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Summary 25 

 

Metal ions play crucial roles in cells, yet the broader impact of metal availability on biological 

networks remains underexplored. We generated genome-wide resources, systematically 

quantifying yeast cell growth, metallomic, proteomic, and genetic responses upon varying 

each of its essential metal ions (Ca, Cu, Fe, K, Mg, Mn, Mo, Na, Zn), over several orders of 30 

magnitude. We find that metal ions deeply impact cellular networks, with 57.6% of the 

proteome, including most signalling pathways, responding. While the biological response to 

each metal is distinct, our data reveals common properties of metal responsiveness, such as 

concentration interdependencies and metal homeostasis. We describe a compendium of 

metal-dependent cellular processes and reveal that several understudied genes can be 35 

functionally annotated based on their metal responses. Furthermore, we report that 

metalloenzymes occupy central nodes in the metabolic network and are more likely to be 

encoded by isozymes, resulting in system-wide responsiveness to metal availability. 
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Introduction  

 

Metal ions are integral to the functioning of biological systems with critical roles in biochemical 50 

reactions 1, vital metabolic pathways 2, protein evolution 3, and diseases like neurodegeneration 4, 

cancer 5 and microbial infections 6. As catalysts in enzyme active sites, reactant co-factors in 

redox reactions and by mediating protein-protein and protein-small molecule interactions, metal 

ions are required for energy transformation, biosynthesis, stress response and cellular signalling 

within prokaryotic, archaean and eukaryotic metabolic networks 7. Consequently, they are 55 

important for a wide range of biological processes, such as cell growth, protein folding, DNA 

repair, neurotransmission, and immune function 8. 

 

The role of metal ions in the proteome is extensive. Budding yeast, arguably the best studied 

eukaryotic model system when it comes to metal ion biology, expresses at least 70 metal ion 60 

transporters and more than 800 of its ~6000 confirmed proteins are annotated as metal-binders 9. 

Because the concentration of metal ions in the cellular environments is subject to constant 

fluctuations, cells sense, control, and buffer cellular metal ion concentrations against 

environmental fluctuations 10,11. However, the metal ion concentrations provided in the growth 

media for cells and tissues, are seldomly varied in molecular biology experiments. For example, 65 

only 0.8% (119 out of 14484, Supplementary Figure 1a) genome-wide yeast screens compiled 

by 12 deviate from the metal ion concentrations present in the standard growth medium. 

Furthermore, even within this small subset, most screens explored metal ion toxicity, but not non-

toxic concentration changes, i.e., those within a physiologically relevant range. Moreover, none of 

the screens covered metal depletion in minimal media devoid of amino acid supplements - which 70 

would be required for assessing the role of metal ions in biosynthetic metabolic pathways, in 

which metal-containing enzymes play a key role as catalysts (Supplementary Figure 1b).  

 

Recently, individual studies have altered concentrations of metal ions such as zinc and iron in the 

yeast growth medium and conducted transcriptome and proteome analyses. The obtained data 75 

provides evidence for a widespread cellular responsiveness to metal ion perturbation 13–1516,17. On 

the molecular level, ‘omic’ datasets that are obtained upon varying a metal ion concentration in 

the media, can however be challenging to interpret, for two main reasons. First, due to the 

extensive cellular concentration-buffering of the metal ions, a change in the media concentrations 

does not directly translate into a similar change in its cellular levels 18–20. Second, metal ion 80 

transporters are promiscuous, and altering the concentration of one metal ion will inadvertently 

influence the cellular levels of other metal ions, resulting in a complex relationship between metal 

availability in cultivation media, the intracellular concentration, and the response detected at 

transcriptome or proteome. The cellular responses to perturbations in metal availability are a 

combination of the concentration-buffering capacities, and the impact of the imposed 85 

environmental fluctuations and the interlinked intracellular changes 10,21–23. 

 

Here, we aimed to create a resource that addresses the gap in knowledge about the role of metal 

ion concentrations in cellular networks. We varied the concentration of each typical metallic 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


3 
 

media component of minimal S. cerevisiae cultivation media systematically and over several 90 

orders of magnitude, resulting in 91 different growth media.  We measured growth responses to 

the altered metal availability and employed a series of -omics technologies to monitor the 

biological responses: metallomics to quantify metal buffering and correlations between cellular 

metal concentrations, proteomics to measure the molecular response of cells, and growth screen 

of a genome-wide deletion library for identifying genetic interactions using metal depletion media. 95 

In parallel, we incorporated a dataset that captures the proteomic response to the deletion of 

each non-essential metal-related protein 24, and two metallomic datasets that quantify metal 

quantities in all strains from the S. cerevisiae knockout deletion and overexpression mutant 

collections 25–27. 

Our comprehensive resource of metal biology unveils an extensive impact of metal ion 100 

concentrations across cellular biochemical networks and their regulatory landscape. We report 

that cellular metal responsiveness extends far beyond biomolecules and processes linked to 

metals due to direct metal-binding, metal-transport or metal-homeostasis activity. Instead, metal 

ion responsiveness affects a wide array of cellular processes, including transcription factors, 

signalling pathways, protein complexes and metabolic pathways that have not previously been 105 

implicated in metal ion biology. For example, we report that 28 out of 34 KEGG signalling 

pathways, including mTOR, contain metal-responsive proteins. While cells exhibit specific 

responses to the availability of each metal ion, we identify universal features of cellular metal 

responsiveness, such as cellular buffering capacities and the interplay between different metal 

ion concentrations. Moreover, we show that several hitherto uncharacterized genes induce 110 

characteristic metal-ion responses, and that these can be exploited to annotate their function. 

Lastly, we demonstrate how the high connectivity of enzymes and metabolites combined with the 

central location of metalloproteins within the metabolic network renders cellular metabolism 

remarkably sensitive to fluctuations in metal ions.  

 115 

 

2. Results  

 

 

We created nine series of cultivation media, in which the concentration of each metal salt typically 120 

supplied in synthetic minimal media, namely Calcium (Ca), Copper (Cu), Iron (Fe), Potassium 

(K), Magnesium (Mg), Manganese (Mn), Molybdenum (Mo), Sodium (Na), and Zinc (Zn), were 

varied one at a time, in 12-steps, over five orders of magnitude (Figure 1a, Supplementary Note 

1). We chose to omit amino acid supplements in all our media formulations 28 to guarantee the 

activation of the cellular biosynthetic pathways, many of which require metal binding proteins 29,30. 125 

We then cultivated a prototrophic, haploid S. cerevisiae strain derivative of BY4741 31,32 in each of 

the 91 media and the control in triplicates. To maintain consistency with previous literature and 

datasets, we refer to concentrations exceeding the typical media formulations 33,34 as “excess”, 

while those below as “depletion” (see Supplementary Table 1 and Methods). Of note, we did 

not use chelators to completely deplete metals below trace concentrations present even in 130 

ultrapure laboratory solvents and materials, in order to avoid confounding chelator off-target 

effects 35–37 (Supplementary Note 2). To enable a precise determination of the amount of metal 

available to cells in each cultivation condition, we instead quantified the metal content in each of 
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the 91 media using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (Supplementary 

Figure 1c, Supplementary Table 2).  135 

 

S. cerevisiae cells maintained consistent growth across a high range of environmental (media) 

metal concentrations, in most concentration series (Figure 1b, Supplementary Figure 1d). 

However, growth rates reduced upon a ~2-fold depletion of abundant metals K, Mg and Zn and at 

~8-fold depletion for Ca and Cu (Figure 1b). Despite successful Mo and Mn depletion to ~8ppb 140 

(0.04 times the typical media concentration) and ~2.8ppb (0.007 times the media concentration) 

respectively, no growth defects were observed, suggesting that these elements are either 

nonessential under the tested conditions, or required at extremely low amounts. Even though we 

omitted metal salts completely to prepare the lowest Fe and Na depletion media and used 

solvents and materials of the highest purity available, the Fe and Na concentrations in these 145 

media (8 ug/L of FeCl3 or 143 ppb of Fe atoms and ~508 ug/L or ~22100 ppb of Na atoms) were 

sufficient to sustain cell growth. At the other end of the concentration series, we observed that 

concentration changes of more than 5-fold (1 mg/L Na2MoO4) of Mo, more than 20-fold of Cu and 

Fe (0.8 mg/L CuSO4 and 5 mg/L FeCl3) resulted in a slowing of cell growth, indicating toxicity.  

 150 

 

Homeostasis is metal specific and involves concentration interactions 

 

 

The observation that high magnitudes of environmental metal concentration changes are required 155 

to influence yeast cell growth is consistent with an extensive homeostatic machinery that allows 

cells to buffer cellular concentration against environmental changes 10,21–23. In order to generate a 

systematic dataset that captures the interdependency of cellular metal ion concentrations in 

relation to their extracellular levels, we quantified the total cellular concentration of Ca, Fe, K, Na, 

Zn and Mg (see Supplementary Table 3) using an ICP-MS protocol adapted from 26 . For WT 160 

cells cultivated in the standard condition the relative concentration of metals we observe are 

consistent with previous reports (Methods, Supplementary Figure 1f). The obtained 

concentration values reveal the ‘buffering range, the extracellular concentration span in which 

cells maintain a similar cellular concentration. Cells revealed the strongest concentration 

buffering for K, Mg, followed by Zn, Ca, and Mn (Figure 1c). Quantitatively, cells buffered at least 165 

38-fold (Fe), 10-fold (K), 10-fold(Mn), 8-fold (Mg), 6-fold(Zn) and 3-fold(Ca) against excess, and 

38-fold(Ca), 16-fold(Mg), 10-fold(Mn), 7-fold (K), 6-fold (Zn) and 2.5-fold(Fe) against depletion 

(Figure 1c, Supplementary Table 4). 

 

Metal ions possess similar physical and chemical properties that result in promiscuity of metal 170 

transport systems 10,11,38. Thus, we next determined the relationship between the environmental 

concentration of one metal and the cellular concentration of any other metal. Seven out of the 

nine environmental metal concentration series affected the cellular concentrations of at least one 

other metal (based on Spearman’s rank correlation abs(rho) > 0.8 and p-value < 0.05, Figure 1d, 

Supplementary Table 5). Overall, cellular Mn and Ca levels were most sensitive to 175 

environmental concentration changes in other metals, while environmental K exerted the most 

widespread impact. For instance, changes in environmental K caused positively correlated 
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concentration changes in cellular Fe (Spearman’s r = 0.88) and Mn (Spearman’s r = 0.89) and 

correlated negatively with cellular Mg (Spearman's r= -0.96) and Zn (Spearman's r = -0.98) levels. 

Perturbations in environmental Ca, Mg and Zn influenced the concentrations of three other 180 

metals each (Figure 1e), with cellular Mn concentration being negatively correlated with each of 

these three metals (Spearman’s r of -0.98, -0.94 and -0.88 respectively). Conversely, 

environmental concentrations of Cu and Fe positively correlated with cellular Ca concentration 

(Spearman's r of 0.84 and 0.93 respectively). At least some of the observed interdependencies 

correspond to shared physical properties of metals and biochemical interactions; for instance, 185 

Mg-induced decreases in cellular Ca and Zn concentrations align with the promiscuity of divalent 

cation transporters 39. Despite these interactions, the metallomics profiles of samples from each 

cultivation media were sufficiently specific to group most samples in accordance with the metal 

perturbation in a principal component analysis (PCA) (Figure 1f).  

 190 

 

The proteome responds globally to changes in metal availability  

 

We next conducted a quantitative proteomics experiment to capture molecular responses in the 

cells grown in the 91 conditions with altered metal concentrations, in triplicates. We employed a 195 

high-throughput proteomic pipeline that combines cell cultivation in multi-well plates, semi-

automated sample preparation, microflow liquid chromatography, data-independent mass 

spectrometry data acquisition, and data processing using DIA-NN 24,40,41. After extensive filtering 

and quality control of the raw proteomics data (Methods), we obtained precise quantitative data 

for 2330 unique proteins. Of these, 1433 were quantified in at least 85% of all samples 200 

(Methods, Supplementary Table 6). For 3841 proteins in the S. cerevisiae proteome, 

quantitative copy number data has been estimated with an orthogonal strategy 42 which allowed 

us to estimate the proteomic mass represented by the observed proteomic changes. The overlap 

of 1916 proteins between our dataset and proteins quantified in 42 led us to estimate that our 

dataset quantifies around 87.9% of the proteome mass represented by these 3841 proteins with 205 

76.8% of the proteome mass (corresponding to 1190 proteins) being quantified with over 85% 

completeness across the dataset (Methods). The average replicate coefficient of variation (CoV), 

which reflects the sum of technical and biological noise, was ~15.7% with an average of 1837 

proteins quantified per sample for the perturbation samples and 1871 proteins quantified per 

control condition sample. The biological signal in the dataset (average CoV of proteins across 210 

test conditions) was ~27.9%, considerably higher than the noise levels. 

 

To identify and classify differentially expressed proteins along the metal concentration series, we 

determined whether the relationship between environmental metal concentration and protein 

abundance was best represented by a null, 1st, 2nd, or 3rd-degree polynomial linear model using p-215 

values from pairwise F-tests between each type of model (Figure 2a, Methods, Supplementary 

Figure 2a, Supplementary Table 7, Supplementary Table 8). We defined a protein as 

differentially expressed, if the p-value of the model that best represents the modelled relationship 

was < 0.05 and if difference between the minimum and maximum protein quantity along the 

environmental metal concentration series was at least 1.5-fold (i.e., abs(max(log2(fold difference 220 

vs control)) - min(log2(fold difference vs control)) > log2(1.5). We used the same methodology to 
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identify proteins altered along measured cellular (as opposed to environmental) metal 

concentrations, using binned metal concentrations and protein abundance data across the entire 

dataset, to identify protein-metal interactions resulting from the interdependency between cellular 

metal concentrations. 225 

 

This analysis identified 1545 unique proteins, corresponding to 66% of the number of measured 

proteins and 81% in terms of the quantified protein mass, to be metal responsive. On average, 

205 proteins were altered per metal perturbation series, when considering environmental 

concentration, and 342 when considering cellular metal concentrations (Supplementary Table 6, 230 

Figure 2a).). Overall, the most pronounced response was to Zn, with 164 proteins responding 

alongside changes in environmental Zn levels, 259 alongside cellular Zn levels, and 572 along 

changes in both environmental and cellular Zn levels (Figure 2b). On the other end of the 

spectrum, upon excluding the toxic concentrations at which we could not generate sufficient 

biomass for quantitative proteomics analysis, no proteins were found to be Mo-responsive. 235 

Identifying K and Mg responsive proteins was technically challenging, as for these two metals 

only a limited environmental concentration range was testable (Supplementary Note 1). However, 

by using the cellular metal concentration changes, we identified 445 proteins for K and 71 

proteins for Mg whose abundance correlated with the indirectly induced changes in cellular K and 

Mg, respectively. Similarly, despite only 12 proteins being identified as differentially abundant 240 

along the environmental Na concentration series, 555 correlated with indirectly induced changes 

in its cellular abundance (Figure 2b). 

 

Across all metals, 1055 proteins were responsive to at least one environmental metal 

concentration change, and 1386 proteins were responsive to at least one cellular concentration 245 

change. Only 159 proteins were differentially regulated along at least one environmental 

concentration series only. For example, Arg7 protein abundance correlated with extracellular Fe 

concentration (Figure 2a, top panel). More proteins, 490, responded along cellular concentration 

changes only. For example, Lat1 levels changed according to the cellular Zn levels (Figure 2a, 

bottom panel). 712 proteins responded along both the environmental and the cellular series. For 250 

example, Cor1 responded to both changes in environmental and cellular Fe, while Tdh2 

correlated with changes in environmental Cu and cellular Na (Figure 2a).  

 

Next, we used our data to determine the critical concentration levels for initiation of a proteomic 

response, i.e., the minimum concentration changes at which cellular responses begin to be 255 

induced. We defined a threshold for protein level responsiveness as a change in protein 

abundance greater than 50% (abs(log2(fold difference vs control)) > log2(1.5)) and then evaluated 

the cumulative fraction of responsive proteins at every incremental 5% increase in magnitude of 

the measured cellular metal concentration (Figure 2c). This analysis revealed significant 

differences between the metal ions. For instance, a 75% alteration in the cellular Zn level was 260 

required to induce the proteomic response, while for iron, a 10% change in its cellular 

concentration was sufficient to induce the proteomic response (Figure 2c). 

 

 

  265 
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The proteome reflects concentration-interactions between metal ions 

 

 

Previous studies have examined individual metal depletions of iron or zinc at the transcriptome 13–

15 and proteome levels 16,17. While our data has a high correlation with the overall profiles 270 

published previously (Supplementary Figures 2b-2f), our results (Figure 1d) also suggested 

that proteomic responses might be induced by promiscuous changes in co-varying metal ion 

concentrations. Examining our data to quantify this property, we report that 761 proteins, or 49%, 

of all metal responsive proteins, showed protein abundance changes potentially resulting from 

covarying concentrations. To assess how unique the proteomic changes observed along each 275 

metal perturbation series were, we first visualised the intersections between proteins differentially 

abundant along each metal (Figure 2d). Four of the ten largest intersections correspond to 

proteins that are differentially abundant in a combination of two or more metals, while six 

correspond to proteins that are differentially abundant only along individual metal perturbation 

series — Zn, Fe, K, Na, Cu, and Mn (Figure 2d). Among these, proteins varying along the Zn 280 

series, followed by those changing along both Zn and Fe, and Fe alone triggered the largest 

responses (Figure 2d). Next, to assess how well the profiles of environmental metal perturbation 

series are explained by cellular changes in each other interacting metal, we compared the 

number of proteins differentially abundant along each pair of environmental and cellular metal 

concentration series to the correlation coefficients obtained from measured environmental 285 

(cultivation media) and cellular metal concentrations of each pair (Figure 2e). Some intersections 

resembled the metal-metal interconnections unveiled by the metallomics data. For instance, ~200 

proteins differentially abundant along the Fe series (environmental and cellular considered 

together) were also identified as significantly altered in abundance along the Zn or Na series 

(Figure 2e, red circles in top right and blue circle in top left). This overlap coincides with a high 290 

correlation coefficient between environmental Fe concentration changes and cellular Na and Zn 

concentrations as well as the link between environmental Zn concentration and cellular Fe 

concentration (Figure 2e, x-axis). Overall, Ca, the most interlinked metal based on metallomics 

data (Figure 1d), also showed a strong linkage with other metals at the proteome level with all 

the proteins identified as differentially abundant along the environmental Ca series that were also 295 

identified along the cellular concentration of any of the other metals being explainable by a metal-

metal connection discovered via the metallomics data (Figure 2f). 

 

We then evaluated how closely the proteome of a sample is related to its metal content by 

measuring similarity between the proteome and metallome profiles across all samples. We 300 

computed correlation coefficients between each unique pair of test condition samples (91) based 

on the metallome and proteome respectively and then compared the correlation coefficients for 

each pair of samples. Despite the generally low correlation between metallome and proteome 

similarities (Pearson correlation coefficient = 0.24 and Spearman rho = 0.18), specific conditions, 

such as Mo excess and Mn excess, or Cu depletion and Zn excess, showed clear correlations 305 

(Figure 2g). Principal component analysis (PCA) of the proteomics dataset revealed distinct 

separations for Zn depletion, Fe depletion, and K depletion samples along the first 3 components 

alone, with the remaining samples being arranged in slightly overlapping, but biologically relevant 

clusters of conditions (Figure 2h). A PCA analysis of the entire proteomics dataset showed that 
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unlike PCA results of the metallomics dataset, which separated the Mg depletion and Mn excess 310 

out along PC1 and PC3 respectively, the Mn excess proteomes were clustered near the Mo and 

control condition sample and the Mg depletion samples were placed centrally amongst samples 

from other conditions.  

 

 315 

Cells cultivated along metal gradients reveal a compendium of cellular responses  

 

 

Metal binding proteins and metal transporters represent the most well studied proteins in relation 

to metal ion biology. Indeed, many of the proteins differentially expressed along the metal 320 

concentration series are metal binding proteins, and these frequently respond to changes in the 

availability of the metal they bind (Figure 2i). However, we observed substantial differences 

between the metal ions. While most Fe- and Ca binding proteins responded strongly to Fe and 

Ca depletion, respectively, Zn-binding proteins were less responsive to Zn depletion (Figure 2i). 

Although we could only quantify a small number of metal transporters, we observed a different 325 

metal specific behaviour in this category: Fe, Zn, and Mn transporters were specifically 

responsive to the depletion of their interacting metal, while the abundance of the two quantified 

Ca transporters decreased at high calcium levels, indicating the presence of a negative feedback 

response (Figure 2j). Intriguingly, the abundance of metal transporters annotated to specifically 

transport metals other than Ca also decreased in Ca depletion. 330 

 

To explore cellular processes responsive to changes in metal availability at a broader scale, we 

conducted a gene-set enrichment analysis using the Gene Ontology (GO), GOslim and KEGG 

databases (Methods). Cellular respiration, translation and transcriptional processes, stress 

response pathways, metabolic pathways as well as ion homeostasis processes were 335 

overrepresented among proteins differentially abundant along metal concentration series (Figure 

2k). Our analysis recapitulated known metal-specific molecular functions. For example, Fe 

binding, Fe-S cluster binding, heme binding proteins as well as enzymes with oxidoreductase 

activity were enriched along the environmental Fe perturbation series, lyase activity and 

oxidoreductase activity along Cu series and many ribosomal and oxidoreductase processes 340 

along the Zn series (Supplementary Figure 2g, Supplementary Table 9). 

 

The enrichment analysis also revealed the involvement of less well documented responses to 

changes in metal ion availability. For instance, we observed a broad crosstalk between metal ion 

concentrations and cellular signalling pathways. In 28 out of 34 signalling pathways (GO-345 

biological process annotations) for which proteins were quantified in our dataset, at least one 

protein was responsive to a metal ion concentration (Supplementary Table 10). These included 

known metal response pathways, such as the calcineurin signalling pathway 43, both quantified 

proteins of the osmosensory pathway 44, but also signalling pathways with other canonical 

functions. For instance, all four quantified proteins of the G protein-coupled receptor pathway 45 350 

and four of the five proteins quantified that map to protein kinase A signalling 46 were differentially 

expressed in metal perturbation media. Notably, our dataset reveals a strong metal response in 

the abundance of the mechanistic target of rapamycin (mTOR) pathway, which to the best of our 
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knowledge has not been associated with metal ion responsiveness thus far. Seven out of eight 

quantified mTOR related proteins (Sit4, Ksp1, Kog1, Slm1, Stm1, Tap42, Tip41) were 355 

differentially expressed upon changes in metal concentrations. For example, Kog1, a subunit of 

the TORC1 responded to Cu, Fe and Zn availability in cultivation media while Sit4 responded to 

cellular concentrations of Fe and Na.  

 

Due to their low abundance, our dataset quantified only 22 transcription factors. Twelve of these, 360 

including Yap1 which has a known role in Fe homeostasis 47,48 and Zn-finger or Zinc cluster 

transcriptional activator such as Cat8, Gat1 and Gts1 were differentially expressed in at least one 

metal perturbation series. 

 

We could quantify at least one protein from 340 known protein complexes (GO-cellular 365 

compartment annotation) and observed a metal ion response in 289 of these (Supplementary 

Table 11). For 145 complexes, we quantified at least 75% of the components (Supplementary 

Table 11). In 128 of these (~88%), at least one component was metal-responsive with 112 

(~77%) showing a change in at least 50% of their components. All the 38 large (five or more 

proteins involved) complexes (including the proteasome, vacuolar proton-transporting V-type 370 

ATPase, retromer complex, mannan polymerase and GPI-anchor transamidase complex) that 

were quantified with over 75% coverage contained at least one protein that was affected by at 

least one metal perturbation.  

 

Finally, our dataset revealed a particularly strong metal responsiveness within the metabolic 375 

network. In 38 of the 39 KEGG metabolic pathways, for which we quantified more than 75% of 

the enzymes, at least one enzyme was differentially expressed along the metal concentration 

series. In 35 of these pathways, at least 50% of the quantified enzymes were metal responsive 

(Supplementary Table 12). Highly metal responsive KEGG pathway terms include steroid 

biosynthesis (85% proteins responsive), glycolysis (75%), TCA cycle (72%) and biosynthesis of 380 

secondary metabolites (81%). All proteins mapping to fatty acid biosynthesis and elongation (5), 

histidine metabolism (12), thiamine metabolism (4) and propanoate metabolism (9), 14 out of 15 

enzymes of tryptophan metabolism and 10 out of 11 enzymes of lysine biosynthesis pathway 

were differentially expressed alongside a metal concentration series. Notably, the only four 

KEGG terms which we quantified at a high coverage but for which we did not observe a high 385 

responsiveness, are indirect participants in the metabolic network (i.e., ABC transporters, protein 

export, RNA polymerase), thus, essentially, all captured primary metabolic processes were metal 

responsive. 

  

 390 

Metal responsiveness clusters proteins according to function 

 

 

Previous work , including our own studies on the yeast metabolome (Mülleder et al. 2016) and 

proteome (Messner et al. 2023) have revealed that clustering of ‘omic’ profiles can be an efficient 395 

strategy for protein functional annotation. To identify groups of proteins that respond in a similar 

manner along the metal concentration series, we employed an ensemble clustering approach 49. 
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We clustered the proteomics data in two parallel pipelines. In the first, we clustered the 

proteomes of cells cultivated in each individual metal series separately, while in the second, we 

clustered all proteomics data obtained in the Ca, Cu, Fe, Mg, Mn, Mo, K, Na and Zn series 400 

together. For the former (metal-wise clustering), only proteins that were identified as differentially 

abundant along each metal series were retained for that specific metal, whereas for the latter (all-

metal clustering), all proteins detected in at least 85% of the entire dataset were included. In both 

instances, we utilised three clustering algorithms — density-based CommonNN 50,51, spatial k-

Means(++) 52,53, and a community-detection algorithm (Leiden 54). Then we integrated the co-405 

clustering matrices into a singular matrix with equal weighting, followed by a final hierarchical 

(Ward’s method 55) clustering step to define the final clusters (Supplementary Figure 3a). We 

obtained a total of 96 fuzzy clusters (with a range from 4 clusters for Mg and Mn to 27 clusters 

along the Zn concentration series) from the metal-wise clustering pipeline and 35 clusters from 

all-metal clustering. The coarse structure of the clustering is mainly driven by the Leiden-, the fine 410 

structure by the CommonNN and the kMeans-clustering. Functional enrichment analysis using 

the Gene Ontology, GO Slim, KEGG and Enzyme Commission databases were conducted for 

each cluster (representative examples are shown in Figures 3a & b, and a summary in Figure 

3c). Twenty of the 35 all metal clusters and 26 of the 96 metal wise clusters, cumulatively 

representing ~60% (1061/1764) of the proteins, were enriched in at least one functional term 415 

(Supplementary Table 13). For example, a cluster of 29 proteins displayed an increase in 

abundance at low Cu concentrations (Figure 3a). These include enzymes of amino acid 

biosynthesis (Aat2p, Arg4p, Arg5,6p, Aro1p, Aro2p, Aro4p, Asn1p, Bat1p, His1p, His5p, Lys21p, 

Hom2p, Hom3p, Ilv1p, Ilv2p, Ilv3, Leu4, Lys1p, Lys2p, Lys21p Trp2p, Trp5p), the Lysyl-tRNA-

synthetase Krs1p and others critical for mitochondrial function (Ggc1- the mitochondrial 420 

GTP/GDP transporter) and metabolism (Pyc2 - a pyruvate carboxylase that aids in the 

maintenance of precursors for the TCA cycle through the anaplerotic conversion of pyruvate to 

oxaloacetate in the cytoplasm), reflecting the key role of Cu in mitochondrial respiratory chain 

proteins that enable the production of amino acid precursors. Another cluster obtained via the all-

metal clustering pipeline identified a group of 90 proteins characterised by a complex profile, 425 

involving protein abundant changes along the Ca, Zn, Mn, Cu and Fe series. The cluster was 

enriched for terms related to cation transport activity (Figure 3b). 

 

Overall, 23% (26/110) of the ORFs placed in clusters with enriched for GO-molecular function 

terms were related to metal binding functions, ~49% (78/227) were placed in clusters enriched for 430 

mitochondria-related and ~69% (157/227) in clusters enriched for ribosome related function. In 

addition, a range of GO-biological process and KEGG pathway terms not usually linked to metal 

ions, like the organisation of the cytoskeleton and the assembly of organelles (Figure 3c, 

Supplementary Table 13), were also enriched in numerous clusters.  

 435 

 

Incorporating functional genomics datasets to elucidate protein function 

 

 

Notably, we found that 44 of 72 poorly characterised proteins (UniProt annotation score <3) 440 

captured by our proteomes were assigned to clusters enriched for a functional term (Figure 3d & 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

e). To evaluate whether these associations provide relevant and reliable functional information for 

these proteins, we incorporated additional and complementary, genome-scale datasets relevant 

for metal biology. First, we cultivated a genome-wide yeast knock-out collection, consisting of 

4850 single-gene deletion mutants in a prototrophic derivative of the genome-scale gene deletion 445 

mutant collection of S. cerevisiae 29,56 on 16 different metal omission media (depleted of Ca, Cu, 

Fe, Mn, Mo and Na, containing three concentrations of K, Mg and Zn, and one additional Fe 

depletion media that was generated using the metal chelator (2’-2’ bipyridyl 57) (Methods). We 

then measured colony sizes after 48 hours of growth using flatbed scanners and the pyphe 

toolbox 58. In total, we collected 357,972 colony size measurements (Methods) from which we 450 

calculated effect sizes and P values ((abs(mean effect size) > log(1.2) and an adjusted P value < 

0.10 upon multiple testing correction using Benjamini-Hochberg)) for the growth of each mutant 

under each cultivation condition. This approach identified 734 genetic interactions with metal ion 

availability, involving 642 unique gene deletions, among the 4759 tested knockouts (Figure 4a, 

Supplementary Table 14, Methods). 455 

The identified genetic interactions were enriched for metal protein binding, endosomes, protein 

complexes, ribosomes, translation, mitophagy, amino acid, amide and peptide biosynthetic 

pathways (Supplementary Table 15). At the individual metal level, a high number of genetic 

interactions were discovered for K (516) and Mg (175), followed by Zn (26) and Ca (16) 

(Supplementary Figure 4a and Figure 4b). While a variety of processes (e.g. translation, gene 460 

expression and the nitrogenous compound and peptide metabolic processes) were 

overrepresented in the deletions that led to growth aberrations in K and Mg, a very specific 

signature for endosomal transport, vesicle-mediated transport and Golgi-vesicle transport 

(Supplementary Figure 4b, Supplementary Table 15) was found for deletion mutants identified 

to interact with Ca depletion. We also made some unexpected observations. For example, an 465 

Adh3 deletion unexpectedly improved the growth rate on Zn depletion media. A potential 

explanation for this observation is that a deletion of these genes, many of which are likely 

involved in “zinc-sparing” 17 reduces the metabolic cost of synthesis of the proteins they encode 

(Figure 4c).  

 470 

Next, we also integrated quantitative proteomes of the gene deletions, by filtering a recently 

published dataset 24 to retain deletions of genes bearing metal-related GO annotations. Any 

protein quantified in these metal-related deletion strains that was differentially abundant 

(abs(log2(fold difference compared to the control strain)) > log2(1.5) and P value (adjusted for 

multiple testing) < 0.05) was considered as a significant responder. In total 1391 unique proteins 475 

were identified as being differentially expressed when any of the 304 known non-essential metal-

related proteins were deleted (Supplementary Table 16). The number of proteins identified per 

metal (1095 for Zn, 548 for Fe, 361 for Mg, 340 for Ca, 187 for Cu, 163 for Mn and 36 for Na) was 

proportional to the number of annotations for metal binding proteins, with all metals showing an 

average of six to eight differentially abundant proteins per knockout, except for K and Mn which 480 

had 11 and 4 (Supplementary Table 17). When we examined the impact of the deletion of 

genes encoding metal-binding proteins on the abundance of other metal-binding proteins, we 

found that while most deletions did not significantly alter the abundance of more than 1 or 2 

proteins, a few exceptions like ACO2 and LEU3 affected the expression levels of numerous 

metal-binding proteins (Supplementary Figure 4c). For calcium and copper-related proteins, a 485 
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decrease in abundance of metal-related proteins upon the deletion of other metal-related proteins 

was common. In contrast, iron and zinc-related proteins exhibited mixed responses, indicating 

complex regulatory interactions within the cell (Figure 4d).  

 

Lastly, we included two datasets comprising cellular quantities of metal ions in the S. cerevisiae 490 

gene deletion and overexpression collections 25,26,56,59. For both metallomic datasets, any metal 

quantity with an absolute Z-score as computed by 27,  > 1.5 compared to control was considered 

a significant change. The number of gene deletions that affected a metal ion concentration was 

quite variable with the highest number identified for Mn, followed by Mo, Na, K, Ca, Zn, Cu and 

then Fe (Figure 4b, Supplementary Figure 4d) while a fairly even distribution of hits across all 495 

metals was observed for the overexpression study 25 (Figure 4b, Supplementary Figure 4e). 

These metallomics experiments were conducted using heavy metal supplemented rich YPD 

media, which is the likely explanation for a high number of hits for Mn and Mo. 

When we analysed data from mutants of genes known to bind specific metals, we observed 

various patterns of cellular metal concentrations. The first was a group of genes encoding Cu, Fe 500 

or Mn binding proteins for which a deletion leads to a decrease in cellular quantity of the 

corresponding metal and an overexpression leads to an increase (e.g., Cu concentration in CUP2 

mutants, Mn concentration in YFR006W mutants) (Figure 4e). Another group of knockouts 

displayed an increase in cellular concentration of a metal upon deletion of a gene encoding a 

protein that binds the same metal (e.g., CNE1, EDE1, CNB1 (for Ca), SOD1 (for Cu) and IDH1 & 505 

IDH2 (for Mg) while displaying a concomitant small increase in the metal or no change in the 

overexpression mutant. While the metal quantities observed for the first set of genes can be 

explained by the cell losing capacity to store metal upon deletion and vice versa, the second 

group likely reflects a disruption of metal homeostasis when regulatory circuits detect a loss of 

activity of a metal-dependent protein and lead to the upregulation of compensatory mechanisms 510 

to take up more of the corresponding metal. For a small minority of genes, exemplified by Cu 

concentrations in COX11 mutants, we observed similar cellular metal concentration changes in 

both knockout and overexpression mutants. Intriguingly, an overexpression of many zinc-binding 

proteins led to reduced cellular zinc, suggesting the existence of a feedback Zn homeostasis 

system that modulates zinc uptake, storage, or efflux in response to increased Zn-binding 515 

capacity.  

 

 

Genetic Interactions and metallomes provide complementary evidence of protein function 

 520 

 

The combined dataset provided multiple lines of evidence for the involvement of both, 

characterised and poorly characterised proteins, in metal ion responses. Moreover, reflecting the 

orthogonal nature of the datasets, they captured complementary functional properties as well as 

different sets of proteins. For example, while quantitative proteomics data captures more 525 

abundant proteins, which are also likely to be essential, the knout-out strain datasets capture 

many of the low-abundant proteins. Overall, 1044 ORFs were assessed across all 5 datasets 

while approximately half the total yeast genome was queried in 3 datasets (Figure f & g). In total, 

57.6% (3662/6349) of ORFs were associated with a metal ion in at least one dataset (Figure 4f, 
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left) with 110 unique ORFs showing a phenotype in at least one metal condition in 3 or more 530 

datasets, and only nine showed phenotypes across all 5 datasets (Figure 4f, left). When ORF-

metal pairs were considered, only two exhibited phenotypes across 4 datasets, 104 across ≥3 

datasets, and 1692 across ≥2 datasets (Figure 4f, right). Notably, both ORFs that exhibited 

phenotypes across 4 datasets (the nucleolin, YGR159C, which responded to Zn and the 

Glycogen phosphorylase YPR160W, which responded to K) are predicted to interact with the 535 

respective metal ions or common corresponding anions present in metal salts by AlphaFill 60. 

Thus, proteome, metallome, and genetic interactions provided signals for complementary sets of 

genes (Figure 4h) 

 

The proteomics datasets, captured the largest fraction of responses within the known metal-540 

related proteins (Figure 4i), followed by the metallomics study of overexpression mutants, 

metallomics of the deletion mutants and the growth screen of the deletion mutants capturing the 

lowest signal for known metal-related genes. The highest number of protein associations were 

found for Zn (676) followed by Fe (316), K (188), Ca (148), Mg (125), Cu (100), Na (81), Mn (45) 

and Mo (13). All five datasets, combined, assessed 93% (852/914) of all metal-related proteins 545 

and 59% (537/914) of these were linked to a metal ion in at least one dataset. 

 

We then turned our attention to poorly characterised genes (Figures 5a &b). Understudied 

proteins for which expression is confirmed (e.g., UniProt annotation score 2), produced a similar 

number of hits in our datasets compared to well-studied genes (UniProt annotation score >3 550 

(Figure 5c)), indicating that our resource could indeed help to mitigate annotation biases. Indeed, 

470 poorly characterised proteins, including the aforementioned 55 proteins which were 

functionally annotated in our ensemble clustering of the proteome, were a hit in at least one of the 

datasets  Supplementary Table 18 & 19)  We studied two examples in detail. These proteins 

were identified in different datasets, allowing us to generate hypotheses about their function. The 555 

first protein, Ymr196wp, decreases in abundance in conditions with excess Fe (Figure 5d). The 

ensemble clustering pipeline assigned it to Fe cluster 10 based on metalwise-clustering, and to 

cluster 23 in the allmetal-clustering. Both clusters were enriched for functional terms related to 

oxidative stress and chemical stress. Fe cluster 10 was also enriched for proteins that localise to 

the mitochondria. (Figure 3a, Supplementary Table 13). Furthermore, the overexpression of 560 

Ymr196wp led to increased cellular Fe concentration (Figure 5e), while its protein abundance 

decreased upon the deletion of seven metal-binding proteins (Figure 5f). In parallel, Ymr196wp 

was also found to associate with the respiratory chain and the TCA cycle, both located to 

mitochondria, based on proteomic profiles of the S. cerevisiae gene deletion collection 24. At the 

metabolic level, the knock-out of the gene results in an accumulation of the amino acid valine 61 565 

that requires the mitochondrial enzyme Bat1 62. In summary, Ymr196wp is linked to iron and 

mitochondrial metabolism based on several independent datasets. Thus, its metal-linked 

molecular profile suggests that this uncharacterized gene functions in mitochondrial iron 

homeostasis. 

Our second example, Ybr287wp localises to the endoplasmic reticulum 63 and contains eight 570 

transmembrane domains 64,65. The abundance of Ybr287wp was correlated to environmental Ca, 

Cu, Fe and Zn concentrations (Figure 5g) and it was associated to a cluster enriched in iron 

transport and cation channel terms (cluster 14, see Figure 3b). Deletion of YBR287W decreased 
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growth rates in K and Mg depletion and led to milder changes in Cu, Fe, Mn and Na depletions 

(Figure 5h). The knockout and overexpression mutants revealed mirrored cellular metal 575 

concentration profiles with altered cellular concentrations of Cu, Mn, Mo and Na and minor 

alterations in Ca, Fe and Zn (Figure 5i). Furthermore, the deletion of eight other metal-binding 

proteins led to downregulation of Ybr287wp (Figure 5j) while the deletion of Ybr287w itself led to 

a significant decrease in the abundance of the Ca-binding protein Nth2 and smaller changes in 

Zn and Mg binding proteins (Figure 5k). Collectively, Ybr287wp is associated with metal biology 580 

based on several datasets. The molecular profile of this uncharacterized transmembrane protein 

is consistent with that of a promiscuous metal ion transporter. 

 

 

Metal dependency of a subset of highly connected metabolic enzymes translates to 585 

network-wide metal responsiveness 

 

 

Metabolism was identified by our functional enrichment analyses as one of the cellular networks 

most affected by metal availability. Therefore, we selected the metabolic network of S. cerevisiae 590 

to exemplify the utility of our dataset to assess system-wide impact and implications of metal 

availability. Gene Ontology annotations suggest that 26% of enzymes and ~13% reactions in the 

genome scale metabolic model Yeast8 (Supplementary Table 20), 29% of enzymes in the 

Enzyme Commission (EC) database and 17% of those in the KEGG database, are linked to at 

least one metal through direct binding, transport, or complex metal-containing-cofactor binding 595 

(Figure 6a, left and Figure 6b). Furthermore, 76% of all Enzyme Commission (EC) numbers and 

89% of all KEGG pathways involve at least one metal-associated protein (Figure 6a, right). 

Oxidative phosphorylation bears the strongest relationship to metalloenzymes (80%), closely 

followed by folate biosynthesis (75%) (Supplementary Table 21). To conduct network analysis, 

we represented the Yeast8 genome-scale metabolic reconstruction as a directed, bipartite graph 600 

(Figure 6c). We revealed that nodes with metal-related annotations occupied more central 

positions, as evidenced by multiple centrality metrics such as HUB score, Eigenvector centrality, 

and degree (Figure 6d & Figure 6e). As a consequence, even though only 13% of the reactions 

directly involve a metal ion, 43% of the reaction nodes are only one reaction away from a metal 

dependent enzyme (Supplementary Table 20). At the metabolite level, a staggering ~71% of 605 

metabolites were either directly connected or one reaction away from an enzyme with metal-

related annotation (Supplementary Table 22).  

 

We next simulated flux level responses using the CofactorYeast framework 66 (Methods) and 

compared these to the experimentally observed enzyme level responses. Simulated flux-level 610 

responses were lower (32% of simulated reaction fluxes for metal-related enzymes and 25% for 

non-metal-annotated enzymes were changed by more than 50%) than those experimentally 

observed (~73% of both metal-related and non-metal-annotated enzymes) (Figure 6f, 6g). At the 

per-metal level, Zn perturbations elicited the highest response at both levels with ~19% of fluxes 

and ~49% of enzymes being affected (Supplementary Figure 5a, Supplementary Table 23). 615 

Interestingly, enzymes without pre-existing metal annotations in the GO database had similar 

response levels as those without (Figure 6f, Supplementary Table 23). Enzyme responsiveness 
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was closely linked to the proximity of the reaction node to reactions catalysed by one or more 

metal-requiring enzymes. Reactions catalysed by metal-binding enzymes were the most affected 

by metal perturbation, with 18% of fluxes and 35% of enzyme levels showing changes in 620 

abundance due to environmental perturbations, and 46% responding to variations in cellular 

metal concentrations. Enzymes more than two reactions away from metal-requiring reaction 

nodes showed minimal impact (Figure 6h). 

 

The relatively low flux-level impact compared to the enzyme-level impact suggested that 625 

metabolic fluxes could potentially be buffered against loss of essential metal availability. One 

potential mechanism is the presence of isoenzymes with differential metal requirements. To test 

this possibility, we extracted all reactions with more than one associated ORF from the genome 

scale metabolic model (Methods), which include multi enzyme complexes. We found that metal 

related reactions were more likely to be catalysed by more than one isozyme (Figure 6i). 630 

Furthermore, of the 246 unique combinations of metal-binding enzyme pairs in which at least one 

enzyme was differentially expressed, 43 instances corresponded to enzyme pairs that respond in 

an anti-correlated manner along a metal concentration series, i.e., we observed a simultaneous 

increase in the abundance of one isoenzyme and a decrease in abundance of the other or vice 

versa (Supplementary Table 24). An illustrative example is that of Adh3 and Adh4, both of which 635 

are annotated to bind Zn2+ with Adh4 suggested to potentially bind Fe2+ under Zn limitation 67. The 

protein abundance patterns corroborate the hypothesis, the Fe2+ dependent Adh4, is inducted 

upon Zn limitation conditions (Figure 6j Pearson correlation coefficient = -0.97 and P value = 

1.04*10-13) and decreases in abundance in Fe limitation (Supplementary Figure 5b). Twenty 

eight such isozyme pairs were identified along the Zn perturbation series, another 15 each along 640 

Ca, Cu, Fe and Na perturbation gradients with 11 pairs being negatively correlated along more 

than one metal perturbation series (Supplementary Table 24). 

 

 

 645 

Discussion 

 

 

The critical role of metal ions in cellular biochemistry dates to the origin and evolution of 

metabolism. In the low-oxygen atmosphere of early Earth, iron existed in its reduced, water-650 

soluble form as Fe(II). The high concentration of Fe(II) found in Archean sediments suggests it 

was present in significant amounts in the world's early oceans 68,69. Consequently, Fe(II) was 

readily available both as an electron donor and as a catalyst for the evolving metabolic network. 

Recent experiments have demonstrated that Fe(II) can catalyse non-enzymatic interconversion 

that closely resembles central metabolic pathways, such as glycolysis, pentose phosphate 655 

pathway, TCA cycle and cofactor biosynthesis, suggesting that the structure of these central 

metabolic pathways was shaped by metal-catalysed chemistry 70–74, 75, 76. In addition to the 

reliance of the core metabolic network on metal-catalysed reactions, the development of new 

protein domains throughout the evolutionary history of life was likely influenced by changes in the 

availability of metals on Earth's surface. 2,77.  660 
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The availability of metal ions can vary across a range of time and length scales such as 

evolutionary periods, geological landscapes and ecological niches. Combined with the 

importance of metal ions for metabolic and protein function, this variability in metal availability has 

therefore led to the evolution of sensing, transport, and buffering systems for metal ions. 665 

Specifically in well-studied eukaryotic cells, many transporters, chaperones, and metal-

responsive transcriptional elements that maintain metal ion balance have been discovered 7,10. 

However, our understanding of how biological networks respond to the physiologically relevant 

changes in metal availability on a broader scale, signalling systems contributing to metal ion 

homeostasis and their connection to cellular phenotypes remains surprisingly limited.  670 

In this study, we aim to address the substantial gap in understanding of cellular responses to 

fluctuations in metal ion availability, by addressing two key contributing factors. First, we noticed 

that metal ion availability has thus far been modified within the physiological (non-toxic, non-

limiting) concentration range only in a minuscule fraction of molecular biology and systems 

biology experiments. Consequently, the responsiveness of cellular networks to changes in metal 675 

ions is understudied. Second, cellular metal concentrations do not necessarily mirror 

environmental (media) levels due to the capacity of cells to buffer against environmental 

fluctuations and the promiscuity of metal ion transport systems which results in interactions 

between metal ion concentrations. To address the first limitation, we varied all major metallic 

components of cultivation media over five orders of magnitude in concentration. Since synthetic 680 

growth media for S. cerevisiae have been well-defined since the 1950s 28,78, it allowed us to vary 

each metal ion concentration typically supplied in minimal media. To address the second, we 

apply quantitative metallomics, to contrast cellular and environmental metal ion concentrations, 

as well as to systematically detect interactions between the concentration series. To achieve this, 

we adopted an extensively validated protocol 26 for metallomics sample preparation combined 685 

with inductively coupled plasma mass spectrometry (ICP-MS) to distinguish between 

environmental (media) and cellular concentrations of the metal ions. 

 

We selected S. cerevisiae for this investigation because it is an extensively studied model 

organism, especially in the context of metal ion biology. This allowed us to leverage prior 690 

knowledge to assess responses of the large number of proteins bearing metal-binding, metal-

transporters, and other curated gene function annotations, and integrate genome-scale datasets 

such as genome-scale metallomic profiles 25,26, proteomes of a genome-scale knock-out 

collection 24 and a genome-scale metabolic model that includes metal ions as cofactors 66 that are 

thus far uniquely available for yeast. In addition to its scale, a key factor that distinguishes our 695 

study from previous work addressing metal biology systematically, is that we utilised prototrophic 

strains and minimal media formulations that lack amino acid supplements. As a result, our 

experimental setup takes into account that one of the primary functions of metal ions is as 

cofactors in enzymes that catalyse key reactions in biosynthetic metabolism, many of which are 

feedback inhibited in rich growth media 79. These combined efforts yielded a much more 700 

comprehensive picture about the role of the metal ion concentrations in cellular networks and 

revealed a remarkable interdependence of cellular processes and their metallomic environment, 

at the scale of the proteome.  
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While our dataset is intended to serve as a resource for the research community to study metal 705 

ion biology at various molecular layers, we derive several general principles that govern cellular 

responsiveness to metal ion perturbations. For example, in addition to providing a more 

systematic and quantitative perspective on concentration-buffering of metal ions against 

extracellular fluctuations, we reveal that metal ion homeostasis strongly varies between metals 

and is evident only for those that are physiologically important. For instance, molybdenum was 710 

not buffered and elicited cellular responses only at high, toxic concentrations, while its depletion 

caused no growth defects or protein responses. We thus conclude that S. cerevisiae cells do not 

require molybdenum. This suggests that the decades-old practice of supplementing molybdenum 

to all common yeast media formulations should be reconsidered. Our results also indicate that 

concentrations of most essential metals in synthetic minimal media are well in excess of those 715 

required for normal cell growth, supporting earlier conclusions 78. While this practice is not 

inherently problematic - we find that routinely supplied concentrations of essential metals well 

within the physiological, non-toxic range - it does imply that relevant phenotypes, such as ion 

transport defects, might be masked in experiments conducted in these media. Therefore, 

lowering the concentration of metal ions compared to the standard media recipes might lead to 720 

new discoveries. In parallel, we report comprehensive quantitative data about the 

interdependence of cellular concentrations of several metals. These results help not only the 

interpretation of our own data, such as the proteomes, but could also provide key context for the 

interpretation of results of other metal ion perturbation experiments. 

  725 

Our study provides a comprehensive blueprint for understanding how cells adapt to variations in 

metal ion concentrations at the molecular level. The systematic nature of the data unveils a 

comprehensive cellular response to changes in metal availability and highlights how these 

responses are integrated across different layers of the cell. Even though our experiments 

addressed the response to metal concentration changes in a single environmental condition and 730 

within a single genetic background of one eukaryotic species, we discovered that the abundance 

of approximately 60% of proteins is influenced by metal availability, with zinc, iron, calcium, and 

copper eliciting the most profound responses. We can thus speculate that many biological 

responses reported in the literature, will be dependent on the metal ion levels available to cells. In 

this context it is interesting that major components of the cellular transcription and signalling 735 

machinery, especially most kinase pathways, are among the metal-responsive pathways. For 

example, we reveal that proteins in 28 out of 34 signalling pathways that are captured by our 

proteomes, change in abundance to several metal ions. These pathways include mTOR78, a 

signalling pathway that functions at the crossroads of cellular transport, the lysosome, and energy 

metabolism, all processes related to metal biology. Notably, we can exclude changes in growth 740 

rate as a main driver for most of these responses: proteomic responses explained by a change in 

growth rate were detected in the case of zinc and potassium depletion, and under conditions with 

extremely high levels of iron and copper. Thus, our study reveals that metal ion responsiveness is 

an underappreciated aspect of cellular regulation and signalling. 

 745 

Third, our resource provides a fresh perspective about a common problem in molecular biology - 

the high number of understudied proteins Even in the most well-studied organisms, many 

proteins lack functional annotation. We speculated previously that a limited number of 
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experimental conditions tested in laboratory experiments might be a leading cause of missing 

protein function 81. Our study supports this argument. We find that understudied proteins, except 750 

for those for which expression has not been confirmed, are as likely to be a hit across our 

datasets, as proteins with high annotation scores. Systematically varying metal ion levels can 

thus help to mitigate the annotation bias and provide testable hypotheses about new protein 

function. We highlight two examples that are linked to metal biology across multiple datasets 

These are Ymr196w, which bears a molecular profile consistent with being involved in iron 755 

homeostasis, and Ybr287w, which has a profile of a promiscuous metal ion transporter. 

 

Lastly, we use cellular metabolism as an example of a network that is impacted by metal 

availability. We find that even though metal-dependent reaction nodes comprise a moderate 

~13% of the metabolic network, the central location of these reactions leads to a high metal 760 

responsiveness at the enzyme abundance level and a staggering ~70% of metabolites are only 

one reaction away from metal-dependent reactions.  We speculate that the centrality of metal-

related nodes stems from the key role of metal ion catalysis in early metabolic evolution and that 

the evolution of metal requiring enzymes could be more constrained relative to other proteins due 

to the essential catalysis they enable. Moreover, we report that metal-dependent reactions are 765 

more likely to be catalysed by isozymes, and a subset of these involve enzymes that catalyse 

similar reactions but use different metal cofactors. We speculate that the central role of 

metalloenzymes, combined with dramatic changes in metal availability across time and ecological 

niche, was one of the drivers of divergent enzyme evolution. 

 770 

Implications of our study 

 

Our comprehensive resource illuminates the pivotal role of metal ion homeostasis within the 

regulatory and functional landscape of the cell, promising to redefine our understanding of cellular 

processes. We envision this dataset serving as a foundational reference for unravelling the 775 

connections between metal ions and the spectrum of biological processes, facilitating the 

integration of metal ions into a system wide understanding of cellular function. This tool opens 

avenues for exploring the roles of previously understudied genes, enriching our comprehension 

of signalling pathways, and gene regulatory networks. 

Furthermore, our findings advocate for a paradigm shift in current laboratory practices, which 780 

starkly contrast the dynamic metal ion concentrations found in natural settings. Typically, 

experimental conditions do not account for the natural variation in metal ions and fall short of 

reporting of metal ion levels. While the former may mask biological discoveries, the latter 

potentially hampers the reproducibility of laboratory research. By varying and diligently reporting 

metal ion concentrations, researchers can unlock new biological insights and enhance 785 

experiment reproducibility.  

 

 

Limitations 

 790 

Despite the systems-scale and quantitative nature of all our experiments, our study has 

limitations that need to be considered while interpreting and querying our dataset. The first is that 
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we restricted the scope of our study to a single species and a single reference growth condition. 

The biological response to metal ion perturbation is therefore likely to be more extensive than that 

reported herein. Second, we measure total cellular metal concentrations and do not address 795 

differences in metal ion concentrations between subcellular compartments which can vary 

significantly and are known to impact protein function within compartments. Future studies could 

build on our work and assess the impact of subcellular metal distribution and resolve cellular 

responses to perturbed metal availability at the subcellular scale. A further limitation are the 

analytical constraints we faced while varying and quantifying certain metals. The concentration 800 

range across which potassium and magnesium could be varied was limited and our ICP-MS 

could not accurately quantify copper and molybdenum at levels exceeding those in standard 

synthetic minimal media. Therefore, it is likely that we have missed out on the metal 

responsiveness of some genes, pathways, and processes. Lastly, while our findings lend strong 

support to many proposed functions of poorly characterised proteins, the mutant libraries used to 805 

validate our hypotheses suffer from limitations common to such libraries, such as secondary 

mutations. Hence, we advocate for the use of our resource to derive system-level insights into the 

role of metals in biology and as a foundation for hypothesis generation to be validated by future 

studies.  

 810 

 

Methods 

 

EXPERIMENTAL MODEL DETAILS 

Strains and mutant libraries 815 

Saccharomyces cerevisiae (S288C) haploid (MATa) was used as the experimental model 

system. Specifically, the S288c derivate BY4741-kanmx4::his3 rendered prototrophic with the 

pHLUM minichromosome 29 was used as the wild type (WT) strain for the growth rate, cellular 

metallomics and proteomics experiments in metal perturbation media conditions.  The strain was 

chosen for consistency with previous work, in which we determined proteomes and amino acid 820 

metabolomes for the knock-outs  1,2, allowing us to directly compared the datasets. The same 

knockout mutant library 29  was employed for the growth screen under metal depletion conditions 

on agarose media. 

Cultivation of WT cells 

The WT S. cerevisiae cells were revived from cryostocks on YPD (Yeast Peptone Dextrose) agar 825 

plates and incubated at 30°C for ~24hrs (until colonies appeared). A single colony was picked 

and streaked onto SM (Synthetic Minimal media) agarose plates and incubated at 30°C for ~36 

hrs (until colonies appeared). Then, a single colony from the SM plate was used to inoculate the 

5mL starter liquid SM culture which was incubated on a shaker at 30°C for ~36 hrs. The pellet 

from this culture was washed three times with water and resuspended in SM0 media (synthetic 830 

minimal media without addition of metal salts except for KH2PO4, Mg2SO4 and ZnSO4.7H2O, 

detailed composition in Supplementary Table M1.). The resuspended pellet was used to 

inoculate 300mL of SM0 media such that the OD600 of the culture at inoculation was 0.05. After 

incubation in a shaker at 30°C, the pellet from SM0 culture was washed three times with water 
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and used to inoculate deep-well 96-well plates (Eppendorf, 10052143) filled with each of the 91 835 

cultivation media containing perturbed metal concentrations (see Supplementary Table M1 for 

detailed media composition) such that the starting OD600 of the culture was 0.05. Four replicates 

of each cultivation condition were distributed across at least two different 96-well plate layouts 

(Supplementary Table M2). Each 96-well plate contained six control media (identical to SM but 

created in the same manner as all other media and termed Allele media in supplementary tables). 840 

The borders of each plate were filled with water instead of cultures to avoid edge effects that 

were observed in preliminary tests. Three wells in each plate were emptied and filled with 

technical controls for mass-spectrometry measurements post-cultivation. All media metal 

perturbation media were prepared in plastic, all reagents used for preparation were of ICP-MS 

grade, except for glucose, and only deionized water that had previously been checked for metal 845 

contamination on the ICP-MS was used for preparing media or washing the cells. All deep-well 

96-well plates were covered with Breathe-Easy seals during cultivation.  

ICP-MS measurements of cultivation media 

All cultivation media bearing variations in metal concentrations were analysed using ICP-MS to 

quantify the concentration of each metal. A 17-point calibration series was prepared fresh (up to 850 

24 hours before measurement) using the certified metal standards (see Key Resources Table ). 

Details of the concentration of each element in each calibration standard are available in 

Supplementary Table M3 and plate layouts for ICP-MS measurements of media are in 

Supplementary Table M4. All samples were measured on an Agilent 7900 ICP-MS coupled to 

an SPS-4 auto-sampler and an Agilent MicroMist nebulizer. The instrument was operated with 855 

Nickel (Ni) cones and the measurement parameters were optimised using the Tuning solution 

and the PA solution. The following gas modes were used for different metals: Helium (24Mg, 59Co, 
63Cu, 66Zn), High Energy Helium (32S, 31P, 55Mn), and Hydrogen (39K, 40Ca, 56Fe) mode. Details of 

all peristaltic pump settings, tune parameters and all raw data from the ICP-MS can be found in 

Supplementary Note M1). Twenty individual media had incorrect concentration so the perturbed 860 

metal and were therefore remade and re-measured before processing with inoculation of yeast 

cells for growth, metallomics and proteomics characterisation. 

Growth rate measurement of WT cells 

WT S. cerevisiae cells were prepared as described above and inoculated into short-well 96-well 

plates with 180μL of media in each well. These plates were then placed in a Spark-Stacker 865 

(TECAN) plate reader operating in kinetic mode and sequential acquisition of multiple 96-well 

plates. Absorbance at OD600 was calculated from the mean values of five multi-well reads 

obtained every 30 minutes for 48 hours for each position. 

ICP-MS measurements of S. cerevisiae cells  

 870 

Media to be used for cultivating cells for intracellular metal quantification with ICP-MS was 

through a PVDF membrane plate (Agilent 200931-100) into fresh deep-well (2mL) 96-well plates 

immediately before cells were inoculated into it to ensure no insoluble precipitates remain in the 

media that could interfere with washing of cells on PVDF membranes post-cultivation and remain 

in the cell digest to be used for ICP-MS measurements. WT S. cerevisiae cells were prepared, 875 
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inoculated into deep-well 96-well plates (Eppendorf, 10052143) containing metal perturbation 

media and cultivated on a shaker at 30°C for 24 hours as described above. After cultivation, cells 

were collected by filtering cultures in each deep-well 96-well plate through a 96-well PVDF 

membrane plate. Yeast cells on the 96-well PVDF membranes were then washed 3-times with a 

solution composed of 10μM EDTA and 3μM TrisHCL. Centrifugation speeds and durations had to 880 

be modified on the go to ensure the entire volume of cells in each culture passed through the 

PVDF membrane. PVDF membrane plates bearing the washed cells were incubated on a hot 

plate at 70°C until completely dry. Internal metal standards were added to the membranes and 

the dried cell pellet was then digested by adding 60μL of HNO3 and heating at 94°C for 40 

minutes. Deionised water was added to each digested pellet to achieve a final HNO3 885 

concentration of 10% (v/v). Due to small differences in evaporation rates, slightly different 

volumes remained in each plate after incubation at 94°C. Therefore, the total amount of deionized 

water to be added and the final volume available for ICP-MS varied and is noted in 

Supplementary Table M5. The diluted cell extracts from one batch (96-well plate) at a time 

along with the fresh calibrants were measured on an Agilent 7900 ICP-MS coupled to an SPS-4 890 

auto-sampler and an Agilent MicroMist nebulizer using the same methodology as described 

above in ‘ICP-MS measurements of cultivation media’. 

 

Proteomics sample preparation          

S. cerevisiae cells were prepared, inoculated into deep-well 96-well plates (Eppendorf, 895 

10052143) (Eppendorf, 10052143) containing metal perturbation media and cultivated on 30°C 

with 1000 rpm shaking (Heidolph Titramax incubator) for 24 hours as described above. The 

methodology used for peptide extract preparation from cell pellets and measurement of mass 

spectrometry data was identical to that reported in 24. Briefly, after cultivation, 50uL of culture was 

removed from each well and transferred into a transparent short-well 96-well plate pre-filled with 900 

50uL H2O and OD600 measurements were recorded. Each deep-well plate was centrifuged at 

3220 rcf (Eppendorf Centrifuge 5810R) to pellet the cells, Breathe-Easy seals and the 

supernatant were removed, and the plates were sealed with aluminium foil (adhesive PCR plate 

foil) and a plastic lid and frozen at -80°C until further processing. Protein extraction and digestion 

was carried out in batches of 4 96-well plates (384 samples). To reduce batch effects, stock 905 

solutions (120 mM iodoacetamide, 55 mM DL-dithiothreitol, 9 μl 0.1 mg/ml trypsin, 2 μl 4x iRT) 

were prepared in one batch and stored at –80°C until required. Stock solutions of 7 M urea, 0.1 M 

ammonium bicarbonate, 10% formic acid were stored at 4°C. All pipetting steps were carried out 

with a Beckman Coulter Biomek NXP liquid-handling robot.  

To lyse the cells, 200 μl 7 M urea / 100 mM ammonium bicarbonate and glass beads (∼100 910 

mg/well, 425–600 μm) were added to the frozen pellet. Then, each plate was sealed with a 

silicone mat (Cap mats, (Spex) 2201) and cells were lysed using a Geno-Grinder (Spex) bead 

beater for 5 min at 1,500 rpm. After centrifuging the plates for 1 minute at 4,000 rpm, 20 μl 55 mM 

dithiothreitol (DTT) was added and mixed to achieve a final concentration 5 mM DL). The 

samples were then incubated for 1 h at 30°C after which 20 μl 120 mM iodoacetamide was added 915 

(final concentration 10 mM) to each well. The plates were incubated for 30 min in the dark at 

room temperature before adding 1 mL of 100 mM ammonium bicarbonate. Each plate was 

centrifuged for 3 min at 4,000 rpm and then 230 μL of the supernatant was transferred to prefilled 
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trypsin plates. The samples were incubated at 17h at 37°C for trypsin digestion after which 24 μl 

10% formic acid was added to each well. The digestion mixtures were cleaned up using 920 

BioPureSPN PROTO C18 MACRO 96-well plates. For solid-phase extraction, samples were 

centrifuged for 1 min at various speeds (listed below) using an Eppendorf 5810R centrifuge 

5810R. For the solid-phase extraction, each plate was conditioned with methanol (200 μl, 

centrifuged at 50 g), washed twice with 50% ACN (200 μl, centrifuged at 50 g and flow-through 

discarded), equilibrated three times with 3% ACN, 0.1% FA (200 μl, centrifuged at 50 g, 80 g, 100 925 

g, respectively, flow-through discarded). Finally, 200 μl of each trypsin digested sample was 

loaded onto the solid phase extraction column plates, centrifuged at 100 g and washed three 

times with 200uL of 3% ACN & 0.1% FA solution (centrifuged at 100 g). After the last washing 

step, the plates were centrifuged once more at 180 g before the peptides were eluted in 3 steps 

(eluted twice with 120 μL and one with 130 μL 50% ACN, centrifugation at 180 g) into a collection 930 

plate (1.1 mL, V-bottom). Collected material was completely dried in a vacuum concentrator 

(Concentrator Plus (Eppendorf)) and redissolved in 40 μL of 3% ACN & 0.1% formic acid solution 

before being transferred into a 96-well plate (700 μL round, Waters, 186005837) prefilled with iRT 

peptides (2 μL, diluted to 1:32). Quality control samples for repeat injections were prepared by 

pooling digested and cleaned-up control samples from all the 96-well plates. To quantify total 935 

peptide concentration, 2 μl of each sample were loaded onto Lunatic microfluidic 96-well plates 

(Unchained Labs). Peptide concentrations were measured with the Lunatic instrument 

(Unchained Labs). Total peptide concentration in each peptide extract was calculated from the 

absorbance value at 280 nm and the protein-specific extinction coefficient. 

Liquid chromatography–mass spectrometry 940 

The digested peptides were analysed on a nanoAcquity (Waters) running as microflow LC (5 

μl/min), coupled to a TripleTOF 6600 (SCIEX). 2 μg of the yeast digest (injection volume was 

adjusted for each sample based on the measured peptide concentration) were injected and the 

peptides were separated in a 19-min nonlinear gradient (Supplementary Table M8) ramping 

from 3% B to 40% B (solvent A: 1% acetonitrile/0.1% formic acid; solvent B: acetonitrile/0.1% 945 

formic acid). A HSS T3 column (Waters, 150 mm × 300 μm, 1.8 μm particles) was used with a 

column temperature of 35°C. The DIA acquisition method consisted of an MS1 scan from m/z 

400 to 1250 (50 ms accumulation time) and 40 MS2 scans (35 ms accumulation time) with 

variable precursor isolation width covering the mass range from m/z 400 to 1250 (Table S2). 

Rolling collision energy (default slope and intercept) with a collision energy spread of 15 V was 950 

used. A DuoSpray ion source was used with ion source gas 1 (nebuliser gas), ion source gas 2 

(heater gas), and curtain gas set to 15 psi, 20 psi, and 25 psi. The source temperature was set to 

0°C and the ion-spray voltage to 5,500 V. The measurements were conducted over a period of 2 

months on the same instrument. 

 955 

Growth screen of knock-out deletion mutants           

 

To explore the contribution of each non-essential gene to fitness on media depleted of each 

metal, we performed a growth assay. The prototrophic S. cerevisiae haploid knock-out collection 

(PHKo) 29 was grown on 20 different media (corresponding to depletion of the metals Ca, Cu, Fe, 960 

K, Mg, Mn, Mo, Na and Zn and the control, for detailed list and composition see Supplementary 
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Table M9) chosen after pre-tests in which we cultivated WT prototrophic S. cerevisiae 

BY4741+pHLUM strain on agarose media containing various concentrations of metal salts. These 

include two types of depletion for Ca and Fe (Ca omission, Ca omission with chelator EGTA 

(Ethylene glycol tetraacetic acid), Fe omission and Fe omission combined with the chelator 965 

dipyridyl (DiP)), three concentrations of K, Mg and Zn and three types of controls (synthetic 

minimal (SM) media, SM with DiP and SM with EGTA). The PHKo library was revived from YPD 

(Yeast extract Peptone Dextrose) + glycerol stocks in 96-well plates frozen at -80°C on YPD-agar 

and then combined with a grid of the control strain for the library (BY4741+pHLUM his3Δ) into a 

1536 spot layout on SM-agarose in 4 different arrangements. Thus, our assay contains 4 970 

biological replicates of each strain in the PHKo collection. Since the growth of neighbouring 

strains may affect the colony size of a strain, our re-arrangement strategy allows us to consider 

neighbourhood effects on colony size before making inter-strain comparisons. For the reference 

grid, control strain BY4741+pHLUM his3Δ was streaked out on SM agar and grown at 30°C for 2 

days. A 24h culture of a single colony was made in 40 mL of liquid YPD media and pinned from a 975 

bath on YPD agar in 96-spot format and incubated at 30°C for 2 days. The PHKo library was 

revived from cryostocks in 384 format on YPD agar and incubated for two days at 30°C. A 

custom Singer ROTOR HDTM program was used to reshuffle the library (using 96 short pins) into 

4 random arrangements, consisting of 5 plates each, on standard SM media. At this stage, the 

reference grid was combined with the library by pinning the reference strain colonies onto the 980 

combined plates into the A1, D4 and C2 sub-positions in 1536 format. These combined plates, 

containing all the library strains and the reference grid were cultivated at 30°C for 2 days and 

then copied onto fresh SM agarose plates to obtain a clean source plate with evenly spaced and 

sized colonies. Three copies of each combined plate were made, yielding 60 source plates in 

total which were incubated at 30°C for 2 days. Finally, colonies from the source plates were 985 

transferred onto the assay agarose plates bearing different concentrations of metal salts using 

the ‘Replicate Many’ program of the Singer ROTOR HDTM with the following settings: recycle = 

Yes, revisit = Yes, source_pressure = 40%, source_pin_speed = 15 mm/s, source_overshoot = 

1.5 mm, target_pressure = 25%, target_pin_speed = 13mm/s, target_overshoot = 1.2 mm, 

target_max = No, source_mix = No. After 2 days of incubation at 30°C, all plates were scanned 990 

on an Epson V800 PHOTO scanner in grey and transmission scanning mode at 600 dpi using 

pyphe 82.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

Analysis of growth curves of WT cells 995 

Data from the TECAN Spark-Stacker were processed in R. OD600 values of blank wells were 

subtracted from all sample wells before fitting sigmoidal growth curves using the growthCurver R 

package. 

 

Analysis of ICP-MS data 1000 

          

Raw data from the Agilent 7700 ICP-MS were processed using Agilent MassHunterTM. Metal 

concentration (in parts per billion (PPB)) in each cultivation media as well as cell digest was 

calculated in MassHunterTM using measurements of the calibrants (a 17-point dilution series of 
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certified element standards) and scandium (Sc) as the internal standard to correct for minor 1005 

deviations of the instrument during measurement. These values were processed further in R. For 

the cultivation media measurements, data from each media were compared with values in the 

control media and visualised. For the cell digests, after correcting for minor deviations in the total 

volume that dried pellets on the PVDF membrane from each batch was resuspended in 

(Supplementary Table M5), PPB values of each element in the blank samples was used to 1010 

determine the limit of Quantification (LOQ). LOQ was defined as mean (PPB) + 5*sd(PPB) of the 

signal of each metal in the blanks of each individual batch. For all elements other than Sodium 

(Na) in batches 2-8 and Copper in batch 4, the quality control sample had a mean(PPB) > LOQ 

and in total 23 samples of a total of 342 were filtered out from the cellular metallomics data 

(Supplementary Figure 1f). To correct for varying cell numbers in the cell digests, we compared 1015 

phosphorus (P) and OD600 normalisation strategies and discovered that P normalised data had 

fewer variation across biological replicates. Therefore, after filtering based on LOQ, the 

phosphorus (P) signal (which was observed to be stable and dependent on cell count) was used 

to normalise all other metals and the PPB values were scaled up to the original scale using the 

mean PPB values of the control samples. (Normalised PPB(m, x) = PPB(M,x)/PPB(P,x) * 1020 

mean(PPB(P,x belongs to SM control). Batch correction was carried out such that the median 

value of each metal in the control samples was the same across batches. Data from samples with 

OD600 values > 0.1 were discarded. Nanograms per well values (1ng/ml = 1 PPB) after 

phosphorus normalisation were used to compare metal quantities across samples. For buffering 

capacity calculations, the measured metal concentrations in cultivation media were combined 1025 

with those measured in cell digests and each set was normalised to the metal quantities in control 

samples (synthetic minimal media and cells cultivated in synthetic minimal media, respectively). 

To estimate atoms per cell, cell number was estimated using OD600 values as described in 83. 

Atoms per cell = (6.022*1023 / atomic mass) *(pg per cellBC * 10-12), where pg per cellBC = (pg per 

cell / median (pg per cell in controls of batch) ) * median (pg per cell across all batches) and pg 1030 

per cell = (PPB of metal (ng/mL) *1000) / (OD600 * 1.8 * 107 * volume of culture transferred to 

each filter plate). The average coefficient of variation (CoV) across biological replicates of the 

ng/mL of digested cell cultures was 0.042, CoV in biological replicates of control samples was 

0.032 (Supplementary Table M6) and the CoV of picogram per cell estimations across biological 

replicates of control samples was 0.13 (Supplementary Table M7), indicating again, that our 1035 

OD600 estimates are likely more noisy than the ICP-MS measurements and better cell counting 

methods are required to obtain reliable estimations of atoms of each metal per cell. For most 

metals, the obtained cellular concentrations are consistent with previous studies. Only for Ca and 

Mn our concentrations values are slightly higher than in previous reports (Supplementary Figure 

1f)    1040 

 

Processing of LC-MS data 

         

All raw proteomics data (.wiff files) were processed using DIA-NN (Data-Independent Acquisition 

by Neural Networks 41,84) Version 1.8 compiled on 28 June 2021. The DIA spectral library 1045 

(available at http://proteomecentral.proteomexchange.org/ , dataset ID PXD036062 (24 and 

resubmitted to proteomeXchange with dataset from this study) and FASTA file (UniProt yeast 

canonical proteome, downloadable from 
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https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/pan_proteomes/UP

000002311.fasta.gz) used are identical to those generated for and described in 24. DIA-NN 1050 

parameters used to process data are described in detail in Supplementary Note M2. 

     

Normalisation, batch correction, filtering, and protein quantification 

 

Quality control metrics exported by DIA-NN ( number of identified precursors > 0.4*max(number 1055 

of precursors identified in any individual file), number of proteins identified >1000, total signal 

quantity > 1000000, MS1 signal quantity > 1000000, MS2 signal quantity > 10000000, 

normalisation instability < 0.5, Proteotypic ==1, Q value < 0.01, GG Q Value <= 0.01 and PG Q 

value < 0.01 ), optical density measured at the end of cultivation (OD600 units sampled > 0.75) and 

manual inspection of the total ion chromatograms of certain problematic files (26 files) were used 1060 

to filter data processed by DIA-NN. In addition, 11 conditions (Cu 50, Cu 100, Fe 100, K 10, Mg 

20, Mg 50, Mo 20, Mo 50, Zn 2e-04, Zn 0.001, Zn 0.002) were deemed as unsuitable for inclusion 

based on growth rate and metallomics measurements of media. Samples corresponding to 

perturbations of H3BO4 that were acquired and processed with the dataset were excluded at this 

stage to focus the study only on metals. In total, resulted in the retention of a total of 266 1065 

proteome data files out of the 437 that were acquired. 

   

Protein quantities were estimated from peptide quantities using maxLFQ (using the DIA-NN R 

function diann_maxlfq()). Batch correction (median scaling) was carried out using median protein 

quantities of all control samples (WT yeast cells cultivated in synthetic minimal media). No 1070 

imputation was carried out before the statistical analysis unless otherwise stated in the sections 

below. After all processing steps, the average replicate CoVs for perturbation condition samples 

was ~15.7% with an average of 1837 proteins quantified per sample and for the control samples 

alone, the replicate CoV was ~15.7% with an average of 1871 proteins quantified per sample. 

 1075 

Protein mass values were downloaded from the UniProt database (on 4th February 2024) and 

protein copy number values from 42 were combined with these to calculate what fraction of the 

protein mass of the 3841 proteins for which protein copy number data was available were 

measured or significant along any metal perturbation or cellular metal concentration series. 

 1080 

Identification of proteins differentially abundant along environmental metal concentration 

 

Linear models with 0 (null model), 1, 2, and 3 degrees of freedom were fitted for each protein, 

modelling protein abundance as a function of measured metal concentration in cultivation media 

i.e. protein abundance ~ poly (metal concentration , dof), where dof = 0, 1, 2 or 3. Only those 1085 

protein - metal combinations which had at least 4 distinct points along the concentration gradient 

(rounded to 3 decimal spaces) and at least a total of 8 individual protein abundance 

measurements were used to fit the linear models. A series of F-tests were conducted using the 

anova() R function between all combinations of fitted models. P values from each F-test were 

adjusted using the Benjamini-Hochberg correction for multiple testing. To choose the simplest 1090 

model that explains the data, the following logic was used: if the cubic (dof=3) model significantly 

outperformed all other models (dof=2, dof=1, and dof=0) i.e., adjusted p-value < 0.05, the cubic 
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polynomial model was chosen. In cases where the cubic model did not outperform the linear 

model (dof=1), and the quadratic model (dof=2) did not surpass the linear model, but the linear 

model was better than the null model, the linear model was preferred. If the cubic model was not 1095 

better than the linear model (dof=1), and the quadratic model (dof=2) was not better than the 

linear model, but the linear model was better than the null model, the linear model was selected. 

Next, if the cubic model was not better than the quadratic model, and the quadratic model was 

better than both the linear and null models, the quadratic model was chosen. Finally, if none of 

the cubic, quadratic and linear models performed better than the null model, the null model was 1100 

selected as the simplest model. After selection of the least complex model, an additional 

threshold was applied for determining significant differential abundance along the metal 

perturbation series : proteins with a magnitude of fold difference (relative to control sample) 

change along metal perturbation series of at least 50% ( i.e. abs(max(fold difference along metal) 

- min(fold difference along metal)) > log2(1.5)) and P value of the simplest model to explain the 1105 

expression pattern < 0.05 were deemed significantly affected. 

    

Identification of proteins differentially abundant along cellular metal concentration 

To identify protein differentially abundant along measure cellular metal concentration, relative 

metal quantification values from all data (for eg. Fe values from Fe perturbation as well as along 1110 

Mg, Zn, Ca etc perturbations) were binned into bins of size 0.01 (metal concentration in each 

sample was normalised to that in control samples and rounded off to two decimal places). For 

each measured metal and each protein, the median of protein abundance values across the 

entire dataset corresponding to each bin along the measured cellular metal concentration was 

then modelled as a function of the measured cellular metal concentration using the same 1115 

methodology as described above for identifying significantly differentially abundant proteins along 

environmental (media) metal concentration. 

 

Correlation analysis using proteomics and metallomics profiles 

Spearman’s rank-based correlation coefficient between each pair of samples within the 1120 

metallomics dataset was computed in python 3 using the scikit-learn 85 library. The correlation 

coefficients were visualised as a heat map using the seaborn 86 library. The same methodology 

was followed for computing correlation coefficients between each pair of samples using 

proteomics data. The correlation coefficients computed based on proteomes and metallomes 

were then compared using pearsonr and spearmanr functions from scipy.stats 87. 1125 

 

Focused analysis of metal-related proteins 

Gene function annotations in the gene ontology - molecular function (GO-MF) database 

(annotations fetched using the AnnotationDbi 88,89, org.Sc.sgd.db 90 and GO.db 91 R libraries) 

were used to annotate ORFs as “metal binding proteins” , “metal transport proteins” or “other 1130 

metal related proteins”. Metallochaperones which are classified both as metal-binders as well as 

metal-transporters were considered “metal transport proteins” because their main function is to 

facilitate the incorporation of a metal into other metal-requiring proteins. Proteins for which a 

metal-specific annotation exists in the GO-MF were annotated with that metal, those annotated 

for more than one metal were included in metal binding or metal transport lists for both metals 1135 

and those that bore “metal binding” or “metal transport” annotations without any specific 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


27 
 

annotations for a metal were labelled “orphan”.  

 

Gene set enrichment analysis 

All gene set enrichment analysis except for the network plots used to visualise clusters resulting 1140 

from the ensemble clustering analysis in Figures 3d and 3e were performed in R using the piano 
92 library and gene sets defined using the GO database (terms fetched as described above), 

KEGG database (fetched using the KEGGREST93 library) and GOslim annotations downloaded 

from the Saccharomyces Genome Database (http://sgd-

archive.yeastgenome.org/curation/literature/go_slim_mapping.tab). The piano::runGSAhyper() 1145 

function was used to carry out the enrichment analysis with a gene set size limits of 3 (lower limit) 

and 400 (upper limit), using all ORFs quantified as the background and Benjamini-Hochberg as 

the method for correcting P values of enrichment for multiple testing. Gene set terms with P value 

(adjusted) < 0.05 were considered significant. The results were visualised as Sankey plots 

(Figure 2k, Supplementary Figure 2g, Figure 3c, Supplementary Figure 4b) using the plotly 1150 

94 R library. Gene set enrichments and visualisation for Figured 3a and 3b were conducted using 

the aPEAR R library 95. 

 

Ensemble clustering analysis 

          1155 

An ensemble clustering framework was set up in Python 3.9.13 (numpy 1.22.4 96 , scikit-learn 

1.1.185, igraph 0.9.9 97, leidenalg 0.8.9 54,97, seaborn 0.12.0 86 and scipy 1.8.1 98), in accordance 

with guidelines in 49 Briefly, the proteomics data were clustered in two parallel branches. The first, 

which we call allmetal-clustering, included proteins that were detected in at least 85% of all 

samples. The missing values in this dataset were imputed using the following imputation strategy: 1160 

if measured quantities for a protein were missing in all samples in a metal perturbation condition 

(eg. Fe depletion (all samples cultivated in media containing lower Fe concentration than control 

(synthetic minimal) media), then the missing values for the protein in each sample corresponding 

to this perturbation were replaced with the minimum quantity of the protein detected in the entire 

dataset, if the protein was measured in at least one sample in the metal perturbation but missing 1165 

in all replicates of a specific condition (eg. protein detected in Fe 0.5, but absent in all replicates 

of Fe 0.1), the missing values were replaced with the median quantity measured for the protein in 

all the control samples (cells cultivated in synthetic minimal media). Finally, if the quantity of a 

protein was missing in only some replicates of a cultivation condition (eg. two replicates of Fe 0.5 

have missing values for a protein while the remaining two do not), the missing values were 1170 

replaced by the median of the protein quantity of the replicates for which protein quantities were 

available.  

 

For the second branch of ensemble clustering, called metalwise-clustering, a completeness filter 

of detection in at least 60% of all samples along each metal perturbation series was used before 1175 

the imputation was carried out as described above. However, an additional filter was applied 

before performing the ensemble clustering analysis - only those proteins that were detected as 

being differentially abundant along either the environmental (media) metal concentration or along 

the measured cellular metal concentration were retained.  

 1180 
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Three separate clustering algorithms were used to cluster the proteomics data within each 

parallel clustering pipeline: 

● CommonNN 50,51,99,100 (the parameter R was varied equal-distant between 0.5*R_cut and 

R_cut, where R_cut was defined as the distance at which around 5% (2.5% for Mg and Mn due to 

smaller data set size) of the distances are smaller than R_cut (10 Rs), the number of shared 1185 

nearest neighbours N was varied between 2 and 10 (step size 1) (9 Ns), the minimal cluster size 

M was set to 5. In total 90 R, N- combinations were used)      

● kMeans++ 52,53,85 (the cluster number k was varied between 10 and 98 with a step size of 2 

(between 10 and 55 with a step size of 1 for Mg and Mn). 45 clustering steps) 

● Leiden 54,97 (the graph was set up using the 10 closest neighbours for each data point, with 1190 

edge weights of 1-scaled(distance), all distances were scaled between 0 and 1). 

For reproducibility, the seed was fixed to 42 for all clustering analyses. For each clustering 

algorithm a co-clustering matrix was calculated, where each element denotes the probability that 

two data points were clustered together. The co-clustering matrices from each clustering 

algorithm were combined into a single matrix, using equal weights. The final clusters were 1195 

obtained by hierarchical clustering of the combined co-clustering matrix (Ward clustering 86,98), 

using a linkage-based cutoff for cluster extraction. Results from the clustering analysis were 

exported to R for gene-set enrichment analysis and visualisation as described above. Functions 

available at: https://github.com/OliverLemke/ensemble_clustering.  

 1200 

     

Analysis of growth screen of knock-out deletion mutants         

Images of agarose plates from the Epson V800 PHOTO scanner were processed using the gitter 

R library to extract colony size. The .dat output from gitter 101 were combined with the experiment 

design table and analysed further ( grid normalisation, data aggregation, quality control checks 1205 

and statistical analysis to obtain effect sizes and P values) using pyphe 58,82. Only 1% of the 

negative control positions (footprints) (49 out of 4875 empty spots in total across all agarose 

plates) were contaminated and no systematic contamination was observed. One plate 

(corresponding to the reduction of potassium to 1/50th the level in synthetic minimal agarose 

media) contained 13 contaminated footprints and was therefore excluded from further analysis. 1210 

Correlation between replicates of the control strain within a single plate was 0.78 before for the 

raw colony sizes and 0.95 after correction for surface effects using the control strain grid. Next, 

pyphe-interpret to obtain effect sizes of each mutant relative to the control strain (Δhis3 from the 

haploid prototrophic library we used) and P values from Welch’s t-test for samples with unequal 

variance corrected for multiple testing using the Benjamini-Hochberg method. In total, 357972 1215 

colony size measurements, corresponding to 4759 unique deletion mutant (and control) strains 

across 17 cultivation media conditions, remained after data processing. A P value (adjusted) 

threshold of < 0.10 and an abs(log2(effect size)) > log2(1.2) was chosen to determine which 

mutants showed a significantly altered growth in each condition. Data from different levels of 

depletions of K, Mg and Zn and from Fe depletion and Fe depletion combined with the dipyridyl 1220 

chelator were combined at this stage to determine the final list of ORF deletions that were 

affected to enable a metal-wise comparison with all other datasets. 
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Defining metal-related genes 1225 

The Gene Ontology database 91, specifically the Molecular Function GO annotations were used 

to determine a set of metal-binding proteins, metal-transport proteins and other metal-related 

genes that do not fall under the first two categories (eg. “calcium-dependent protein kinase C 

activity”). Open reading frames (ORFs) mapping to GO terms containing the word “binding” and 

any word reflecting involvement of Ca, Cu, Fe, Mg, Mn, Mo, Na, Zn, heme or protoheme were 1230 

included in the metal-binding annotation set with specific annotations. ORFs mapping to terms 

containing the words “metal binding” but no indication of which metal or metal-containing group is 

bound were annotated as “orphan”.  

 

Metal transporters and other metal-related ORFs were filtered from the GO-MF database using a 1235 

manual creation process and text parsing using regular expressions was not sufficient to include 

only metal related transporters or the metal dependent enzyme activities included in the “other 

metal related” set. A list of these terms is available at 

input_processed_databases_publisheddatasets.R within the code repository at 

https://github.com/Ralser-lab/metallica.  1240 

 

 

Comparison and integration with published datasets 

 

We did not modify metallomics data from mutant strains before using and directly used Z-scores 1245 

of cellular metal concentration in each deletion and overexpression mutants reported by 

Iacovacci et al. 27, which were calculated using metal concentration measurements collected by 

Danku et al 26 (cellular metal concentration in each haploid knockout mutant of S. cerevisiae) and 

Yu et al. 25 (overexpression mutants). We annotated any Z-score with an absolute value > 1.959 

(corresponding to p-value < 0.05) as a significant change in metal concentration in a mutant. 1250 

Protein abundance data in haploid knockout deletion mutants were sourced from Messner et al 
24. We filtered this dataset to retain only knockouts of genes known to be connected to specific 

metals in the GO-MF database-based mapping described above and considered any protein 

quantified in these mutants with absolute log2(fold difference vs. control) > log2(1.5) and p-value < 

0.05 as being significantly altered. The upset plot (Figure 4h) to visualise commonalities between 1255 

genes identified as connected to metals were created using the upSet R package. UniProt 

annotation status annotations were merged with all the datasets to assess how many poorly 

characterised genes were identified as significantly affected in each dataset (Figure 5a-c). The 

circular plot to summarise current annotation status, metal-binding and metal transporter 

annotations and all the datasets (Figure 5c) was created using the circos R library. Gene set 1260 

enrichments for Supplementary Figure 4b were conducted and visualised as described above. 

 

Simulations of metabolic flux using CofactorYeast 

Simulations of excess and depletion of each metal were carried out in MATLAB using the 

cobratoolbox 102,103 and the CofactorYeast framework 66. CofactorYeast incorporates metal ion 1265 

cofactors and import and export reactions for each metal ion into the Yeast8 genome-scale 

metabolic model 104. Growth rates were fixed to the lowest experimentally measured growth rate 

upon each metal perturbation (eg. Fe depletion or Zn excess). Protein abundances of each 
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enzyme were allowed to vary to achieve the minimisation or maximisation of the metal uptake. 

Flux balance analysis was carried out to simulate the fluxes required to achieve the objective 1270 

function (minimisation or maximisation of the metal transport) under the growth rate constraint. 

The flux results (Supplementary Information - Results) were then processed in R to calculate 

flux change values (flux in perturbation condition / flux in control condition). This resulted in 

several infinite values due to flux = 0 of either the control condition simulation or the perturbation 

condition simulation. Therefore, infinite flux changes values of conditions for which both the 1275 

control condition and simulation condition flux was 0, was set to 1. For conditions where the 

control condition flux was not zero, but the simulated flux was zero were set to a low value with 

the correct direction (i.e., log2(fold change flux) = -sign(control condition flux) and for those where 

the control condition flux was zero, but the perturbation flux was nonzero, it was set to log2(fold 

change flux) = sign(perturbation flux). Reactions through which abs(log2(fold change flux)) > 1280 

log2(1.5) were considered significantly affected. 

 

Metabolic network analysis using igraph 

The Yeast8 metabolic model was downloaded from https://github.com/SysBioChalmers/yeast-

GEM and used as the input to create a directed, bipartite graph using the igraph python library. 1285 

Reaction IDs and metabolite IDs were used as the two types of nodes. Directed edges between 

the nodes were from each substrate metabolite node to each reaction node and from each 

reaction node to each product node. Since 1670 of the 4131 reactions in the Yeast8 model were 

reversible, directed edges were added to the graph in both directions for these. We noticed a 

slight imbalance in the fraction of reversible reaction nodes mapping to at least one metal-linked 1290 

enzyme and those that did not: only 21.38% of the metal-linked reaction nodes were reversible 

while 43.71% of those without metal-linked annotations were reversible. Therefore, all our 

calculations on the igraph that are grouped using the metal-linked annotation have a slight bias of 

counting nodes without metal annotations more often than metal-requiring nodes. The final graph 

was not a fully connected graph. However, because 99.55% of nodes would be retained if we 1295 

filtered the graph for its largest weakly connected component and 88.47% nodes would be 

retained in the largest strongly connected component, we proceeded without filtering the graph. 

Weak or strongly connected components were determined by the clusters (mode = “weak”) and 

clusters(mode = “strong”) functions from the igraph python library. The graph was visualised, and 

all centrality metrics were calculated using igraph functions. 1300 

 

 

Data visualisation 

All data visualisations except Figure 6b, 6c and 6g were created in R using the ggplot2 105, plotly 
94, viridis106, aPEAR, RColorBrewer 107 and circlize108. The bipartite, directed network in Figure 6c 1305 

was visualised using the igraph 109 python library and Figures 6b and 6g were created using 

iPATH 110. Adobe illustrator and Biorender were used to assemble some figures.  

 

 

 1310 

Lead contact 
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Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the lead contact, Markus Ralser (markus.ralser@charite.de). 

 1315 

Materials availability 

 

Requests for reagents should be directed to and will be fulfilled by the lead contact. 

 

Data and code availability 1320 

 

All supplementary information and result data files are available at Zenodo 

(DOI:10.5281/zenodo.10708992). Raw data and code used to analyse data will be available after 

peer review.  

 1325 

Acknowledgements  

 

We thank Benjamin Heineike, Christoph Messner, Lucia Herrera-Dominguez, Clara Correia-Melo, 

Enrica Calvani for support throughout the execution of this project, James Macrae, Luiz Carvalho 

and Jürg Bähler for key input, and Gavin Kelly from the Bioinformatics and Biostatistics STP at 1330 

the Francis Crick Institute for key input for the statistical analysis of proteomics data. This work 

was supported by the Francis Crick Institute, which receives its core funding from Cancer 

Research UK (no. FC001134), the UK Medical Research Council (no. FC001134), the Wellcome 

Trust (no. FC001134 and IA 200829/Z/16/Z), and the European Research council as part of the 

ERC-SyG-2020 (951475). 1335 

 

Author Contributions 

 

S.K.A and M.R. conceptualised and designed the study. S.K.A. and J.H. conducted growth rate 

measurements. S.K.A and L.S. collected and analysed ICP-MS measurements. S.K. & S.K.A. 1340 

designed, conducted and analysed the knockout deletion mutant growth screen. O.L. performed 

ensemble clustering analysis. Y. C. simulated metal perturbations using flux balance analysis. 

S.K.A performed all other data analysis and visualisation. M.M. provided key input for designing 

the study. S.K.A. and M.R. wrote the manuscript. All authors reviewed and revised the 

manuscript. 1345 

 

  

 Declaration of interests 

The authors declare no competing interests. 

 1350 

 

 

 

 

 1355 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


32 
 

References 

1. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G.L., and Thornton, J.M. (2009). Metal-
MACiE: a database of metals involved in biological catalysis. Bioinformatics 25, 2088–2089. 

2. Aulakh, S.K., Varma, S.J., and Ralser, M. (2022). Metal ion availability and homeostasis as 1360 

drivers of metabolic evolution and enzyme function. Curr. Opin. Genet. Dev. 77, 101987. 

3. Bromberg, Y., Aptekmann, A.A., Mahlich, Y., Cook, L., Senn, S., Miller, M., Nanda, V., 
Ferreiro, D.U., and Falkowski, P.G. (2022). Quantifying structural relationships of metal-binding 
sites suggests origins of biological electron transfer. Sci Adv 8, eabj3984. 

4. Wang, L., Yin, Y.-L., Liu, X.-Z., Shen, P., Zheng, Y.-G., Lan, X.-R., Lu, C.-B., and Wang, J.-1365 

Z. (2020). Current understanding of metal ions in the pathogenesis of Alzheimer’s disease. 
Transl. Neurodegener. 9, 10. 

5. Chen, Z., Wang, W., Abdul Razak, S.R., Han, T., Ahmad, N.H., and Li, X. (2023). 
Ferroptosis as a potential target for cancer therapy. Cell Death Dis. 14, 460. 

6. Weiss, G., and Carver, P.L. (2018). Role of divalent metals in infectious disease 1370 

susceptibility and outcome. Clin. Microbiol. Infect. 24, 16–23. 

7. Maret, W. (2016). The Metals in the Biological Periodic System of the Elements: Concepts 
and Conjectures. Int. J. Mol. Sci. 17. 10.3390/ijms17010066. 

8. Monteith, A.J., and Skaar, E.P. (2021). The impact of metal availability on immune function 
during infection. Trends Endocrinol. Metab. 32, 916–928. 1375 

9. Gene Ontology Resource Gene Ontology Resource. http://geneontology.org/. 

10. Cyert, M.S., and Philpott, C.C. (2013). Regulation of cation balance in Saccharomyces 
cerevisiae. Genetics 193, 677–713. 

11. Ma, Z., Jacobsen, F.E., and Giedroc, D.P. (2009). Coordination chemistry of bacterial metal 
transport and sensing. Chem. Rev. 109, 4644–4681. 1380 

12. Turco, G., Chang, C., Wang, R.Y., Kim, G., Stoops, E., Richardson, B., Sochat, V., Rust, J., 
Oughtred, R., Thayer, N., et al. (2022). Global analysis of the yeast knock-out phenome. bioRxiv, 
2022.12.22.521593. 10.1101/2022.12.22.521593. 

13. Shakoury-Elizeh, M., Protchenko, O., Berger, A., Cox, J., Gable, K., Dunn, T.M., Prinz, 
W.A., Bard, M., and Philpott, C.C. (2010). Metabolic response to iron deficiency in 1385 

Saccharomyces cerevisiae. J. Biol. Chem. 285, 14823–14833. 

14. Shakoury-Elizeh, M., Tiedeman, J., Rashford, J., Ferea, T., Demeter, J., Garcia, E., Rolfes, 
R., Brown, P.O., Botstein, D., and Philpott, C.C. (2004). Transcriptional remodeling in response to 
iron deprivation in Saccharomyces cerevisiae. Mol. Biol. Cell 15, 1233–1243. 

15. Puig, S., Askeland, E., and Thiele, D.J. (2005). Coordinated remodeling of cellular 1390 

metabolism during iron deficiency through targeted mRNA degradation. Cell 120, 99–110. 

16. Navarrete-Perea, J., Guerra-Moreno, A., Van Vranken, J., Isasa, M., Paulo, J.A., and Gygi, 
S.P. (2021). Iron Deficiency and Recovery in Yeast: A Quantitative Proteomics Approach. J. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


33 
 

Proteome Res. 20, 2751–2761. 

17. Wang, Y., Weisenhorn, E., MacDiarmid, C.W., Andreini, C., Bucci, M., Taggart, J., Banci, 1395 

L., Russell, J., Coon, J.J., and Eide, D.J. (2018). The cellular economy of the Saccharomyces 
cerevisiae zinc proteome. Metallomics 10, 1755–1776. 

18. Volkov, V. (2015). Quantitative description of ion transport via plasma membrane of yeast 
and small cells. Front. Plant Sci. 6, 425. 

19. Ke, R., Ingram, P.J., and Haynes, K. (2013). An integrative model of ion regulation in yeast. 1400 

PLoS Comput. Biol. 9, e1002879. 

20. Aleksander, P., Piotr, A., Tadeusz, T., and Makarewicz, M. (2009). Accumulation and 
release of metal ions by brewer’s yeast during successive fermentations. J. Inst. Brew. 115, 78–
83. 

21. Bray, M.S., Lenz, T.K., Haynes, J.W., Bowman, J.C., Petrov, A.S., Reddi, A.R., Hud, N.V., 1405 

Williams, L.D., and Glass, J.B. (2018). Multiple prebiotic metals mediate translation. Proc. Natl. 
Acad. Sci. U. S. A. 115, 12164–12169. 

22. Smethurst, D.G.J., and Shcherbik, N. (2021). Interchangeable utilization of metals: New 
perspectives on the impacts of metal ions employed in ancient and extant biomolecules. J. Biol. 
Chem. 297, 101374. 1410 

23. Eide, D.J. (1998). The molecular biology of metal ion transport in Saccharomyces 
cerevisiae. Annu. Rev. Nutr. 18, 441–469. 

24. Messner, C.B., Demichev, V., Muenzner, J., Aulakh, S.K., Barthel, N., Röhl, A., Herrera-
Domínguez, L., Egger, A.-S., Kamrad, S., Hou, J., et al. (2023). The proteomic landscape of 
genome-wide genetic perturbations. Cell 186, 2018–2034.e21. 1415 

25. Yu, D., Danku, J.M.C., Baxter, I., Kim, S., Vatamaniuk, O.K., Vitek, O., Ouzzani, M., and 
Salt, D.E. (2012). High-resolution genome-wide scan of genes, gene-networks and cellular 
systems impacting the yeast ionome. BMC Genomics 13, 623. 

26. Danku, J.M.C., Gumaelius, L., Baxter, I., and Salt, D.E. (2009). A high-throughput method 
for Saccharomyces cerevisiae (yeast) ionomics. J. Anal. At. Spectrom. 24, 103–107. 1420 

27. Iacovacci, J., Peluso, A., Ebbels, T., Ralser, M., and Glen, R.C. (2020). Extraction and 
Integration of Genetic Networks from Short-Profile Omic Data Sets. Metabolites 10. 
10.3390/metabo10110435. 

28. Wickerham, L.J. (1951). Taxonomy of yeasts (U.S. Dept. of Agriculture). 

29. Mülleder, M., Capuano, F., Pir, P., Christen, S., Sauer, U., Oliver, S.G., and Ralser, M. 1425 

(2012). A prototrophic deletion mutant collection for yeast metabolomics and systems biology. 
Nat. Biotechnol. 30, 1176–1178. 

30. Campbell, K., Vowinckel, J., Muelleder, M., Malmsheimer, S., Lawrence, N., Calvani, E., 
Miller-Fleming, L., Alam, M.T., Christen, S., Keller, M.A., et al. (2015). Self-establishing 
communities enable cooperative metabolite exchange in a eukaryote. Elife 4, e09943. 1430 

31. Olin-Sandoval, V., Yu, J.S.L., Miller-Fleming, L., Alam, M.T., Kamrad, S., Correia-Melo, C., 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


34 
 

Haas, R., Segal, J., Peña Navarro, D.A., Herrera-Dominguez, L., et al. (2019). Lysine harvesting 
is an antioxidant strategy and triggers underground polyamine metabolism. Nature 572, 249–253. 

32. Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P., and Boeke, J.D. 
(1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of 1435 

strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–
132. 

33. Wickerham, L.J. (1951). No Title. U.S. Dept. Agric.Tech. Bull. 1029, 1–56. 

34. Yeast Nitrogen Base Without Amino Acids 
https://www.sigmaaldrich.com/GB/en/product/sigma/y0626. 1440 

35. Britigan, B.E., Rasmussen, G.T., and Cox, C.D. (1998). Binding of Iron and Inhibition of 
Iron-Dependent Oxidative Cell Injury by the “Calcium Chelator” 1,2-Bis(2-Aminophenoxy)Ethane 
N,N,N′,N′-tetraacetic Acid (BAPTA). Biochem. Pharmacol. 55, 287–295. 

36. Tang, Q., Jin, M.-W., Xiang, J.-Z., Dong, M.-Q., Sun, H.-Y., Lau, C.-P., and Li, G.-R. (2007). 
The membrane permeable calcium chelator BAPTA-AM directly blocks human ether a-go-go-1445 

related gene potassium channels stably expressed in HEK 293 cells. Biochem. Pharmacol. 74, 
1596–1607. 

37. Li, S., Crooks, P.A., Wei, X., and de Leon, J. (2004). Toxicity of dipyridyl compounds and 
related compounds. Crit. Rev. Toxicol. 34, 447–460. 

38. Wang, X., An, P., Gu, Z., Luo, Y., and Luo, J. (2021). Mitochondrial Metal Ion Transport in 1450 

Cell Metabolism and Disease. Int. J. Mol. Sci. 22. 10.3390/ijms22147525. 

39. MacDiarmid, C.W., and Gardner, R.C. (1998). Overexpression of the Saccharomyces 
cerevisiaeMagnesium Transport System Confers Resistance to Aluminum Ion *. J. Biol. Chem. 
273, 1727–1732. 

40. Muenzner, J., Trébulle, P., Agostini, F., Messner, C.B., Steger, M., Lehmann, A., Caudal, 1455 

E., Egger, A.-S., Amari, F., Barthel, N., et al. (2022). The natural diversity of the yeast proteome 
reveals chromosome-wide dosage compensation in aneuploids. bioRxiv, 2022.04.06.487392. 
10.1101/2022.04.06.487392. 

41. Demichev, V., Messner, C.B., Vernardis, S.I., Lilley, K.S., and Ralser, M. (2020). DIA-NN: 
neural networks and interference correction enable deep proteome coverage in high throughput. 1460 

Nat. Methods 17, 41–44. 

42. Ghaemmaghami, S., Huh, W.-K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., 
O’Shea, E.K., and Weissman, J.S. (2003). Global analysis of protein expression in yeast. Nature 
425, 737–741. 

43. Creamer, T.P. (2020). Calcineurin. Cell Commun. Signal. 18, 137. 1465 

44. de Nadal, E., and Posas, F. (2022). The HOG pathway and the regulation of osmoadaptive 
responses in yeast. FEMS Yeast Res. 22. 10.1093/femsyr/foac013. 

45. Zou, R., Wang, X., Li, S., Chan, H.C.S., Vogel, H., and Yuan, S. (2022). The role of metal 
ions in G protein‐coupled receptor signalling and drug discovery. Wiley Interdiscip. Rev. Comput. 
Mol. Sci. 12. 10.1002/wcms.1565. 1470 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


35 
 

46. Knape, M.J., Ballez, M., Burghardt, N.C., Zimmermann, B., Bertinetti, D., Kornev, A.P., and 
Herberg, F.W. (2017). Divalent metal ions control activity and inhibition of protein kinases. 
Metallomics 9, 1576–1584. 

47. Li, L., Bertram, S., Kaplan, J., Jia, X., and Ward, D.M. (2020). The mitochondrial iron 
exporter genes MMT1 and MMT2 in yeast are transcriptionally regulated by Aft1 and Yap1. J. 1475 

Biol. Chem. 295, 1716–1726. 

48. Lesuisse, E., and Labbe, P. (1995). Effects of cadmium and of YAP1 and CAD1/YAP2 
genes on iron metabolism in the yeast Saccharomyces cerevisiae. Microbiology 141 ( Pt 11), 
2937–2943. 

49. Ronan, T., Qi, Z., and Naegle, K.M. (2016). Avoiding common pitfalls when clustering 1480 

biological data. Sci. Signal. 9, re6. 

50. Kapp-Joswig, J.-O., and Keller, B.G. (2023). CommonNNClustering─A Python Package for 
Generic Common-Nearest-Neighbor Clustering. J. Chem. Inf. Model. 63, 1093–1098. 

51. Lemke, O., and Keller, B.G. (2018). Common Nearest Neighbor Clustering—A Benchmark. 
Algorithms 11, 19. 1485 

52. Jin, X., and Han, J. (2010). K-Means Clustering. In Encyclopedia of Machine Learning, C. 
Sammut and G. I. Webb, eds. (Springer US), pp. 563–564. 

53. Arthur, D., and Vassilvitskii, S. (2007). K-Means++: The Advantages of Careful Seeding. In 
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 
2007, New Orleans, Louisiana, USA, January 7-9, 2007 (unknown), pp. 1027–1035. 1490 

54. Traag, V.A., Waltman, L., and van Eck, N.J. (2019). From Louvain to Leiden: guaranteeing 
well-connected communities. Sci. Rep. 9, 5233. 

55. Ward, J.H., Jr (1963). Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. 
Assoc. 58, 236–244. 

56. Winzeler, E.A., Shoemaker, D.D., Astromoff, A., Liang, H., Anderson, K., Andre, B., 1495 

Bangham, R., Benito, R., Boeke, J.D., Bussey, H., et al. (1999). Functional characterization of the 
S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906. 

57. [No title] https://www.sigmaaldrich.com/GB/en/product/sial/d216305. 

58. Kamrad, S., Rodríguez-López, M., Cotobal, C., Correia-Melo, C., Ralser, M., and Bähler, J. 
(2020). Pyphe, a python toolbox for assessing microbial growth and cell viability in high-1500 

throughput colony screens. Elife 9. 10.7554/eLife.55160. 

59. Gelperin, D.M., White, M.A., Wilkinson, M.L., Kon, Y., Kung, L.A., Wise, K.J., Lopez-Hoyo, 
N., Jiang, L., Piccirillo, S., Yu, H., et al. (2005). Biochemical and genetic analysis of the yeast 
proteome with a movable ORF collection. Genes Dev. 19, 2816–2826. 

60. Hekkelman, M.L., de Vries, I., Joosten, R.P., and Perrakis, A. (2022). AlphaFill: enriching 1505 

AlphaFold models with ligands and cofactors. Nat. Methods. 10.1038/s41592-022-01685-y. 

61. Mülleder, M., Calvani, E., Alam, M.T., Wang, R.K., Eckerstorfer, F., Zelezniak, A., and 
Ralser, M. (2016). Functional Metabolomics Describes the Yeast Biosynthetic Regulome. Cell 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


36 
 

167, 553–565.e12. 

62. Takpho, N., Watanabe, D., and Takagi, H. (2018). Valine biosynthesis in Saccharomyces 1510 

cerevisiae is regulated by the mitochondrial branched-chain amino acid aminotransferase Bat1. 
Microb. Cell Fact. 5, 293–299. 

63. Huh, W.-K., Falvo, J.V., Gerke, L.C., Carroll, A.S., Howson, R.W., Weissman, J.S., and 
O’Shea, E.K. (2003). Global analysis of protein localization in budding yeast. Nature 425, 686–
691. 1515 

64. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., 
Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein 
structure prediction with AlphaFold. Nature 596, 583–589. 

65. UniProt ybr287w https://www.uniprot.org/uniprotkb/P38355/entry. 

66. Chen, Y., Li, F., Mao, J., Chen, Y., and Nielsen, J. (2021). Yeast optimizes metal utilization 1520 

based on metabolic network and enzyme kinetics. Proc. Natl. Acad. Sci. U. S. A. 118. 
10.1073/pnas.2020154118. 

67. Drewke, C., and Ciriacy, M. (1988). Overexpression, purification and properties of alcohol 
dehydrogenase IV from Saccharomyces cerevisiae. Biochim. Biophys. Acta 950, 54–60. 

68. Busigny, V., Planavsky, N.J., Jézéquel, D., Crowe, S., Louvat, P., Moureau, J., Viollier, E., 1525 

and Lyons, T.W. (2014). Iron isotopes in an Archean ocean analogue. Geochim. Cosmochim. 
Acta 133, 443–462. 

69. Rouxel, O.J., Bekker, A., and Edwards, K.J. (2005). Iron isotope constraints on the Archean 
and Paleoproterozoic ocean redox state. Science 307, 1088–1091. 

70. Keller, M.A., Turchyn, A.V., and Ralser, M. (2014). Non-enzymatic glycolysis and pentose 1530 

phosphate pathway-like reactions in a plausible Archean ocean. Mol. Syst. Biol. 10, 725. 

71. Ralser, M. (2014). The RNA world and the origin of metabolic enzymes. Biochem. Soc. 
Trans. 42, 985–988. 

72. Keller, M.A., Kampjut, D., Harrison, S.A., and Ralser, M. (2017). Sulfate radicals enable a 
non-enzymatic Krebs cycle precursor. Nat Ecol Evol 1, 83. 1535 

73. Keller, M.A., Zylstra, A., Castro, C., Turchyn, A.V., Griffin, J.L., and Ralser, M. (2016). 
Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate 
pathway. Sci Adv 2, e1501235. 

74. Muchowska, K.B., Varma, S.J., and Moran, J. (2020). Nonenzymatic Metabolic Reactions 
and Life’s Origins. Chem. Rev. 120, 7708–7744. 1540 

75. Mayer, R., and Moran, J. (2023). Metal Ions Turn on a Stereoselective Nonenzymatic 
Reduction of Keto Acids by the Coenzyme NADH. ChemRxiv. 10.26434/chemrxiv-2023-jdhxk. 

76. Piedrafita, G., Varma, S.J., Castro, C., Messner, C.B., Szyrwiel, L., Griffin, J.L., and Ralser, 
M. (2021). Cysteine and iron accelerate the formation of ribose-5-phosphate, providing insights 
into the evolutionary origins of the metabolic network structure. PLoS Biol. 19, e3001468. 1545 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


37 
 

77. Dupont, C.L., Butcher, A., Valas, R.E., Bourne, P.E., and Caetano-Anollés, G. (2010). 
History of biological metal utilization inferred through phylogenomic analysis of protein structures. 
Proc. Natl. Acad. Sci. U. S. A. 107, 10567–10572. 

78. Verduyn, C., Postma, E., Scheffers, W.A., and van Dijken, J.P. (1990). Energetics of 
Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 1550 

136, 405–412. 

79. Kamrad, S., Correia-Melo, C., Szyrwiel, L., Aulakh, S.K., Bähler, J., Demichev, V., 
Mülleder, M., and Ralser, M. (2023). Metabolic heterogeneity and cross-feeding within isogenic 
yeast populations captured by DILAC. Nat Microbiol 8, 441–454. 

80. Dann, S.G., and Thomas, G. (2006). The amino acid sensitive TOR pathway from yeast to 1555 

mammals. FEBS Lett. 580, 2821–2829. 

81. Kustatscher, G., Collins, T., Gingras, A.-C., Guo, T., Hermjakob, H., Ideker, T., Lilley, K.S., 
Lundberg, E., Marcotte, E.M., Ralser, M., et al. (2022). Understudied proteins: opportunities and 
challenges for functional proteomics. Nat. Methods 19, 774–779. 

82. Kamrad, S., Bähler, J., and Ralser, M. (2022). High-Throughput, High-Precision Colony 1560 

Phenotyping with Pyphe. Methods Mol. Biol. 2477, 381–397. 

83. Campbell, K., Correia-Melo, C., and Ralser, M. (2019). Self-Establishing Communities: A 
Yeast Model to Study the Physiological Impact of Metabolic Cooperation in Eukaryotic Cells. 
Methods Mol. Biol. 2049, 263–282. 

84. Demichev, V. DIA-NN GitHub (Github). 1565 

85. Pedregosa, F. (2011). Scikit‐learn: Machine learning in python Fabian. J. Mach. Learn. 
Res. 12, 2825. 

86. Waskom, M. (2021). seaborn: statistical data visualization. J. Open Source Softw. 6, 3021. 

87. scipy https://scipy.org/about/. 

88. Carlson, M., and Id, G. AnnotationDbi: Introduction To Bioconductor Annotation Packages. 1570 

http://bioconductor.statistik.tu-
dortmund.de/packages/2.11/bioc/vignettes/AnnotationDbi/inst/doc/IntroToAnnotationPackages.pd
f. 

89. AnnotationDbi Bioconductor. 
https://bioconductor.org/packages/release/bioc/html/AnnotationDbi.html. 1575 

90. org.Sc.sgd.db Bioconductor. 
https://bioconductor.org/packages/release/data/annotation/html/org.Sc.sgd.db.html. 

91. GO.db Bioconductor. 
https://bioconductor.org/packages/release/data/annotation/html/GO.db.html. 

92. Väremo, L., Nielsen, J., and Nookaew, I. (2013). Enriching the gene set analysis of 1580 

genome-wide data by incorporating directionality of gene expression and combining statistical 
hypotheses and methods. Nucleic Acids Res. 41, 4378–4391. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


38 
 

93. Tenenbaum, D., and Maintainer, B. KEGGREST: Client-side REST access to the Kyoto 
Encyclopedia of Genes and Genomes (KEGG). R package version. 

94. Plotly https://plotly.com/r/. 1585 

95. Kerseviciute, I., and Gordevicius, J. (2023). aPEAR: an R package for autonomous 
visualization of pathway enrichment networks. Bioinformatics 39. 10.1093/bioinformatics/btad672. 

96. Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P., Cournapeau, D., 
Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al. (2020). Array programming with NumPy. Nature 
585, 357–362. 1590 

97. Csárdi, G., Nepusz, T., Horvát, S., Traag, V., Zanini, F., and Noom, D. (2023). igraph 
(Zenodo) 10.5281/ZENODO.3630268. 

98. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., 
Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al. (2020). SciPy 1.0: fundamental 
algorithms for scientific computing in Python. Nat. Methods 17, 261–272. 1595 

99. Lemke, O., and Keller, B.G. (2016). Density-based cluster algorithms for the identification of 
core sets. J. Chem. Phys. 145, 164104. 

100. Keller, B., Daura, X., and van Gunsteren, W.F. (2010). Comparing geometric and kinetic 
cluster algorithms for molecular simulation data. J. Chem. Phys. 132, 074110. 

101. Wagih, O., and Parts, L. (2014). gitter: a robust and accurate method for quantification of 1600 

colony sizes from plate images. G3 4, 547–552. 

102. Heirendt, L., Arreckx, S., Pfau, T., Mendoza, S.N., Richelle, A., Heinken, A., Haraldsdóttir, 
H.S., Wachowiak, J., Keating, S.M., Vlasov, V., et al. (2019). Creation and analysis of 
biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc. 14, 639–702. 

103. Vlassis, N., Pacheco, M.P., and Sauter, T. (2014). Fast reconstruction of compact context-1605 

specific metabolic network models. PLoS Comput. Biol. 10, e1003424. 

104. Lu, H., Li, F., Sánchez, B.J., Zhu, Z., Li, G., Domenzain, I., Marcišauskas, S., Anton, P.M., 
Lappa, D., Lieven, C., et al. (2019). A consensus S. cerevisiae metabolic model Yeast8 and its 
ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10, 3586. 

105. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (Springer International 1610 

Publishing). 

106. viridis : Colorblind-Friendly Color Maps for R https://sjmgarnier.github.io/viridis/. 

107. Neuwirth, E. (2022). ColorBrewer Palettes [R package RColorBrewer version 1.1-3]. 

108. Gu, Z., Gu, L., Eils, R., Schlesner, M., and Brors, B. (2014). circlize Implements and 
enhances circular visualization in R. Bioinformatics 30, 2811–2812. 1615 

109. Creators Csárdi, Gábor Nepusz, Tamás Müller, Kirill Horvát, Szabolcs Traag, Vincent 
Zanini, Fabio Noom, Daniel igraph for R: R interface of the igraph library for graph theory and 
network analysis 10.5281/zenodo.10369053. 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


39 
 

110. Letunic, I. iPATH interactive pathways Explorer. https://pathways.embl.de/. 

111. Eide, D.J., Clark, S., Nair, T.M., Gehl, M., Gribskov, M., Guerinot, M.L., and Harper, J.F. 1620 

(2005). Characterization of the yeast ionome: a genome-wide analysis of nutrient mineral and 
trace element homeostasis in Saccharomyces cerevisiae. Genome Biol. 6, R77. 

112. Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., 
and Marra, M.A. (2009). Circos: an information aesthetic for comparative genomics. Genome 
Res. 19, 1639–1645. 1625 

113. Lu, H., Li, F., Sánchez, B.J., Zhu, Z., Li, G., Domenzain, I., Marcišauskas, S., Anton, P.M., 
Lappa, D., Lieven, C., et al. (2019). A consensus S. cerevisiae metabolic model Yeast8 and its 
ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10, 3586. 

114. Expasy - ENZYME https://enzyme.expasy.org/index.html. 

115. KEGG: Kyoto Encyclopedia of Genes and Genomes https://www.genome.jp/kegg/. 1630 

 

 

 

 

 1635 

 

 

 

 

 1640 

 

 

 

 

 1645 

 

 

 

 

 1650 

 

 

 

 

 1655 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


40 
 

Figures 

  1660 

 
Figure 1 Metal ion homeostasis and concentration-interdependence 

 

a) Schematic: Experimental design for media generation, growth, metallomic, and proteomic 

characterisation of S. cerevisiae cultivated in 91 media, that constitute concentration gradients in 1665 

its typical media supplements Ca, Cu, Fe, K, Mg, Mn, Mo, Na, and Zn. 

b) Growth rate of a prototrophic BY4741- derivative along each metal perturbation series. X-

axis: log2(concentration of metal in media relative to control (synthetic minimal media)). Y-axis: 

growth rate (change in OD600 per hour, relative to time of inoculation) 

c) Quantification of the buffering capacity of cellular versus extracellular metal concentrations. 1670 

X-axis: media concentration, relative to concentration in typical synthetic minimal media (control). 

Y-axis, coloured circles : log2(concentration of perturbed metal in cultivation media relative to that 

in synthetic minimal media (control). Y-axis, black stars : log2(cellular metal concentration of cells 
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cultivated in each metal perturbation condition relative to that of cells cultivated in synthetic 

minimal media (control). 1675 

d) Correlation between the metal concentration in cultivation media, and cellular concentration 

of other metals. Y-axis: metal that was perturbed in the cultivation media. X-axis: metal measured 

in S. cerevisiae cells cultivated in media with perturbed concentration of each metal. Colour 

indicates value of Spearman’s rank correlation coefficient. Black stars represent correlations that 

had a P value < 0.05 (calculated by cor.test() function in R).  1680 

e) Examples of correlation between the environmental concentration of one metal (X-axis: 

log2(relative environmental metal concentration)) and the cellular concentration of another metal 

(Y-axis: log2(relative total cellular metal concentration)). 

f) Principal component analysis based on all measured total cellular metal concentrations 

separates a subset of samples according to the metal perturbed in the environment. Left panel: 1685 

principal component (PC) 1 on the X-axis and PC 2 on the Y-axis. Right panel: PC 2 on the X-

axis and PC 3 on the Y-axis. Colours indicate each unique cultivation condition with darker 

colours indicating high amounts of each metal and lighter colours representing low amounts. 

 

 1690 
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Figure 2 Identifying the metal responsive proteome 

 

a) Proteins that respond to metal ion contractions (selected examples that represent different 

metal ion - protein abundance relationships along environmental and cellular metal 1695 

concentration series). Differentially abundant proteins were determined by conducting F-tests 

between null (y~c), first (y ~ mx+c), second (y ~ mx2 + c) and third (y~mx3 +c) degree 

polynomial models. Top row: proteins identified as differentially abundant based on polynomial 

fits of protein abundance relative to synthetic minimal media(control) (Y-axis) vs. 

log2(environmental metal concentration relative to control) (X-axis). The plots are labelled with 1700 

the protein abundance shown, plus the varied metal ion concentration. Bottom row: proteins 

identified as differentially abundant based on polynomial fits of protein abundance relative to 

control (Y-axis) vs. log2(cellular metal concentration relative to control)(X-axis). 

b) Number of proteins identified as being differentially abundant along each metal concentration 

series (beige - along environmental metal concentration series, light blue - along measured 1705 

cellular concentration and pink - along both environmental and cellular concentrations. 

c) Characterisation of thresholds of cellular metal concentration at which the proteome responds 

to metal perturbation. X-axis: percentage change in cellular metal content with intervals of 5%. 

Y-axis: percentage of total differentially abundant proteins along metal perturbation series that 

exhibit a change of at least 20% in abundance at each 5% increase (depicted by x-axis) in 1710 

cellular metal concentration. 

d) Overlap between proteins differentially abundant along each metal perturbation series (either 

environmental or cellular). Pink bars in the upset plot indicate the size of overlap between 

conditions listed on the left. Light blue bars on the left indicate the number of proteins 

differentially abundant along each metal perturbation series. 1715 

e) Relationship between number of differentially abundant proteins that overlap between 

environmental concentration series of each metal and cellular concentration of every other 

metal. X-axis: Spearman's correlation coefficient calculated between environmental 

concentration of metal being perturbed and cellular concentration of each other metal. Y-axis: 

number of differentially abundant proteins that overlap between environmental concentration 1720 

of each metal and cellular concentration of every other metal. The first metal in the text next to 

each point indicates the environmental (media) concentration series and the second indicates 

cellular (measured) concentration series. ‘*’ represents pairs that have a significant correlation 

between the metal perturbed and the metal measured based on metallomics data. 

f) Most overlaps between proteins differentially abundant along environmental concentration of 1725 

one metal and cellular concentration of another are explained by perturbation of cellular metal 

concentrations. X-axis: metal perturbed in the environment (cultivation media). Y-axis: outer 

rectangle of bar plot indicates the total number of differentially abundant proteins along each 

environmental concentration series that overlap with differentially abundant proteins along any 

other cellular concentration series. Inner rectangle(fill) indicates the number of proteins that 1730 

are differentially abundant along cellular concentration of another metal for which the 

correlation between the perturbed metal and measured cellular concentration is high 

(Spearman’s rho > 0.8 and P value < 0.05). 

g) Comparison of correlation coefficients between metallomics (upper triangle) and proteomics 

(lower triangle) profile of each pair of unique cultivation conditions. Colour indicates 1735 
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Spearman’s correlation coefficient with red indicating positive values and blue indicating 

negative values. 

h) Separation of each unique cultivation condition based on principal component analysis of the 

proteomics data along the first three principal components. Left panel: principal component 

(PC) 1 on the X-axis and PC 2 on the Y-axis. Right panel: PC 2 on the X-axis and PC 3 on the 1740 

Y-axis. Colours indicate each unique cultivation condition with darker colours indicating high 

amounts of each metal and lighter colours representing low amounts. 

i) Average protein abundance of metal binding proteins in S. cerevisiae cells cultivated in media 

with a series of metal concentration variations. X-axis: log2(environmental (cultivation media) 

metal concentration, relative to that in synthetic minimal media control). Y-axis: log2(fold 1745 

difference in abundance of protein relative to that in control). Solid line indicates proteins that 

are annotated in the Gene Ontology database to bind to the same metal as being perturbed in 

the cultivation media (indicated above each panel), dashed lines indicate proteins that are 

annotated to bind a different metal than that being perturbed in cultivation media. Numbers in 

normal font indicate the total number of proteins bearing annotations for the same metal being 1750 

perturbed, those in italics indicate the total number of proteins that have an annotation that is 

different from the metal being perturbed. 

j) Average protein abundance of metal transporters in S. cerevisiae cells cultivated in media with 

a series of metal concentration variations. X-axis: log2(environmental (cultivation media) metal 

concentration, relative to that in synthetic minimal media control). Y-axis: log2(fold difference in 1755 

abundance of protein relative to that in control). Solid line indicates proteins that are annotated 

in the Gene Ontology database to transport the same metal as being perturbed in the 

cultivation media (indicated above each panel), dashed lines indicate proteins that are 

annotated to transport a different metal than that being perturbed in cultivation media. 

Numbers in normal font indicate the total number of proteins bearing annotations for the same 1760 

metal being perturbed, those in italics indicate the total number of proteins that have an 

annotation that is different from the metal being perturbed. 

k) Summary of the Gene Ontology - Slim (biological process) terms enriched in proteins 

differentially abundant proteins depending on the extracellular (left) and cellular (right) metal 

ion concentration. Rectangles in the central panel indicate the metal being perturbed in each 1765 

series. Rectangles and annotations on the left indicate gene set terms that are enriched in 

proteins that were deemed as differentially abundant based on linear models fit to protein 

abundance along environmental (media) metal concentration. Colours represent each 

perturbed metal. 

 1770 
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Figure 3 Metal responsiveness clusters proteins according to function 

 1775 

a) Metalwise Ensemble-clustering. Examples of different clusters of proteins that show a similar 

response alongside a metal concentration gradient. Each panel depicts the log2 (environmental 

metal concentration relative to synthetic minimal media control) on the X-axis and log2(fold 

difference of protein abundance relative to that in control) on the Y-axis with colour indicating 

UniProt annotation score. The names of any protein bearing UniProt annotation score < 3 1780 

(poorly characterised proteins) are indicated in the figure. To the right of each graph in each 

horizontal panel is a network plot of all the Gene Ontology biological process terms that 

overrepresented the cluster. Each circle represents an individual geneset term with its colour 

representing the adjusted p-value of enrichment and size corresponding to the number of 

proteins mapping to the term. Gene sets with shared proteins are connected by grey lines. 1785 

Groups of clusters are annotated with names that summarise groups of gene set nodes as 

determined and visualised using the aPEAR R library. 

b) Ensemble clustering across all metal ion gradients: Examples of different clusters of proteins 

that show a similar response alongside all metal concentration gradients. For each panel, X-

axis: log2 (environmental metal concentration relative to synthetic minimal media control) and Y-1790 

axis: log2(fold difference of protein abundance relative to that in control) averaged for all 

proteins in the cluster for each metal perturbation series. Colour indicates the metal perturbation 

series and grey zone along the coloured lines indicate the 95% confidence interval around the 

mean abundance of all proteins in each metal perturbation series. To the right of each graph in 

each horizontal panel is a network plot of all the Gene Ontology biological process terms that 1795 

overrepresented the cluster. Each circle represents an individual geneset term with its colour 

representing the adjusted p-value of enrichment and size corresponding to the number of 

proteins mapping to the term. Gene sets with shared proteins are connected by grey lines. 

Groups of clusters are annotated with names that summarise groups of gene set nodes as 

determined and visualised using the aPEAR R library. 1800 

c) Summary of the Gene Ontology Slim (biological process) terms enriched in each cluster 

obtained via ensemble clustering. The two columns in the middle indicate cluster number after 

ensemble clustering - metalwise clusters are on the left and allmetal clusters on the right. The 

links between the clusters represent proteins with coloured links representing proteins 

belonging to each metalwise cluster that have a UniProt annotation score >2 and those that are 1805 

black representing proteins with UniProt annotation score < 3. Gene set term names connected 

by links to the left of each metal wise cluster represent GOslim-BP terms enriched in each 

metalwise cluster while terms to the right of the allmetal clusters (connected by light yellow-

green coloured links) represent GPslim-BP terms enriched in each allmetal cluster. Only those 

proteins that are part of a cluster (metalwise or allmetal) that has at least one GOslim-BP term 1810 

enriched are included in the figure.  

d) Number of poorly characterised proteins in each cluster obtained via ensemble clustering 

(metalwise-clustering branch). X-axis indicates a cluster identifier assigned to each cluster that 

was obtained after ensemble clustering (using CommonNN, k-Means, and Leiden methods for 

each individual clustering step and hierarchical clustering on the co-clustering matrix to define 1815 

the final clusters) of proteomics data from each metal perturbation series separately. Y-axis: 

number of proteins in each resultant cluster with the filled bars indicating whether any gene 
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function term was enriched in the cluster and a star (*) above the bar indicating that at least one 

poorly characterised protein (UniProt annotation score < 3) is present in the cluster. 

e) Number of poorly characterised proteins in each cluster obtained via ensemble clustering 1820 

(allmetal-clustering branch). X-axis indicates an arbitrary cluster number assigned to each 

cluster that was obtained after ensemble clustering (using CommonNN, k-Means, and Leiden 

methods for each individual clustering step and hierarchical clustering on the co-clustering 

matrix to define the final clusters) of the entire proteomics dataset (proteomes from all metal 

perturbation samples). Y-axis: number of proteins in each resultant cluster with the filled bars 1825 

indicating whether any gene function term was enriched in the cluster and a star (*) above the 

bar indicating that at least one poorly characterised protein (UniProt annotation score < 3) is 

present in the cluster. 

 

 1830 
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Figure 4 Data integration to generate a comprehensive resource for studying metal 

responsive proteins  

 

a) Data integration: Summary of a new genetic interaction dataset, two metallomic datasets of 1835 

gene deletions and gene overexpression, respectively 25,111, and a genome-wide proteomic 

dataset 24 that integrated with the metallome and proteomic data, to create a comprehensive 

resource about metalloprotein function. 

b) Number of Open Reading Frames (ORFs) identified as significantly affected across the five 

datasets as summarised in a). X-axis : metal that was perturbed or in the case of the proteomic 1840 

dataset of genome wide deletion mutants 24 - metal that was connected (based on GO-MF 

annotations) to the gene being deleted. Y-axis: number of genes or proteins that were identified 

as significantly affected. Colour indicates the type of assay (yellow – fitness inferred from end 

point colony size measurements, pink - cellular metal concentration, blue - proteomes). Shape 

indicates each individual dataset. 1845 

c) Effect of deletion of ORFs annotated for metal binding on the growth of S. cerevisiae on metal 

depletion agarose media. X-axis: metal that was depleted and the metal-binding annotation of 

the ORF. Y-axis: log2(effect size (mean colony size of replicates of mutant relative to that of 

control, divided by the standard deviation of colony sizes of the mutant) - as determined by 

pyphe-analyse), averaged across all replicates. Colour indicates both the metal that was 1850 

depleted and the metal binding annotation as the dataset was filtered to retain values where the 

metal depleted matched the metal binding annotation of the mutant.  

d) Effect on protein abundance of metal-binding proteins upon deletion of ORFs encoding other 

proteins annotated to bind the same metal. X-axis: the metal annotation of the deletion mutant 

as well as the measured protein. Y-axis: log2(fold difference of protein abundance in the deletion 1855 

mutant vs. WT S. cerevisiae). Colours indicate the metal annotations of the deleted genes and 

measured proteins. Labels next to some of the points indicate the gene deleted (in capitals) 

followed by the protein measured (in title case). Only those points with a log2(fold difference vs 

control) > log2(1.5) are labelled using the geom_text_repel() which does not plot unavoidable 

overlaps. 1860 

e) Effect of deletion and overexpression of ORFs encoding metal-binding proteins on the cellular 

concentration of the metal each ORF is annotated to bind in the GO database. X-axis: metal 

annotation of each ORF and metal quantified in each mutant. Y-axis : Z-score of metal 

concentration in each mutant (data from 25,26, Z score calculated by 27). Colour indicates the 

metal annotations as well as metal measured. Shape of points indicates the type of mutant - 1865 

circles indicate knockout deletion mutants and triangles indicate overexpression mutants.  

f) Intersection between ORFs (left) and ORF-metal combinations (right) that were identified as a 

significant hit across the five datasets. Size of circle indicates how many datasets are 

considered with the largest circle representing the set of ORFs or ORF-metal pairs that are 

significant in any one dataset and the smallest representing those that are significant in all five. 1870 

Numbers at the top, outside the largest circle represent the total number of unique ORFs and 

ORF-metal pairs that were measured in all five datasets, cumulatively. 

g) Intersection between ORFs assayed across the five datasets. X-axis: number of datasets an 

ORF was assayed / measured in. Y-axis: number of ORFs.  
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h) Intersections between ORFs that were a significant hit in any of the five datasets (Upset plot). 1875 

Black circles and lines between them indicate the identity of the datasets in the overlap, pink 

bars on top indicate the number of ORFs that are shared between the datasets indicated by the 

black circles and lines.  

i) Metal related proteins identified as significantly affected in each dataset. Panels represent the 

type of annotation a protein has in the Gene Ontology -Molecular Function database. X-axis: 1880 

number of ORFs (outer bar outline represents the total number measured or assayed in each 

dataset and the inner filled-up bar represents the number that was significantly affected in at 

least one metal perturbation condition or metal-related mutant). Y-axis: dataset name and 

description. 

 1885 
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 1900 

Figure 5 Annotating unknown protein through their metal responsiveness 

 

a) Number of poorly characterised ORFs that were significantly affected in each metal perturbation 

or metal-related gene deletion (for 24) across all five datasets. X-axis: metal that were perturbed 

or annotated to be connected to the deleted gene. Y-axis: dataset name (refer to Figure 4a for 1905 

clarity on nomenclature). Colour of each tile indicates the number of poorly characterised ORFs 

that were significantly affected. Combinations with white tiles represent no significant values. 

b) Overlap between significant poorly characterised ORFs (left) and significant ORF-metal 

combinations (right) across all five datasets. Size of circle indicates how many datasets are 

considered with the largest circle representing the set of ORFs or ORF-metal pairs that are 1910 

significant in any one dataset and the smallest representing those that are significant in all five. 

Numbers at the top, outside the largest circle represent the total number of unique poorly 

characterised ORFs and ORF-metal pairs that were measured in all five datasets, cumulatively. 

c)  Circos plot 112 depicting the genome-wide scale of all five datasets. Each index along the 

circular tracks represents an Open Reading Frame (ORF) in the yeast genome, arranged by 1915 

UniProt annotation score. Counting from innermost track to outer - the first track indicates the 

UniProt annotation score (yellow - best characterised proteins with UniProt annotation score of 

5 and purple - worst characterised with UniProt annotation score = 1). The second track 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 5, 2024. ; https://doi.org/10.1101/2024.02.29.582718doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.29.582718
http://creativecommons.org/licenses/by-nc/4.0/


52 
 

indicates using ORFs that are annotated as binding to specific metals in the GO-MF database 

while the third indicates those with specific metal transport annotations. The fourth track 1920 

indicates ORFs that were significantly differentially abundant in WT S. cerevisiae cells cultivated 

along at least one metal perturbation series in our proteomics dataset. The last, outermost track 

indicates using colour the number of metals for which an ORF was found to be significantly 

affect across any of the give datasets and the height of each bar represent the number of 

datasets in which the ORF was found to be significantly affected (exhibit a gene-metal or 1925 

protein-metal interaction). 

d) Protein abundance of Ymr196w in S. cerevisiae cells upon varying the Fe concentration in 

cultivation media. X-axis: log2 media concentration of iron relative to synthetic minimal control 

media, as quantified using ICP-MS. Y-axis: corresponding log2(fold difference of Ymr196w 

protein abundance) 1930 

e) Z-score of the cellular Fe concentration of the YMR196W overexpression mutant relative to Z-

scores of all other mutants. X-axis: Z Score cellular Fe concentration. Y-axis: density of mutants 

at each Z Score. Black vertical line indicates the Z-score of the YMR196W overexpression 

mutant (2.23). 

f) Impact of deletion of iron related proteins on the abundance of Ymr196w protein in each 1935 

deletion mutant. X-axis: log2(fold difference in protein abundance of Ymr196w in each iron 

related mutant relative to the S. cerevisiae control). Y-axis: -log10( P value of significance tests 

conducted in 24 to determine proteins affected in each deletion mutant). Points correspond to 

Ymr196w protein abundance in each deletion mutant (indicated by gene names on the figure). 

g) Protein abundance of Ybr298w in WT S. cerevisiae cells cultivated in each metal concentration 1940 

series (indicated by panel) along which it was deemed to exhibit a significant change. X-axis: 

log2(environmental (cultivation media) concentration of each metal relative to synthetic minimal 

control media) as quantified using ICP-MS. Y-axis: corresponding log2(fold difference of 

Ybr298w protein abundance) 

h) Impact of deletion of Ybr298w gene on growth of S. cerevisiae cells in metal depletion media. X-1945 

axis: metal that was depleted. Y-axis: log2(effect size (mean colony size of replicates of 

Ybr287w deletion mutant relative to that of control, divided by the standard deviation of colony 

sizes of the mutant) - as determined by pyphe-analyse) 

i) Impact of Ybr298w deletion and overexpression on cellular metal content. X-axis: metal that 

was quantified using ICP-MS by 26 (knockout deletions) and 25 (overexpression). Y-axis: Z-score 1950 

(calculated in 27 of concentration of each metal in the YBR287WW mutants. Colour indicates 

metal that was quantified. Shape indicates the type of mutation: circles indicate knockout 

deletion and squares indicate overexpression. 

j) Impact of deletion of metal related proteins on the abundance of Ybr298w protein in each 

deletion mutant. X-axis: log2(fold difference in protein abundance of Ybr298w in each metal 1955 

related mutant relative to the WT S. cerevisiae control). Y-axis: -log10( P value of significance 

tests conducted in 24 to determine proteins affected in each deletion mutant). Points correspond 

to Ybr298w protein abundance in each deletion mutant (indicated by gene names on the figure). 

Colours indicate the metal annotation of the deleted gene based on the GO-MF database. 

k) Impact of the deletion of Ybr298w gene on the abundance of metal-related proteins. X-axis: 1960 

log2(fold difference in protein abundance of different proteins in the Ybr298w mutant relative to 

the WT S. cerevisiae control). Y-axis: -log10( P value of significance tests conducted in 24 to 
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determine proteins affected in the Ybr298w deletion mutant). Points correspond to protein 

abundance of each metal-related protein (indicated by gene names next to points) in the 

Ybr298w deletion mutant Colours indicate the metal annotation of the measured protein. 1965 

 

 

 

 

 1970 
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Figure 6 Central role of metal-dependent enzymatic reactions results in a network-wide 

metal dependency of metabolism 

 

a) Fraction of enzymes in the enzyme commission & KEGG databases and the Yeast8 genome 1975 

scale metabolic model 113) that are annotated to be connected to metals. Left panel summarises 

annotations at the ORF level. X-axis: database (EC: Enzyme Commission numbers 114, ScGEM 

: Yeast8 genome scale metabolic model 113 and KEGG : Kyoto Encyclopedia of Genes and 

Genomes 115). Y-axis: outer rectangle of bar indicates total number of ORFs in the database 

and inner (filler) bar indicates the number of ORFs that have any metal-related annotations in 1980 

the GO-MF database. Numbers indicate the percentage of ORFs with metal related functions in 

each database. Colours are used to differentiate databases. Right panel summarises 

annotations at the pathway and enzyme class (two levels of the enzyme commission numbers) 

level. X-axis for right panel: database. Y-axis: outer unfilled rectangle of the bar plot indicates 

the number of pathways (for KEGG) and the number of unique EC numbers up to level 2 that 1985 

were considered while the inner filled bar represents the number of KEGG pathways or EC 

number categories for which at least one member ORF had a metal-related annotation. 

Numbers in each bar indicate the percentage of KEGG or EC categories that contained at least 

one ORF with a metal-related annotation. 

b) Metal-related enzymes in the S. cerevisiae metabolic network. Map of the S. cerevisiae 1990 

metabolic network with blue colour indicating reactions that are catalysed by at least one metal-

related enzyme (there can be multiple enzymes assigned to one reaction). Created using 

iPATHv3 110. 

c) Visualisation of the directed bi-partite graph representation of the S. cerevisiae Yeast8 GEM. 

Each metabolite and each reaction is represented by a unique node in the graph. Links in the 1995 

graph are directed (from substrate metabolite to reaction and from reaction to product) with 

irreversible reactions added twice (with links in both directions). The graph was created using 

the python igraph library and visualised using the Kamada Kawai method. Colours indicate 

whether each node has a metal-related annotation or not. Reaction nodes that map to at least 

one ORF with a metal-related annotation are marked purple and metabolite nodes with even 2000 

one direct link to a reaction node that is annotated as metal-related are also marked purple. All 

other metabolite and reaction nodes are marked teal.  

d) Metal related reaction nodes in the S. cerevisiae metabolic network are more central and 

connected compared to nodes without metal annotations. Each panel represents a different 

metric (HUB score, Eigenvector centrality and degree). X-axis: metal annotation status. Y-axis: 2005 

bars indicating the mean (bar height) of each metric in each category. Error bars represent ± 

standard error around the mean. Three stars above the bars represents a P value of < 0.001 

and two stars represent P value < 0.01 based on t-tests conducted between the two groups 

(metal related annotation and no metal related annotation) for each metric.  

e) Centrality metrics of reaction nodes annotated to bind each metal. X-axis: metal annotation of a 2010 

reaction node (‘usp’: unspecific annotation which indicates that an ORF mapping to the reaction 

node is annotated as having a metal binding or other connection to metals, but it is unclear 

which metal it is connected to). Y-axis: metric that was calculated using the python igraph 

library. Colour indicates the rank of each metal within each metric. Numbers at the top of the tile 
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plot indicate the total number of reaction nodes that were used for the calculation for each 2015 

metal. 

f) Fraction of the metabolic network that responds at the flux (simulated) and protein abundance 

(experimentally quantified) level to perturbations of metal availability. X-axis: metal annotation 

status. Y-axis: outer unfilled rectangle of bars represents the total number of enzymes 

measured or fluxes assessed in the simulation, inner filled bar represents the number of 2020 

enzymes for which a significant flux change through the enzyme was detected in the simulation 

(light green), protein abundance change was detected in linear models fit along environmental 

(cultivation media) metal concentration (dark blue) or cellular metal concentration (light blue) for 

at least one metal. Numbers above each bar indicate the percentage of fluxes or protein 

abundances that were significantly altered. 2025 

g) Metal responsiveness of the S. cerevisiae metabolic network. Light green colour indicating 

reactions through which a significant flux change was detected. Teal indicates those for which 

only enzyme abundance changes were detected at the protein level (based on linear models 

along either environmental (cultivation media) concentrations or measured cellular 

concentrations. Purple indicates reactions for which both the flux simulations and the 2030 

experimental protein abundance data indicate a significant change. Created using iPATHv3 110. 

h) The shortest distance to a metal-related node correlates with the likelihood that any node in the 

metabolic network will be affected by perturbed metal availability. X-axis: shortest distance in 

number of reactions from the nearest metal-related node (as calculated using igraph). Zero 

indicates that the reaction node itself maps to at least one ORF with a metal-related annotation. 2035 

Y-axis: outer unfilled rectangle of bars represents the total number of enzymes measured or 

fluxes assessed in the simulation, inner filled bar represents the number of enzymes for which a 

significant flux change through the enzyme was detected in the simulation (light green), protein 

abundance change was detected in linear models fit along environmental (cultivation media) 

metal concentration (dark blue) or cellular metal concentration (light blue) for at least one metal. 2040 

Numbers above each bar indicate the percentage of fluxes or protein abundances that were 

significantly altered at each distance from the nearest metal-related reaction node. 

i) Metal-related reaction nodes are more likely to bear multiple enzyme annotations compared to 

those without metal-related annotations. X-axis: metal annotation status. Y-axis: outer unfilled 

rectangle of bars represents the total number of reaction nodes that were assessed in each 2045 

group, inner filled bar represents the number of reaction nodes which had more than one 

enzyme annotation in the Yeast8 metabolic model. Numbers represent the percentage of nodes 

in each category that have more than one enzyme annotation. The difference between the two 

groups based on a Chi-square test was significant with a P value < 0.001. 

j) Selected examples of enzyme-pairs mapping to metal-related reaction nodes that exhibit 2050 

negative correlations in protein abundance. Each panel represents a different enzyme-pair 

indicated at the top of the panel. X-axis: log2(environmental (cultivation media) metal 

concentration). Y-axis: log2(fold difference in protein abundance in cells cultivated in metal 

perturbation condition relative to those cultivated in synthetic minimal control media). Colour is 

used to differentiate between the two enzymes in each pair and have no shared meaning 2055 

across panels. 
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 Supplementary Figures 

   2060 
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Supplementary Figure 1 

 

a) The number of experiments compiled by 12 that represent concentration perturbations of 2065 

physiological relevant metal ions (green) compared to all other types of environmental 

perturbations (red). 

b) Most experiments corresponding to concentration perturbations of physiologically relevant 

metals were conducted in rich media. X-axis: physiologically relevant metal or chelator 

condition, Y-axis: number of experiments compiled by 12 in which the metal was perturbed. 2070 

Colour indicates the type of media that was used as the base for perturbations (YPD: Yeast 

extract peptone dextrose, SC: synthetic complete, SD: synthetic defined (same as synthetic 

minimal media), LZM: Low zinc media, other YP: media composed of yeast extract and 

peptones but a different sugar source). 

c) Concentration of metal ions in each metal perturbation media as quantified by Inductively 2075 

Coupled Plasma - Mass Spectrometry (ICP-MS). X- axis: log2(theoretical metal concentration in 

each cultivation media - relative to synthetic minimal (control) media). Y-axis: log2(ICP-MS 

based measured concentration of each cultivation media - relative to synthetic minimal (control) 

media). Colour indicates metal being perturbed in media. Labels indicate the lowest and the 

highest relative metal concentrations that were measured. 2080 

d) Growth curves of Saccharomyces cerevisiae (WT BY4741+pHLUM) cells in media with 

perturbed metal concentration. X-axis: time (in hours), Y-axis: Optical Density (OD600). Colour 

indicates the media. Intensity of colour indicate the concentration of metal (light - dark 

corresponding to low - high concentrations) 

e) Comparison of estimation of total cellular metal concentration of each metal quantified in this 2085 

study and previous reports. X-axis: metal. Y-axis: log2(ICP-MS or ICP-AES based estimation of 

atoms per cell). Colour indicates the study. 

f) ICP-MS data collected across all batches for blanks (light blue), process blanks (darker blue), 

quality control samples (purple) and test samples (black).X-axis: batch number, Y-axis: 

log2(counts per second as measured by ICP-MS). Red lines indicate LOQ (limit of 2090 

quantification) = mean(blanks) +- 10*sd(blanks). 
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Supplementary Figure 2 

 

a) Number of proteins classified based as having no significant abundance change (null model) or 2100 

following a linear, quadratic or cubic protein abundance profile along environmental 

concentration of each metal based on the statistical analysis (F-test p-value < 0.05). X-axis: 

metal being perturbed in the environment. Y-axis: number of proteins. Colour indicates the type 
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of linear model that was deemed as the simplest model that explains the relationship between 

protein abundance and environmental metal concentration. 2105 

b) Summary of correlation between the quantitative proteomics dataset described in this study and 

previous work on Fe depletion. Right leaning ellipses and red colour indicate a positive 

correlation. Left leaning ellipses and blue colour indicate a negative correlation. 

c) - e) Correlation between quantitative transcriptome or protein abundance data from Fe depletion 

samples acquired in this study and three others, namely, 16 (c) , 15 d) and 13 (e).  2110 

f) Correlation between quantitative transcriptome or protein abundance data from Zn depletion 

samples acquired in this study and 17). 

g) GOslim - molecular function terms enriched in groups of proteins significantly differentially 

abundant along each environmental (left) and cellular (right) metal perturbation series. Colour 

indicates metal that was perturbed in the environment or measured in cells. 2115 
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 2140 

Supplementary Figure 3 

 

a) Visual summary of the ensemble clustering pipeline. 
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Supplementary Figure 4 

 2150 

a) Number of metal-gene interactions identified by cultivating the prototrophic haploid knockout 

(BY4741+pHLUM) collection of S. cerevisiae on agarose plates bearing depleted amounts of 

metals. X-axis: metal that was depleted in agarose plates. Y-axis: Number of genetic 

interactions identified (based on reduction or increase in growth of each mutant) 

b) GOslim - biological process terms enriched in genetic interactions with metals or differentially 2155 

abundant proteins identified in each dataset. Colours indicate the metal for which a process was 

enriched in the interacting genes or differentially abundant proteins. 

c) Number of metal-gene interactions identified based on metallomics data from S. cerevisiae 

knockout mutants acquired by Eide et al 2009 and analysed by Iacovacci et al 2021. X-axis: 

metal that was quantified in each mutant. Y-axis: Number of genetic interactions identified. 2160 

d) Number of metal-gene interactions identified based on metallomics data from S. cerevisiae 

overexpression mutants acquired by Yu et al 2012 and analysed by Iacovacci et al 2021. X-

axis: metal that was quantified in each mutant. Y-axis: Number of genetic interactions identified. 

e) Distribution of metal binding proteins differentially abundant in knockout mutants of metal 

binding proteins. X-axis: number of differentially abundant proteins in a knockout. Y-axis: 2165 

number of knockouts. Colour indicates the metal binding annotation of the protein encoded by 

the knocked-out gene. 
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Supplementary Figure 5 

 

a) Significantly altered fluxes based on FBA simulations (green), differentially abundant proteins 

identified along environmental metal concentration (blue) and cellular metal concentration (light 2200 

blue) at reaction nodes bearing at least one metal binding annotation. X-axis: metal that is 

annotated to bind to at least one enzyme that catalyses the reaction (“unsp”: unspecific - 

unclear which metal binds the enzyme). Y-axis: number of fluxes or proteins that were 

quantified (outer bar) and identified as significantly altered (filled up fraction of bar). 

b) Protein abundance profiles of the isozymes Adh3 (green, Zn- binding annotation only) and Adh4 2205 

(orange, Zn and Fe binding annotations) along environmental Fe concentration. X-axis: 

log2(environmental Fe concentration). Y-axis: log2(fold difference protein abundance vs control 

condition). 
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