-vivo evidence of a macroscale shift in E/I balance in TLE patients that under-
goes progressive changes and underpins cognitive impairments, potentially informing treatment strat-
egies targeting E/I mechanisms. 

INTRODUCTION 
The balance between excitatory and inhibitory (E/I) signaling is a key principle of neuronal dynamics 
and cortical circuit function,1,2 and plays a crucial role in typical neurodevelopment and the emer-
gence of large-scale network coordination.3,4 Conversely, imbalances in E/I have been implicated in 
numerous neurodevelopmental conditions.5-8 In particular, epilepsy constitutes a prototype condition 
of E/I imbalance. Here, E/I imbalances across different brain systems result in spontaneous seizures 
as well as inter-ictal epileptic phenomena, and can also impart cognitive and psychosocial conse-
quences in patients.9-11 Although the pathophysiological mechanisms by which structural and func-
tional brain changes in epilepsy12-14 cause epileptogenic events remain incompletely understood, E/I 
imbalance emerging from localized as well as distributed networks likely acts as a driver.15,16 In tem-
poral lobe epilepsy (TLE), the most common pharmaco-resistant focal epilepsy in adults, E/I imbal-
ance is thought to originate primarily from temporolimbic circuits.17,18 However, insights into the role 
of E/I dysfunction in TLE stem mainly from experimental studies in animal models and ex-vivo hu-
man tissue samples. In-vivo investigations in living human brains remain scarce thus far because of 
the limited availability of robust E/I biomarkers that are non-invasive, applicable in humans, and 
measurable on a large scale. 

Functional magnetic resonance imaging (fMRI) provides a unique window into localized and mac-
roscale functional properties in the living human brain.19,20 More recently, advances in fMRI acqui-
sition, processing, and signal modeling have permitted to approximate the E/I ratio with high spatial 
specificity and biophysical plausibility.5,21 One recent study has proposed the Hurst exponent, a sta-
tistical descriptor of the spectral properties of neural time series, as an in-vivo neuroimaging 
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biomarker that can index the synaptic E/I ratio.5 The Hurst exponent measures a signal’s fractal prop-
erty to quantify temporal autocorrelation processes that occur within the signal itself.22,23 In-silico 
modeling studies have confirmed a link to the E/I ratio, suggesting that increases in excitation within 
recurrent networks lead to flattening of 1/f slopes and reductions in the Hurst exponent.5,21 Moreover, 
chemogenetic studies have shown that enhancing the excitability of excitatory neuronal populations 
in medial prefrontal regions reduces the Hurst exponent.5 Taken together, given its strong relevance 
to synaptic E/I mechanisms, the Hurst exponent can be deployed on a large scale for in-vivo investi-
gation of E/I function in humans with TLE. The brain, and particularly the cortex, is organized hier-
archically:24 cortical neurons assemble locally into microscale circuits that interconnect to form nodes, 
which in turn assemble to constitute macroscale networks. To gain a deeper understanding of the 
complex interplay between brain activity (i.e., fMRI) and pathophysiological processes, models can 
provide more biologically plausible insights by incorporating heterogeneity of brain dynamics based 
on empirical data.25 In particular, neural mass models (NMMs) governed by anatomical and func-
tional properties can robustly simulate interregional intrinsic functional connectivity from structural 
connectivity in healthy individuals.26 Moreover, model inversion techniques allow for the estimation 
of region-specific microcircuit parameters, such as recurrent connection strength and external sub-
cortical input. NMMs-based whole-brain modeling has proven especially successful in simulating 
pathological perturbations of excitatory and inhibitory neurons in diseases like autism,27 Alzheimer’s 
disease,28,29 and epilepsy.30,31 Notably, patients with focal and generalized epilepsies have been shown 
to present with divergent patterns of cortical recurrent connection strength and subcortical inputs.30,31 
However, there remain critical gaps in the understanding of the neural mechanisms of cortical E/I 
imbalance in TLE and their potential clinical relevance. 

Seizures have been established to increase markers of excitability, such as glutamate.32-34 Furthermore, 
TLE has consistently been associated with disruptions in glutamatergic and GABAergic circuits,35,36 
potentially contributing to the genesis or maintenance of seizure activity. Excessive metabolic acti-
vation resulting from disrupted balance in these systems may, in turn, promote excitotoxicity, epilep-
togenicity, and cell death.37 Ultimately, this process may lead to rapid seizure spread and an extension 
of the epileptogenic networks, affecting both seizure-generating and contralateral target regions.38-41 
Despite a growing body of findings of progressive cortical atrophy in intractable TLE,42-44 it remains 
unclear whether recurrent seizures (or disease severity) in these patients are associated with progres-
sive dysfunction of E/I balance. Examining whether changes in the Hurst exponent are more promi-
nent in patients with longer duration of illness will shed new light on the progression of E/I imbalance. 
In this context, longitudinal designs provide an opportunity to infer causality between seizures and 
E/I imbalance.42,43 Moreover, such designs can control for aging effects and inter-subject variability, 
thereby increasing sensitivity to detect subtle changes. In addition to experiencing seizures, TLE pa-
tients are also affected by cognitive, psychological, and social impairment. Up to 80% of patients 
demonstrate impairments in at least one cognitive domain—most frequently memory, executive, and 
language function.45-48 In a subset of patients, these impairments have been shown to be progressive 
in nature.49-51 Despite the high prevalence of cognitive dysfunction in TLE, there is significant vari-
ability in the severity of impairments observed across patients. For example, patients with generalized 
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cognitive impairment demonstrate widespread cortical thinning and diffuse white matter compro-
mise,46,51,52 whereas those with intact cognitive profiles have minimal structural abnormalities. 
Emerging evidence suggests that cognitive impairment in TLE is also determined by damage to func-
tional connectivity within the medial temporal lobe.14,53 To date, however, no studies have explored 
the extent to which E/I changes (i.e., the Hurst exponent) can predict cognitive impairments in TLE. 

In this study, we profiled cortical E/I imbalance patterns in pharmaco-resistant TLE patients and de-
termined their associations with microcircuit perturbations and clinical presentations. We derived the 
region-wise Hurst exponent from resting-state fMRI time series as an E/I ratio proxy and compared 
this metric between TLE patients and matched healthy controls. Subsequently, we employed biophys-
ical computational simulations to elucidate microcircuit-level mechanisms (recurrent connection 
strength and external input) underlying macroscale E/I imbalance across the brain. Additionally, we 
explored associations between E/I ratio changes and brain perfusion alterations as well as electroclin-
ical parameters. Finally, to demonstrate clinical relevance, we assessed the progression of E/I imbal-
ance in our patient cohort, and its relation to clinical scores of disease severity and cognitive function 
using both cross-sectional and longitudinal designs. The reproducibility of our findings was verified 
in an independent validation dataset. 

RESULTS 
We analyzed 2 independent datasets with multimodal MRI data (i.e., structural, diffusion, and resting-
state fMRI). The discovery dataset MICA-MICs, collected at Montreal Neurological Institute-Hospi-
tal,54 included 80 participants (40 healthy controls, 40 pharmaco-resistant TLE). The replication da-
taset EpiC included 60 participants (30 healthy controls, 30 pharmaco-resistant TLE) from Univer-
sidad Nacional Autónoma de México.48,51 TLE diagnosis was determined according to the classifica-
tion of the ILAE.55 Details of subject inclusion criteria are provided in Methods. Site-specific demo-
graphical and clinical information are shown in Table 1. All participants were aged between 18 and 
63 years, with no significant group differences observed for age or sex. 

Table 1. Demographic and clinical information. 

 Discovery Dataset (MICA-MICs)  Replication Dataset (EpiC) 

 Controls TLE P-value  Controls TLE P-value 

Number  40 40 -  30 30 - 

Age 34.25 ± 3.98 
(28 - 44) 

35.80 ± 11.04 
(18 - 63) 0.406a  31.83 ± 11.35 

(18 - 57) 
30.87 ± 11.46 
(18 - 58) 0.744a 

Sex (M/F) 19/21 17/23 0.653b  11/19 10/20 0.787b 

Focus (L/R) - 27/13 -  - 18/12 - 
Age at seizure  
onset (years) - 21.80 ± 11.24 

(6 - 60) -  - 14.96 ± 10.51 
(0.7 - 40) - 

Duration of  
epilepsy (years) - 14.00 ± 11.27 

(1 - 45) -  - 15.58 ± 13.14 
(1 - 49) - 

AEDs - 2.28 ± 0.85 
(1 - 5) -  - 1.62 ± 0.64 

(1 - 3)d - 

Surgery (Engel I) - 16 (11)c -  - - - 
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Age, age at seizure onset, and duration of epilepsy are presented as mean ± SD years. a Two-sample t-test. b Chi-square 
test. c Engel I: seizure-free, i.e., Class I postsurgical outcome in Engel’s classification. d Information available in 26 TLE 
patients. TLE = temporal lobe epilepsy; M = male; F = female; L = left; R = right; AEDs = anti-epileptic drugs. 

Hurst Exponent Reductions in TLE 
We calculated the region-wise Hurst exponent value, a metric that is mathematically related to the 1/f 
exponent of neural signals21,56 and used as an index of the E/I ratio. As previously described,5,57 rest-
ing-state fMRI time series were modeled as multivariate fractionally integrated processes, and the 
Hurst exponent was estimated via the univariate maximum likelihood method and discrete wavelet 
transform.5 As such, an elevated E/I ratio would manifest in a lower Hurst exponent value. In healthy 
control and TLE groups reported here, interregional variations in the Hurst exponent values exhibited 
hierarchical gradients, with the highest values observed in the sensory regions, intermediate values in 
the association regions, and lowest values in the paralimbic regions (Fig. 1a, 1c). This pattern of 
sensory-fugal distinction was confirmed by a significant spatial correlation with the principal axis of 
cytoarchitectural differentiation (rho = -0.41, Pspin = 0.044; Supplemental Fig. 1a), previously es-
tablished through analysis of myelin-sensitive MRI.58 To further contextualize our regional pattern 
of the Hurst exponent, we correlated it with morphometric and molecular markers of phylogenetic 
cortical differentiation.59 We found that at the surface level, the Hurst exponent positively correlated 
with intracortical myelination (rho = 0.37, Pspin = 0.066) and the gene expression gradient (rho = 0.60, 
Pspin = 0.002),60 while negatively correlating with cortical thickness (rho = -0.51, Pspin = 0.007) and 
the neurotransmitter receptor gradient (rho = -0.46, Pspin = 0.009;61 Supplemental Fig. 1b). 

In comparison to healthy controls, TLE patients exhibited marked reductions in the Hurst exponent 
both at global and local levels. Specifically, TLE patients had a significantly lower grand average 
Hurst exponent across the entire brain relative to healthy controls (Cohen’s d = -0.75, P < 0.001; Fig. 
1b). Surface-based analysis showed significantly a lower Hurst exponent in 156 out of 360 brain 
regions in TLE compared to healthy controls following correction for multiple comparisons at a false 
discovery rate of PFDR < 0.05 (Fig. 1b). These mostly affected the lateral inferior, middle and superior 
temporal lobes, the dorsolateral and dorsomedial prefrontal cortices, the fusiform gyrus, the precu-
neus, and the occipital cortex bilaterally, together with the ipsilateral postcentral gyrus, with effect 
sizes ranging from medium to large (d = -0.46 - -1.22, mean ± SD = -0.64 ± 0.07). These findings 
were verified in a subgroup TLE patients with histologically confirmed mesiotemporal sclerosis and 
post-surgical seizure freedom at a 1-year follow-up (i.e., Engel I, n = 11; whole-brain/significant 
clusters: d = -1.56/-1.94, P < 0.001; Supplemental Fig. 2). Finally, when summarizing the cortex-
wide findings with respect to 12 intrinsic functional communities,62 pronounced between-group ef-
fects were seen in the transmodal association system, such as the default mode, frontoparietal, and 
dorsal attention networks, as well as the unimodal visual system (PFDR < 0.05; Fig. 1c). To ensure 
that our results were not related to spurious features, we assessed the degree of head motion of each 
individual during resting-state fMRI scan based on framewise displacement (FD).63 Notably, be-
tween-group differences in the global average (d = -0.47, P = 0.020) and local value of the Hurst 
exponent (mean ± SD d = -0.58 ± 0.07; Supplemental Fig. 3) were robust when additionally con-
trolling for individual-wise mean FD, suggesting no marked influence of head motion. 
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Fig. 1 | Hurst exponent reductions in TLE. (a) Mean regional patterns of the Hurst exponent of resting-state fMRI time 
series in healthy controls and TLE patients: the lower the Hurst exponent, the higher the excitation/inhibition ratio.5,57 (b) 
Top: statistical map of TLE-control difference in regional Hurst exponent, effect size as Cohen’s d. Significant regions, 
corrected for multiple comparisons using the false discovery rate procedure (PFDR < 0.05), are surrounded by solid white 
outlines. Bottom: participant-specific average Hurst exponent across the whole brain or statistically significant regions, 
respectively. (c) (i) Distribution of the average Hurst exponent in 12 large-scale functional networks in healthy control 
and TLE groups, respectively. (ii) Distribution of TLE-control differences in the Hurst exponent with respect to each 
network (PFDR < 0.05).62 *** P < 0.001; HC = healthy controls; TLE = temporal lobe epilepsy; ipsi = ipsilateral; contra = 
contralateral; VS1/VS2 = primary/secondary visual network; AUD = auditory network; SMN = somatomotor network; 
CON = cingulo-opercular network; DAN = dorsal attention network; LAN = language network; FPN = fronto-parietal 
network; DMN = default mode network; PMN/VMN = posterior/ventral multimodal network; ORA = orbito-affective 
network. 

Microcircuit Parameter Changes in TLE 
Next, we cross-validated our findings and explored circuit mechanisms underlying disruptions of E/I 
balance in TLE via a parametric mean-field model (pMFM).26 In the biophysically-based model, local 
neuronal dynamics were simulated through a set of simplified nonlinear stochastic differential equa-
tions (see Methods) by linking ensembles of local neuronal masses with diffusion-derived structural 
connectivity.64 The pMFM iteratively tuned its parameters (i.e., recurrent connection strength w, ex-
ternal input current I, noise σ, and a constant G) to simulate neural signals that were maximally similar 
to the empirical data. Adopting a recent framework,26 w, I, and σ varied across brain regions and were 
parameterized by a linear combination of local structural (i.e., intracortical myelination) and func-
tional (i.e., resting-state functional connectivity gradient) properties (Fig. 2a). More specifically, for 
each group (healthy control or TLE), the 40 participants were randomly subdivided into the training 
(n = 15), validation (n = 15), and test (n = 10) sets. Group-averaged structural connectivity, static 
functional connectivity (FC), and time-varying functional connectivity dynamics (FCD) were com-
puted separately for each set. Next, the 250 candidate parameter sets (w, I, σ, and G) were generated 
from the training set of each group using the CMA-ES algorithm and evaluated in the validation set.65 
The top 10 parameter sets from the validation set were then evaluated in the test set. To ensure 
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stability, the split of participants into training, validation, and test sets was repeated five times. Fi-
nally, the pMFM parameters based on the best fit (with the lowest cost between simulated and em-
pirical FC and FCD matrices; see Methods) from the test set were averaged across these five splits, 
yielding the representative set of parameters for each group. 

 
Fig. 2 | Microcircuit parameter differences in TLE and associations with Hurst exponent changes. (a) Schematic of 
the parametric mean-file model (pMFM) to estimate region-specific microcircuit parameters (i.e., recurrent connection 
strength w and subcortical input I) from structural connectivity.26 The pMFM is parameterized by a linear combination of 
resting-state functional connectivity gradient and T1w/T2w ratio. E and I indicate the excitatory and inhibitory neuronal 
populations, respectively. WEI indicates the strength of connection from the excitatory population to the inhibitory popu-
lation, and so forth. (b) Regional microcircuit parameters of healthy controls (top) and TLE patients (bottom) and asso-
ciations with the Hurst exponent at the surface level. (c) Regional changes in microcircuit parameters (TLE-control) and 
relations to the effect sizes of Hurst exponent alterations (i.e., Cohen’s d scores), constrained to brain regions showing 
significant between-group differences in Fig. 1b (solid black outlines). The statistical significance of spatial correlation 
between spatial maps (i.e., Pspin) is determined via spin permutation tests (5,000 iterations).66,67 

In agreement with prior work,26 in both cohorts, recurrent connection strength (w) gradually increased 
from primary sensory/motor regions to high-order association regions across the neocortex, reaching 
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its highest value in the default mode network. On the other hand, external input (I) smoothly decreased 
along the unimodal-transmodal hierarchy (Fig 2b). By correlating regional variations in microcircuit 
parameters with the Hurst exponent, we observed that recurrent connection strength (w) appeared to 
be stronger in brain areas with a lower Hurst exponent (i.e., higher E/I ratio) (healthy controls: rho = 
-0.36, Pspin = 0.074; TLE: rho = -0.40, Pspin = 0.045; Fig 2b). On the other hand, regions with higher 
local external input (I) had a relatively higher Hurst exponent (i.e., lower E/I ratio) (healthy controls: 
rho = 0.19, Pspin = 0.239; TLE: rho = 0.36, Pspin = 0.081; Fig 2b). Moreover, compared to healthy 
controls, TLE patients showed increases in recurrent connection strength (w) as well as decreases in 
external input (I). TLE-related reductions in the Hurst exponent were enriched in areas with the great-
est effects of increasing recurrent connection strength (rho = -0.22, Pspin = 0.015). By contrast, no 
significant correlation was found between the degree of the Hurst exponent alterations and regional 
changes in external input (rho = -0.01, Pspin = 0.483; Fig 2c). 

Network-Level Effects of Hurst Exponent Reductions 
Local vulnerability interacts with brain network architecture to shape disease pathology and spread.68-

71 Here, we assessed the extent to which TLE-related changes in the Hurst exponent exhibited network 
effects. For each node, we computed the mean Hurst exponent change (i.e., mean Cohen’s d) of its 
connected neighbours, weighted by streamline density estimated using diffusion MRI and functional 
connectivity strength estimated using resting-state fMRI (Fig. 3a). To ensure that connectivity esti-
mates reflect the typical connectomes prior to disease onset and deafferentation, we estimated group-
level structural and functional connectivity matrices in a sample of 100 unrelated healthy young adults 
from the Human Connectome Project (S900-HCP).72 We observed a positive association between the 
change in the Hurst exponent of a node and the mean change of its structurally connected neighbours 
(rho = 0.54, Pspin < 0.001; Fig. 3a), above and beyond the effect of spatial autocorrelation. Similarly, 
we found a comparable association between the change in the Hurst exponent of a node and the mean 
change of its functionally connected neighbours (rho= 0.47, Pspin < 0.001; Fig. 3a). That is, pathology 
in a brain region is closely correlated with greater exposure to pathology in anatomically and/or func-
tionally connected regions. 

Having observed that network architecture reflects TLE-related Hurst exponent change, we then ex-
amined which brain regions likely act as putative disease epicenters. As previously introduced,44,71 
we defined an epicenter as a node wherein structural and functional connectivity profiles spatially 
resembled the whole-brain pattern of TLE-related Hurst exponent changes (Fig. 3b). This measure 
identifies “disorder hubs”—regions that are both vulnerable to disorder-specific changes but also em-
bedded in a highly atypical network cluster. Nodes were ranked in descending order based on their 
correlation coefficients. Empirical epicenter likelihood rankings were compared with rankings esti-
mated from spatial autocorrelation-preserving null models (5,000 iterations). Several brain areas 
emerged as potential epicenters, including the bilateral dorsolateral prefrontal, medial and inferior 
temporal lobe, the precuneus, and the superior parietal cortex (Pspin < 0.05; Fig. 3b). 
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Fig. 3 | Network-based spreading of Hurst exponent reduction. (a) (i) Schematic of structural (SC) or functional (FC) 
connectivity informing TLE-related Hurst exponent changes. (ii-iii) Correlation between node abnormality and SC-/FC-
informed mean neighbour abnormality. The histogram indicates the null distribution of correlation coefficients generated 
based on 5,000 spin tests, and the actual r value is represented by a green/purple bar. (b) Epicenters of TLE-related Hurst 
exponent changes. (i) A node whose SC or FC pattern across the entire cortex strongly correlated with TLE-related Hurst 
exponent change map (see Fig. 1b) is considered a likely “epicenter”. Epicenter likelihood was defined as the correlation 
coefficient between the two maps. (ii-iii) SC- and FC-informed epicenter likelihood maps of TLE-related Hurst exponent 
reductions, where the most likely epicenters, assessed using spin permutation tests (5,000 iterations, and Pspin < 0.05), are 
surrounded by solid white outlines. ipsi = ipsilateral; contra = contralateral. 

Associations with Clinical and Cognitive Variables 
Associations between changes in Hurst exponent and clinical characteristics of disease severity were 
assessed in TLE patients. A longer disease duration was negatively correlated with the Hurst exponent 
(whole-brain: t = -1.91, P = 0.016; significant clusters: t = -2.02, P = 0.013; Fig 4a), indicating rela-
tively lower Hurst exponent in patients with long-standing TLE. There were also negative correlations 
between the Hurst exponent and the number of electroclinical seizures captured during hospitalization 
(r = -0.38, P = 0.009; r = -0.36, P = 0.013; Supplemental Fig. 4), such that more frequent epileptic 
seizures were associated with lower Hurst exponent. Similarly, we found significantly lower Hurst 
exponent values in TLE patients with prevalent interictal epileptic discharges (IEDs) than those with 
rare IEDs (d = -0.70, P = 0.029; d = -0.67, P = 0.034; Supplemental Fig. 5). No significant correla-
tions were found between the Hurst exponent and age at seizure onset or the number of antiepileptic 
drugs (P > 0.320). To further understand the neurophysiological substrate of TLE-related changes in 
the E/I ratio, we analyzed cerebral blood flow measured by pseudo-continuous arterial spin labeling 
(ASL) MRI in patients with TLE. We found significantly lower cortical perfusion (or hypoperfusion) 
in regions (rho = 0.41, Pspin < 0.001), or patients with lower Hurst exponent values (whole-brain: r = 
0.40, P < 0.001; significant clusters: r = 0.43, P < 0.001; Supplemental Fig. 6). 
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We then explored the associations between the Hurst exponent and cognitive function in TLE patients 
both cross-sectionally and longitudinally. As previously reported,73 at baseline, TLE patients showed 
markedly poorer performance than healthy controls in general cognitive functioning as measured by 
the MoCA test74 (d = -0.71, P = 0.002), as well as in attention and executive functions as measured 
by the EpiTrack test75 (d = -0.54, P = 0.017; Fig. 4b). The Hurst exponent positively correlated with 
MoCA scores (whole-brain: t = 2.33, P = 0.006; significant clusters: t = 2.93, P = 0.001), as well as 
EpiTrack scores (t = 2.72, P = 0.002; t = 3.06, P < 0.001; Fig. 4b), indicating more marked cognitive 
impairment in patients with lower Hurst exponent values. Furthermore, by analyzing for whom lon-
gitudinal data was available, we found that the Hurst exponent progressively decreased over a mean 
interscan interval of 2 years (whole-brain: d = -0.84, P = 0.002; significant clusters: d = -0.68, P = 
0.006; Fig. 4a), and correlated with the progressive decline in MoCA scores (t = 1.58, P = 0.035; t = 
1.67, P = 0.031; Fig. 4b). 

 
Fig. 4 | Associations of the Hurst exponent with clinical characteristics and behavioral assessments. (a) Error bar 
plots: longitudinal changes in the Hurst exponent in TLE patients. Spaghetti plots: associations between epilepsy duration 
and the Hurst exponent across both baseline and follow-up time points. (b) Left: MoCA and EpiTrack scores in TLE 
patients and healthy controls at baseline. Middle: associations between the Hurst exponent with MoCA and EpiTrack 
scores at baseline. Right: associations between longitudinal changes in the Hurst exponent, and MoCA and EpiTrack 
scores in TLE patients. * P < 0.05; ** P < 0.01. HC = healthy controls; TLE = temporal lobe epilepsy; MoCA = Montreal 
Cognitive Assessment; BL = baseline; FU = follow-up. 
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Replication Analysis 
Hurst exponent reductions in TLE were replicable in an independent replication dataset (i.e., EpiC) 
consisting of 30 pharmaco-resistant TLE patients and 30 healthy controls. Specifically, in the EpiC 
dataset, the spatial pattern of the Hurst exponent in each group closely resembled that observed in the 
MICA-MICs dataset, gradually decreasing along the sensory-fugal axis (rho > 0.89, Pspin < 0.001; Fig. 
5a). Comparing cohorts in the EpiC dataset, TLE patients also exhibited significantly decreased Hurst 
exponent globally (d = -0.61, P = 0.011), as well as locally in significant regions identified from the 
discovery dataset (d = -0.60, P = 0.012; Fig. 5b). Region-wide group differences in the Hurst expo-
nent were also spatially correlated between the two datasets at the surface level (rho = 0.20, Pspin = 
0.010). Furthermore, we observed a noticeable trend toward progressive decreases in the Hurst expo-
nent in TLE patients over a mean interscan period of 2.5 years (whole-brain: d = -0.35, P = 0.105; 
significant clusters: d = -0.38, P = 0.087). A longer epilepsy duration was associated with a greater 
extent of decreases in the Hurst exponent (t = -3.33, P = 0.001; t = -3.28, P = 0.002; Fig. 5c). Finally, 
we replicated the finding of the cognitive relevance of an altered Hurst exponent, with evidence of 
marked memory deficits in TLE compared to healthy controls (PC1 score: d = -0.91, P < 0.001), as 
well as lower Hurst exponent values in TLE with poorer memory performance (t = 2.06, P = 0.011; t 
= 2.05, P = 0.012; Fig. 5d). 

 
Fig. 5 | Replication analysis of the Hurst exponent changes in EpiC dataset. (a) Group-averaged Hurst exponent in 
healthy control and TLE groups. (b) TLE-control differences inthe average Hurst exponent across the entire brain (i) and 
significant clusters (ii) identified from the discovery dataset (see Fig. 1b). (c) Error bar plots: longitudinal changes in the 
Hurst exponent in TLE patients. Spaghetti plots: associations between epilepsy duration and the Hurst exponent across 
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baseline and follow-up time points. (d) Relationships between individual memory performance and the Hurst exponent 
at baseline. Error bar plots: between-group differences in the overall memory performance (i.e., PC1 loading score) de-
termined through a principal component analysis on various memory tests. Scatter plots: individual Hurst exponent pos-
itively correlated with the PC1 loading score after controlling for age and sex. * P < 0.050; ** P < 0.010; *** P < 0.001. 
HC = healthy controls; TLE = temporal lobe epilepsy; BL = baseline; FU = follow-up; AMI = auditory memory; DMI = 
delayed memory; IMI = immediate memory; VMI = visual memory; VWMI = visual working memory. 

DISCUSSION 
In this work, we mapped cortical E/I imbalance in patients with pharmaco-resistant TLE and assessed 
its relationships with microcircuit-level dysfunction and cognitive impairments. We found significant 
decreases in the Hurst exponent in TLE compared to controls in cortical networks that extended be-
yond the temporolimbic cortex to frontoparietal and occipital regions, suggesting a shift in E/I balance 
toward large-scale network excitation. Leveraging whole-brain biophysical simulations, we demon-
strated that enhancing cortical excitation in TLE reflected atypical increases in recurrent connection 
strength within the structurally governed functional connectome. Moreover, mixed cross-sectional 
and longitudinal analysis unveiled more marked Hurst exponent decreases in TLE with longer disease 
duration, more frequent electroclinical seizures and inter-ictal epileptic spikes, as well as poorer cog-
nitive function. The Hurst exponent showed a progressive decrease at longitudinal follow-up, and 
correlated with the simultaneous longitudinal worsening of cognitive impairments in patients. Our 
findings were replicated in an independent dataset, suggesting generalizability. Taken together, our 
work provides robust in-vivo evidence supporting the existence of cortical E/I balance shifting toward 
excitation in pharmaco-resistant TLE. These findings enhance our understanding of the interplay be-
tween macroscale functional imbalance, microcircuit perturbation, and cognitive dysfunction, poten-
tially informing new treatment strategies targeting E/I mechanisms. 

Our study examined the Hurst exponent, an in-vivo neuroimaging marker of E/I balance, in TLE. 
Prior research with simplified models has indicated that the Hurst exponent in neural time series data 
closely reflects underlying changes in synaptic E/I ratio.5 In recurrent networks, where excitatory and 
inhibitory neuronal populations interact, the Hurst exponent decreases with increasing network excit-
ability. Although net E/I effects are typically balanced in local circuits in healthy individuals, there 
are slight variations in the degree of balance across regions. Specifically, in our control group, the 
Hurst exponent values gradually decreased along the sensory-fugal hierarchy,58 with the highest val-
ues observed in the primary sensory regions with heavy myelination and laminar organization, and 
the lowest values in paralimbic regions. Increased levels of myelination have been reported to sup-
press the formation of new axonal tracts and synapses, thus potentially reducing spikes and yielding 
neural activity with less scale-free or critical properties.1,76,77 By contrast, lower myelination in frontal 
and limbic cortices allows for greater functional signal variability and neuronal remodeling at various 
timescales, facilitating the emergence of diverse functional dynamics.58,78 Strikingly, we found sig-
nificantly lower Hurst exponent levels in bilateral frontal, central, temporal, and occipital regions in 
TLE patients compared to controls, with more pronounced changes ipsilateral to the seizure focus. 
These findings indicate that the pathophysiological substrate of TLE is likely defined by a network 
of multiple interconnected regions,71 rather than solely dependent on the mesiotemporal lobe. Our 
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results are also compatible with existing in-vitro imaging data in TLE demonstrating overall hyper-
excitability of local networks, which may be fostered by atypical excitatory and inhibitory processes 
at the cellular level.10 Although the current study examined a relatively homogenous cohort of patients 
with electroclinical features of unilateral TLE, alterations in the Hurst exponent encompassed a bilat-
eral territory. Previous electrophysiology studies have shown that seizures originating in the ipsilat-
eral mesiotemporal region often propagate to the contralateral temporal lobe directly along commis-
sural pathways or indirectly via other regions, such as the frontal lobes.79 Ultimately, cellular and 
synaptic alterations may occur in both seizure-generating ipsilateral regions and contralateral zones 
of propagation.80 In TLE, increased slow waves are characteristic features during the interictal period; 
higher incidences of slow waves are related to greater volume loss in mesiotemporal structures.81 This 
suggests a potential link between neuronal death, synaptic loss, and cortical hyperactivity, which 
warrants future validation using pathology data from patients undergoing surgery. Moreover, data-
driven epicenter mapping revealed that regional changes in the Hurst exponent implicated both struc-
turally and functionally connected neighbours, suggesting that network architecture serves as a scaf-
fold for the spread of E/I imbalance in TLE. Interestingly, bilateral temporolimbic and frontoparietal 
regions (precuneus, superior parietal cortex) emerged as putative epicenters. These regions are gen-
erally considered densely inter-connected hubs that are thought to support the integration and broad-
casting of signals across different subnetworks.82 Hubs are particularly susceptible to pathology, with 
mounting evidence showing changes in cortical morphology and connectivity patterns in TLE.20,71,83 
Indeed, fMRI studies in TLE have previously identified reductions in long-range connections of dis-
tributed cortical networks, alongside increases in connectivity in temporolimbic circuits proximal to 
the seizure focus.84 We complement these findings by highlighting that the temporolimbic and fron-
toparietal cortices are particularly vulnerable to E/I disturbance and that they, by virtue of their net-
work embedding, may increase disease exposure to connected regions. 

Deviations from macroscale E/I balance may be related to dysfunctions of neural circuits. Our work 
quantified the extent of perturbations in cortical microcircuit function in TLE, by leveraging a whole-
brain computational model (pMFM) that is biophysically grounded yet parsimonious.26 In recent 
work, pMFM has demonstrated the ability to predict functional connectivity from structural connec-
tome with robust accuracy and low parametric complexity. In our work, interregional variations in 
recurrent connection strength and external input current followed sensory-association hierarchical 
gradients, and exhibited significant correlations with Hurst exponent maps at the surface level. This 
suggests a potential link between microcircuit dynamics and cortex-wide heterogeneity in E/I balance. 
Importantly, comparing model parameters between TLE patients and controls suggested a diffuse 
pattern of local microcircuit disruptions, particularly marked in default mode and frontoparietal sys-
tems. Directly correlating TLE-related Hurst exponent changes with microcircuit parameters revealed 
a unique association with increased recurrent connection strength, which indicates aberrant excitatory 
function within local ensembles of neuronal subpopulations. As such, excessive intrinsic neuronal 
excitability may underpin the increased E/I ratio in TLE patients. This is consistent with multiple 
lines of evidence indicating how deficits in excitatory function may affect macroscale brain dynam-
ics.30,31 Basic science experiments have identified aberrant glutamate transmission,85,86 as well as 
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inhibitory interneuron hypofunction as potential underlying causes of neuronal hyperactivity, favor-
ing recurrent seizure activity in TLE.35,36,80 Future work is warranted to more precisely delineate the 
contributions from excitatory and inhibitory sub-population functions toward network hyperexcita-
bility, particularly given that the current study only considered the recurrent interactions of two ca-
nonical cell types. Different classes of inhibitory interneurons exhibit diverse cellular and synaptic 
properties, microcircuit connectivity patterns, and neurophysiological responses. Another future di-
rection is to incorporate distinct classes of inhibitory interneurons into circuit models, allowing for a 
more nuanced investigation of inhibitory dysfunction beyond the relatively coarse net effect of the 
E/I ratio. Overall, our findings from computational simulations help bridge a crucial gap between 
microcircuit dysfunctions and perturbed E/I balance at the macro scale in TLE. 

The utility of a biomarker is often contingent upon its relationship with clinical measures and core 
symptoms. By leveraging the considerable range of disease duration in our patient cohort, we found 
significantly lower global as well as local Hurst exponent values in individuals with longer duration, 
more frequent electroclinical seizures, and more abundant inter-ictal epileptic spikes. This finding is 
compatible with earlier cross-sectional structural work on TLE with wider windows of disease dura-
tion or stages, which demonstrated a greater extent and broader distribution of cortical thinning in 
subgroups with longer duration compared with those with shorter duration of disease.71,87-89 Current 
findings, together with previous evidence of cumulative metabolic changes,44,90 indicate that TLE is 
likely a progressive neurological disorder. Our longitudinal substudy supports this notion, indicating 
progressive reductions in the Hurst exponent in TLE over the follow-up period. Recurrent seizures 
and progressive E/I dysfunction may contribute to epileptic discharges and secondary damage in other 
regions and, in turn, extend epileptogenic networks. The static and dynamic nature of pathology in 
intractable TLE, as shown here and in other studies, underscores the critical importance of early sur-
gical intervention in operative candidates to prevent adverse brain reorganization. In patients for 
whom surgery is delayed nevertheless, serial scanning may allow for establishing biomarkers of clin-
ical outcomes. In addition, the extent of Hurst exponent decreases correlated with deficits in high-
order cognitive functions in TLE, both in our cross-sectional and longitudinal studies. Previous stud-
ies have explored potential links between structural and functional alterations in TLE and impairment 
across various cognitive domains, including memory, language, and executive control.14,45,47,53 Re-
duced volumes in subregions of the prefrontal cortex, for example, have been related to poor execu-
tive functioning91 and impaired memory.92 Decreased activity in frontoparietal regions correlates with 
poorer working memory.93 Frontocentral and default mode areas were most affected in our work. The 
observed correlation with deficits in overall cognitive abilities (MoCA, EpiTrack) is thus highly plau-
sible, especially considering the crucial role of these large-scale networks in multiple forms of com-
plex cognition, such as working memory, reasoning, and language processing.94-96 That is, a relatively 
lower Hurst exponent is associated with poorer cognitive performance due to the propagation of 
dysregulated excitatory activity, which manifests in noisier, less efficient processing.97 We also found 
a positive relationship between the progressive changes in the MoCA score and the Hurst exponent 
in TLE, supporting the notion of progressive cognitive decline over time.49,98 Collectively, these 
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findings suggest that the Hurst exponent might be a clinically useful index for monitoring the pro-
gression of cortical E/I imbalance and cognitive impairment in pharmaco-resistant TLE. 

METHODS 
Participants 
Discovery Dataset (MICA-MICs). We studied 40 individuals with pharmaco-resistant TLE [17 males; 
mean ± SD age = 35.80 ± 11.04 years (18-63 years)], who underwent MRI examination for research 
purposes at the Montreal Neurological Institute and Hospital between 2018 and 2023. TLE diagnosis 
and lateralization of seizure focus as left (n = 27) and right TLE (n = 13) followed ILAE criteria,55 
and were determined by a comprehensive evaluation that included detailed history, review of medical 
records, neuropsychological assessment, video-EEG recordings, and clinical MRI. The control group 
included 40 healthy adults with no history of neurological or psychiatric conditions [19 males; 34.25 
± 3.98 years (28 - 44 years)] who underwent MRI scans using the same imaging protocol as the TLE 
group.54 There were no differences in age (t = 0.84, P = 0.406) and sex (χ2 = 0.20, P = 0.653) between 
TLE and control groups. Detailed demographic and clinical information are provided in Table 1. 

Replication Dataset (EpiC). This dataset consisted of 30 pharmaco-resistant TLE patients [10 males; 
30.87 ± 11.46 years (18 - 58 years)] who had undergone research-dedicated MRI scans at Universidad 
Nacional Autónoma de México between 2013 and 2017.48,51 A similar evaluation classified patients 
as left (n = 11) or right TLE (n = 19). Patients were compared to 30 healthy adults [11 males; 31.83 
± 11.35 years (18 - 57 years)] who had no history of neurological or psychiatric illness and underwent 
the same imaging protocol. As in the discovery dataset, there were no differences in age (t = 0.33, P 
= 0.744) and sex (χ2 = 0.07, P = 0.787) between TLE and control groups. Detailed demographic and 
clinical information are provided in Table 1. 

Standard Protocol Approvals and Patient Consents. Written informed consent was obtained from all 
participants. All studies were approved by local Ethics Review Committees and carried out according 
to the declaration of Helsinki. 

MRI Acquisition 
Discovery Dataset (MICA-MICs). All participants (healthy controls and patients) underwent baseline 
multimodal MRI scans, including T1-weighted, diffusion-weighted, and resting-state fMRI. Twelve 
patients underwent 1.98 ± 1.26 years of follow-up scans, of which five additionally underwent 3.40 
± 0.55 years of follow-up scans. All scans were acquired on a 3.0 T Siemens Magnetom Prisma-Fit 
scanner equipped with a 64-channel head coil. Two T1-weighted scans were acquired using a 3D 
MPRAGE sequence (TR = 2300 ms, TE = 3.14 ms, FA = 9°, FOV = 256×256 mm2, voxel size = 
0.8×0.8×0.8 mm3, matrix size = 320×320, 224 slices). Diffusion-weighted MRI data were acquired 
using a 2D EPI sequence (TR = 3500 ms, TE = 64.4 ms, FA = 90°, FOV = 224×224 mm2, voxel size 
= 1.6×1.6×1.6 mm3, 3 b0 images, b-values = 300/700/2000 s/mm2 with 10/40/90 diffusion directions). 
Resting-state fMRI data were acquired using a multiband accelerated 2D EPI sequence (TR = 600 
ms, TE = 30 ms, FA = 52°, FOV = 240×240 mm2, voxel size = 3×3×3 mm3, matrix size = 80 ×80, 
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multi-band factor = 6, 48 slices, 700 volumes). A subset participant (28 controls and 27 patients) 
additionally underwent pseudo-continuous arterial spin labeling (ASL) MRI (TR = 4150 ms, TE = 10 
ms, FA = 90°, voxel size = 4.5×4.5×7 mm3, FOV = 288×288 mm2, post-label delay = 1550 ms, 14 
slices). 

Replication dataset (EpiC). All participants had multimodal MRI scans (T1-weighted, diffusion MRI 
and resting-state fMRI), of which 14 TLE patients had follow-up scans with an mean interscan inter-
val of 2.61 ± 0.89 years (range = 0.7-4 years). All scans were acquired using a 3T Philips Achieva 
MR scanner, and included (i) one T1-weighted MRI scan (3D gradient-echo EPI, TR = 8.1 ms, TE = 
3.7 ms, FA = 8°, FOV = 256×256 mm2, voxel size = 1×1×1 mm3, 240 slices), (ii) one resting-state 
fMRI scan (2D gradient-echo EPI, TR = 2000ms, TE = 30 ms, FA = 90°, voxel size = 2×2×3 mm3, 
34 slices, 200 volumes), and (iii) one diffusion-weighted MRI scan (2D EPI, TR = 11.86 s, TE = 64.3 
ms, FOV = 256×256 mm2, voxel size = 2×2×2 mm3, 2 b0 images, b-value = 2000 s/mm2, 60 diffusion 
directions). 

MRI Preprocessing 
MRI data from the MICA-MICs and EpiC datasets were processed using virtually identical pipelines 
via micapipe (version 0.2.2; http://micapipe.readthedocs.io),99 an open multimodal MRI pipeline that 
integrates AFNI, FSL, FreeSurfer, ANTs, MRtrix, and Workbench.100-104 T1-weighted data under-
went gradient non-uniformity correction, re-orientation, skull stripping, intensity normalization, and 
tissue segmentation. Diffusion-weighted data underwent denoising, b0 intensity normalization, and 
correction for susceptibility distortion, head motion, and eddy current. Resting-state fMRI processing 
involved discarding the first five volumes, re-orientation, motion, and distortion correction. Nuisance 
variable signals were removed using a ICA-FIX classifier.105 Volumetric time series were non-line-
arly co-registered to native FreeSurfer space with boundary-based registration,106 and mapped to in-
dividual mid-thickness surfaces with trilinear interpolation. Cortical time series were resampled to 
the Conte69 surface space (with ~32k vertices/hemisphere) and smoothed with a 10-mm full-width 
half-maximum (FWHM) kernel. ASL MRI data were processed using FSL-BASIL (https://asl-
docs.readthedocs.io). We used oxford_asl, an automated command line utility within BASIL, to gen-
erate a calibrated map of absolute resting-state tissue perfusion for each participant. For further de-
tails, see ref.107 Resulting cortical blood flow (CBF) map was co-registered to the native FreeSurfer 
space using boundary-based registration,106 projected onto the Conte69 surface space, and smoothed 
using a 10-mm FWHM kernel. Lastly, subject-specific vertex-wise resting-state fMRI time series and 
CBF maps were parcellated into 360 cortical regions defined by the HCP multi-modal parcellation 
(HCP-MMP).108 

Connectivity Matrix Generation 
Functional connectivity (FC) was calculated as the correlation coefficient of the fully processed time 
series for each pair of regions (360×360). A functional connectivity dynamics (FCD) index was com-
puted as follows. Each region’s time series (with a total length of 695 time points) were segmented 
into 596 windows of 100 time points each (60 s), with an overlap of 99 time points. The whole-brain 
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FC matrix was constructed for each time window and vectorized by considering only the upper trian-
gular entries. These vectorized matrices were then cross-correlated, generating a 596×596 FCD ma-
trix for each participant. 

Individual structural connectivity (SC) was generated from preprocessed diffusion-weighted data via 
MRtrix.104 Anatomically-constrained tractography was first performed using tissue types (cortical 
and subcortical gray matter, white matter, cerebrospinal fluid) derived from each participant’s pro-
cessed T1-weighted images registered to native DWI space.109 Multi-shell and multi-tissue response 
functions were estimated, and constrained spherical deconvolution and intensity normalization were 
performed.110,111 The tractogram was then generated based on a probabilistic approach with 40 million 
streamlines, with a maximum tract length of 250 and a fractional anisotropy cut-off of 0.06. Subse-
quently, spherical deconvolution-informed filtering of tractograms (SIFT2)112 was applied to recon-
struct the whole-brain streamlines weighted by cross-sectional multipliers. Lastly, the SC matrix 
(360×360) was constructed by mapping the reconstructed cross-section streamlines onto the HCP-
MMP atlas with 360 nodes, in which the connection weights between nodes were defined as the 
weighted streamline count. 

Hurst Exponent Analysis 
Prior work using in-silico modeling and in-vivo chemogenetic manipulations has validated the utility 
of the Hurst exponent, an index estimated from neural time-series data,5 to infer the underlying change 
in the synaptic E/I ratio. In these reports, the Hurst exponent decreased as the E/I ratio shifted toward 
higher excitation. Here, we calculated the Hurst exponent of each brain region’s preprocessed resting-
state fMRI time series and used it as a proxy of the overall E/I ratio within that area. In brief, for each 
participant, each brain region’s time series were modeled as fractionally integrated processes, and the 
corresponding Hurst exponent was estimated using the univariate maximum likelihood method and 
discrete wavelet transform.5,113 The specific function utilized is the bfn_mfin_ml.m function from the 
nonfractal MATLAB toolbox (https://github.com/wonsang/nonfractal),114 with the ‘filter’ argument 
set to ‘haar’ and the ‘ub’ and ‘lb’ arguments set to [1.5, 10] and [-0.5, 0], respectively. 

To contextualise our regional pattern of the Hurst exponent to a range of molecular, structural, and 
functional features, we obtained relevant brain maps from the literature using BigBrainWarp toolbox 
(https://bigbrainwarp.readthedocs.io)115 and neuromaps (https://netneurolab.github.io/neuromaps/)59. 
We fetched and parcellated the map of the sensory-fugal axis of cytoarchitectural differentiation,116 
cortical thickness,72 intracortical myelination (T1w/T2w ratio),117 gene expression gradient,60 and 
neurotransmitter receptor gradient.61,69 Spearman rank correlations separately quantified the relation-
ship between each brain annotation and the group-level Hurst exponent map in healthy controls. Sta-
tistical significance of spatial correlation between brain maps (i.e., Pspin) was assessed non-paramet-
rically via comparison against a null distribution of null maps with preserved spatial autocorrelation,66 
i.e., spin tests with 5,000 iterations, implemented using the ENIGMA Toolbox (https://enigma-
toolbox.readthedocs.io).67 
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Before statistical analysis, region-wise Hurst exponent values in TLE patients were initially normal-
ized relative to healthy controls, and sorted into ipsilateral/contralateral to the epileptogenic focus.118 
Surface-based linear models assessed group differences in each brain area’s Hurst exponent between 
patients and healthy controls using BrainStat (https://brainstat.readthedocs.io).119 Effect size was cal-
culated as Cohen’s d. We controlled for age and sex, and we corrected findings for false discovery 
rate (FDR) using random field theory for nonisotropic images.120,121 For regions surviving FDR cor-
rection, we conducted post-hoc analyses using two-sample t-tests. To examine network-wise group 
differences, the 360 brain regions of the whole-brain were grouped into twelve macroscale networks 
according to the Cole-Anticevic brain-wide network partition (CAB-NP) defined on the HCP-MMP 
atlas.62 We then calculated the average Hurst exponent for each network of each individual, and com-
pared them between groups using two-sample t-tests. To demonstrate the robustness of our findings 
with respect to head motion, we calculated the mean framewise displacement (FD) from resting-state 
fMRI scans for each participant. We further repeated the surface-wide comparison of the Hurst ex-
ponent while additionally controlling for the mean FD. 

Recurrent Neural Circuit Modeling 
A biophysically-based mean-field model was used to simulate coordinated neuronal activities across 
the whole brain based on long-range anatomical connection and to infer microcircuit-level parameters 
of neuronal populations at a regional level. Specifically, we harnessed a parametric mean-field model 
(pMFM)26 that captures the link between time-varying functional dynamics of intrinsic brain activity 
and structural connection, as well as its modulation through region-specific microcircuit parameters. 
In comparison to other models that also incorporate local microcircuit properties,64,122 the pMFM, by 
allowing them to vary along the anatomical and functional hierarchical axes of the cerebral cortex,26,60 
generate more realistic simulations of large-scale brain dynamics with modest parametric complexity. 
A comprehensive description of pMFM, including the mathematical details of the mean-field model, 
can be found in refs.26,64,123 In brief, the pMFM assumes that the neural dynamics of a given brain 
region are governed by four components: (i) recurrent (intra-regional) input, where a larger recurrent 
input current corresponds to a stronger recurrent connection strength w; (ii) inter-regional input, me-
diated by structural connection strength between a pair of regions and scaled by a global scaling 
constant G; (iii) external input I, mainly from subcortical structures; (iv) neuronal noise, assumed to 
be Gaussian with a standard deviation σ. Here, recurrent connection strength w, external input current 
I, and noise amplitude σ varied across brain regions, while G was kept a constant. Additionally, w, I, 
and σ were parameterized as linear combinations of T1w/T2w myelin maps117 and the principal gra-
dient of resting-state functional connectivity,124 rather than varying independently: 

 

 

 
where wi, Ii, and σi were the recurrent connection strength, external input current, and noise amplitude 
of the i-th cortical region, respectively. Myei and Gradi denoted the average scores of T1w/T2w MRI 
estimates of intracortical myelin and the principal resting-state FC gradient in the i-th cortical region. 
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Therefore, there are a total of 10 unknown parameters (aw, bw, cw, aI, bI, cI, aσ, bσ, cσ, G) to be estimated 
by maximizing fit to empirical static FC and FCD (Fig. 2a). 

In this study, for each group (healthy controls, or TLE), 40 participants were randomly subdivided 
into training (n = 15), validation (n = 15), and test (n = 10) sets. Group-level SC and FC matrices 
(360×360) were computed by averaging the FC and SC matrices across participants separately within 
the training, validation, and test sets. FCD matrices could not be directly averaged across participants 
as there was no temporal correspondence of resting-state time series between subjects. The cumula-
tive distribution function (CDF) of every participant’s FCD matrix was constructed by collapsing the 
upper triangular entries, and then simply averaged across all participants separately within the train-
ing, validation, and test sets, which we referred to as a group FCD CDF.26 Subsequently, in the train-
ing set, the CMA-ES algorithm65 was iterated 50 times, and repeated 5 times with different random 
initializations, yielding 250 candidate parameter sets. The 250 candidate parameter sets were evalu-
ated in the validation set. The top 10 candidate parameter sets selected from the validation set based 
on the model fit were tested in the test set to determine the optimal set of parameters (with the lowest 
cost). More specifically, the simulated fMRI signal from each parameter set was used to compute a 
360×360 static FC matrix and a 596×596 FCD matrix. The agreement between the simulated and 
empirical static FC matrices was defined as Pearson’s correlation (r) between the upper triangular 
entries of the two matrices, in which a larger r indicated a more similar static FC. The disagreement 
between the simulated and empirical FCD matrices was defined as the Kolmogorov–Smirnov (KS) 
distance125 between the two matrices’ CDF, in which a smaller KS distance indicated a more similar 
FCD. Following previous work, an overall cost was defined as [(1 − r) + KS] to optimize both static 
FC and FCD;26 lower cost thus implied a better fit to empirical static FC and FCD. For robustness, 
the split of participants into training, validation, and test sets was repeated five times for each group. 
Lastly, the best parameter sets from these five splits were averaged, yielding the representative set of 
parameters for each group. 

Spearman correlations were calculated between the group-level pFMF parameters (Fig. 2b) and Hurst 
exponent (Fig. 1a) to evaluate the association between regional Hurst exponent changes and micro-
circuit properties. Regional changes in microcircuit parameters (w and I) between TLE and controls 
were quantified by simply subtracting their group-level parameter scores. These changes were corre-
lated with the effect size of regional differences in the Hurst exponent (i.e., Cohen’s d in Fig. 1b). 
Significances of spatial correlations were determined via spin permutations tests, with 5,000 iterations. 

Network Spreading Mapping 
Group-average SC and FC matrices derived from an independent sample (i.e., HCP) of 100 unrelated 
healthy participants were used to estimate the mean abnormality of neighbours of each brain region.72 
Briefly, neighbours of a given brain region i were defined as regions connected to it with a structural 
connection, as defined by the SC matrix. The structurally-connected neighbour abnormality of node 
i (Di) was estimated as the average weighted abnormality of all of i’s all neighbours,69 where dj is the 
abnormality (i.e., Cohen’s d score) of the j-th neighbour of node i, SCij is the SC strength between 
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node i and node j, and Ni is the total number of neighbours that are connected to node i (i.e., node 
degree). 

 
Structurally- and functionally-defined neighbour abnormality was estimated using the same equation 
as above, with the exception that regional abnormality was additionally weighted by the FC strength 
to node i (FCij):69 

 
Altogether, a single neighbour abnormality value was estimated for each condition of each brain area. 
Spearman correlation coefficients were used to assess the relationship between node abnormality and 
mean abnormality of structurally-defined neighbours, and both structurally- and functionally-defined 
neighbours, separately. Spatial autocorrelation-preserving spin tests were used to assess the statistical 
significance of associations across brain regions. 

Disease Epicenters Mapping 
Disease epicenters were identified by spatially correlating each brain region’s healthy structural and 
functional connectivity profiles (from the same HCP dataset) to our map of Hurst exponent alterations 
in TLE (i.e., un-thresholded Cohen’s d map in Fig. 1b).71 This approach was repeated systematically 
across all cortical regions with spin permutation tests at Pspin < 0.05. The higher the spatial similarity 
between a node’s connectivity profile and the whole-brain patterns of Hurst exponent disruption, the 
more likely this structure represented a disease epicenter (Fig. 3b), regardless of its abnormality level. 
Resulting likelihoods (i.e., correlation coefficients) were then ranked in descending order, with highly 
ranked brain regions representing disease epicenters. 

Associations with Clinical and Cognitive Variables 
For those regions showing significant between-group differences (Fig. 1b), we assessed the effect of 
disease severity (age at seizure onset, disease duration, and number of antiepileptic drugs) on the level 
of Hurst exponent changes in TLE patients. The analyses were performed in the cross-sectional and 
longitudinal cohorts combined (57 MRI scans in total). We fitted linear mixed-effects models con-
taining participant intercept as a random term, and each clinical variable as a fixed term,43 and tested 
for a negative effect of the given clinical variable. Associations between the Hurst exponent and the 
number of electroclinical seizures captured during hospitalization were examined using Pearson’s r. 
In addition, we explored the effect of interictal epileptiform discharges (IEDs) in the temporal lobe 
on Hurst exponent changes in patients who underwent extended video-EEG telemetry (mean ± SD = 
8.68 ± 2.58 days, range = 2-15 days). For each TLE patient, we obtained the IEDs prevalence based 
on the classification from clinical EEG reports during hospitalization. Following the ACNS Critical 
Care EEG Terminology 2021,126 TLE patients were divided into 2 subgroups: rare IEDs (<1/hour, n 
= 11) and prevalent IEDs (i.e., occasional/frequent/abundant, ≥1/hour, n = 27). Differences in the 
Hurst exponent between the two subgroups were tested using two-sample t-tests. 
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To unveil the neurophysiological substrate of Hurst exponent changes observed, we conducted further 
analysis on cortical blood flow (CBF). CBF is tightly linked to brain metabolism,127,128 varies across 
the lifespan,129,130 and is increasingly recognized as a key neuroimaging biomarker for various neu-
ropsychiatric and neurological disorders.127,131 In this work, 28 healthy controls and 27 patients un-
derwent ASL MRI. To compare regional CBF with corresponding Hurst exponent values, we com-
puted each region’s average CBF score and Hurst exponent in healthy controls, then calculated Spear-
man’s correlation between them; the P-value was determined via spin permutation tests with 5,000 
iterations. Additionally, we assessed how well TLE-related changes in the Hurst exponent reflected 
CBF changes. We separately computed the global average CBF and the average CBF in brain regions 
showing significant Hurst exponent changes (Fig. 1b) for each participant. Subsequently, we (1) 
compared CBF values between TLE patients and healthy controls using two-sample t-tests, and (2) 
correlated CBF with subject-specific Hurst exponent values while controlling for age and sex. 

Neuropsychological assessments at the time of study MRI were also available for most participants, 
including general cognitive function [Montreal Cognitive Assessment (MoCA);74 39 controls and 38 
patients], and attention and executive functions (EpiTrack;75 38 controls and 28 patients). We directly 
compared TLE patients to healthy controls using two-sample t-tests. To examine the clinical signifi-
cance of cortical E/I imbalance, we separately extracted the Hurst exponent for the entire brain and 
in those significant areas, then correlated them with the individual cognitive measurements described 
above, controlling for age and sex. In a separate analysis of TLE patients for whole longitudinal data 
was available, we quantified progressive changes in Hurst exponent, MoCA, and EpiTrack scores by 
calculating the differences between baseline and follow-up pairs, and examined their associations. 

Replication Analysis 
Hurst exponent alterations between TLE patients and healthy controls were validated in an independ-
ent dataset (i.e., EpiC; 30 controls and 30 TLE) to verify the robustness of our findings. The protocols 
used for the analyses were the same as those described above. Briefly, we separately compared dif-
ferences in the average Hurst exponent across the entire brain and only within the significant regions 
identified in the discovery sample (see Fig. 1b) between TLE patients and healthy controls using two-
sample t-tests. Surface-wide differences in the Hurst exponent between TLE and control groups were 
assessed via surface-based linear models. The spatial correspondence between MICA-MICs and EpiC 
datasets for the effect sizes (i.e., Cohen’s d) of Hurst exponent changes was examined with spin per-
mutation tests (5,000 iterations). We proceeded to investigate the effect of disease severity on Hurst 
exponent changes across time. We separately calculated the average Hurst exponent across the entire 
brain or within significant regions from the follow-up scans, for each patient for whole longitudinal 
data was available (n = 14), then compared them to those derived from the baseline scans. We also 
assessed the relationship between the Hurst exponent and epilepsy duration in TLE across both cross-
sectional and longitudinal scans using linear mixed-effects models that contained participant inter-
cept as a random term and epilepsy duration as a fixed term. 

Finally, we validated brain-behavior associations. At the EpiC site, a subset of participants (21 con-
trols and 28 patients) underwent the Wechsler Memory Scale (WMS-IV) test that consisted of 7 
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subtests designed to assess memory performance.51 Every subject’s performance is reported as 5 in-
dex scores: auditory memory (AMI), visual memory (VMI), visual working memory (VWMI), im-
mediate memory (IMI), and delayed memory (DMI). These indices were normalized with respect to 
a Mexican population and adjusted for age and education level, then were entered into a principal 
component analysis to reduce dimensionality. The loading score of the first component (i.e., PC1), 
accounting for 81% of the variance, was correlated with individual Hurst exponent values, with age 
and sex as covariates. 

DATA AVAILABILITY 
The MICA-MICs dataset54 is available at the Open Science Framework (https://osf.io/j532r/) and the 
Canadian Open Neuroscience Platform (https://portal.conp.ca/). The EpiC dataset is openly available 
at OpenNeuro (data set ds004469, https://openneuro.org/datasets/ds004469/versions/1.1.3). Surface-
based Hurst exponent data of the study participants will be available on osf.io upon publication. 

CODE AVAILABILITY 
MRI preprocessing was conducted using micapipe (http://micapipe.readthedocs.io).99 The Hurst ex-
ponent was computed using the nonfractal toolbox (https://github.com/wonsang/nonfractal). Surface-
based statistics were conducted using BrainStat (https://brainstat.readthedocs.io).119 Spin permutation 
tests were conducted using the ENIGMA Toolbox (https://enigma-toolbox.readthedocs.io).67 Com-
putational modeling was conducted using pMFM (https://github.com/HeavenBluer/Parametric-
MFM-Project).26 
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Fig. S1 | Regional Hurst exponent values vary spatially across the brain. (a) Regional Hurst exponent value is nega-
tively spatially correlated with the sensory-fugal hierarchy of cytoarchitectural differentiation (“BigBrain gradient”). (b) 
Regional Hurst exponent value spatially aligns with the regional distribution of cortical thickness, intracortical mye-
lination (T1w/T2w MRI ratio), the principal component of AHBA brain-specific gene expression data (“gene PC1”), and 
the principal component of the density of neurotransmitter transporters/receptor (“receptor PC1”). For example, a lower 
Hurst exponent (i.e., greater E/I ratio) is found in brain regions with lower intracortical myelination. The statistical sig-
nificance of spatial correlation between brain maps (i.e., Pspin) was assessed non-parametrically using spin permutation 
tests (5,000 iterations) that preserved spatial autocorrelation. 

 
 

 
Fig. S2 | Hurst exponent changes in only seizure-free TLE patients. (a) Subject-specific distribution of regional Hurst 
exponent (z-score relative to healthy controls) in seizure-free TLE patients (n = 11). (b) Between-group differences in the 
average Hurst exponent values across the entire brain (left) or significant brain regions (right) in Fig. 1b. *** P < 0.001. 
HC = healthy control; TLE = temporal lobe epilepsy. 
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Fig. S3 | Head motion effects. Hurst exponent differences between TLE patients and healthy controls with (b) or without 
(a) additionally controlling for individual head motion. Surface-based findings were corrected for multiple comparisons 
at a false discovery rate level of 0.05 (PFDR < 0.05; white outlines). ipsi = ipsilateral; contra = contralateral. 

 
 

 
Fig. S4 | Correlations between the average Hurst exponent and the number of electroclinical seizures captured during the 
EMU admission in TLE patients. Subject-specific mean Hurst exponent value is calculated by averaging the Hurst expo-
nent values across the entire brain (left) or significant brain regions (right) in Fig. 1b. 

 
 

 
Fig. S5 | Interictal epileptiform discharges (IEDs) effects. Differences in the average Hurst exponent between patients 
with rare (n = 11) and prevalent (i.e., occasional/frequent/abundant, n = 27) interictal epileptic discharges (IEDs). Subject-
specific mean Hurst exponent value is calculated by averaging the Hurst exponent values across the entire brain (left) or 
significant brain regions (right) in Fig. 1b. 
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Fig. S6 | Regional brain perfusion changes in TLE and association with Hurst exponent changes. (a) Regional Hurst 
exponent value spatially aligns with the spatial distribution of regional cortical blood flow (CBF) derived from resting-
state arterial spin labeling (ASL) MRI. A lower Hurst exponent (i.e., greater E/I ratio) is seen in brain regions with lower 
brain perfusion. The statistical significance of the spatial correlation between brain maps (i.e., Pspin) was assessed non-
parametrically by spin permutation tests (5,000 iterations) that preserved spatial autocorrelation. (b) Error bar plots: be-
tween-group differences in the average CBF scores across the entire brain (left) or brain regions (right) showing signifi-
cant Hurst exponent changes (Fig. 1b). Scatter plots: associations between subject-specific average Hurst exponent and 
CBF. ** P < 0.010. HC = healthy control; TLE = temporal lobe epilepsy. 
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