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This paper investigates the impact of a lack of knowledge of the instrumental noise on the charac-
terisation of stochastic gravitational wave backgrounds with the Laser Interferometer Space Antenna
(LISA). We focus on constraints on modelled backgrounds that represent the possible backgrounds
from the mergers of binary black holes of stellar origin, from primordial black hole generation, from
non-standard inflation, and from sound wave production during cosmic fluid phase transitions. We
use splines to model generic, slowly varying, uncertainties in the auto and cross-spectral densities
of the LISA time delay interferometry channels. We find that allowing for noise knowledge uncer-
tainty in this way leads to one to two orders of magnitude degradation in our ability to constrain
stochastic backgrounds, and a corresponding increase in the background energy density required for
a confident detection. We also find that to avoid this degradation, the LISA noise would have to be
known at the sub-percent level, which is unlikely to be achievable in practice.

I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is
part of the European Space Agency Cosmic Vision
program and is due to be launched in the mid-2030s.
LISA will be the first observatory in space to study
gravitational waves (GWs) at mHz frequencies. It will
consist of a constellation of three satellites forming a
quasi equilateral triangle and continuously exchanging
laser beams [4]. LISA is expected to observe a large
variety of sources, such as galactic binaries (GBs),
massive black hole binaries (MBHBs) [29], stellar-origin
black hole binaries (SOBHB) [22, 31, 43], extreme-
mass-ratio inspirals (EMRIs) [8] and possibly stochastic
backgrounds arising from astrophysical and cosmological
processes [16].

When considering the science that can be done with
LISA, it is typical to assume a known model for the
instrumental noise in the detector data channels. How-
ever, these noise levels will not be known in practice.
This is also true for ground-based gravitational wave
detectors, but in that context spectral density estima-
tion is easier because signals are rare and short-lived,
allowing the spectral density to be estimated from data
in the vicinity of observed events. LISA signals, by
contrast, are typically long lived, which means that noise
and signal properties must be simultaneously estimated
by fitting a suitable model. While such methods and
models are still under development, it is expected that
the characterisation of deterministic signals will not
be significantly affected by lack of instrumental noise
knowledge (see Appendix B 4). The case of stochastic
GW backgrounds (SGWB) is different, however, as
these are intrinsically of the same character as the
stochastic instrumental noise. Searches for stochastic
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signals in ground-based interferometers rely on the
cross-correlation of data from independent detectors [3].
This would only be possible if there is another space-
based interferometer in operation concurrently, such as
Taiji [40], but this is not certain at the moment. Here
we explore the challenge of distinguishing between the
stochastic instrumental noise and a stochastic GW signal.

One approach is to use a model for the instrumental
noise. It is possible to derive analytical models that de-
scribe how different known noise sources propagate into
the LISA data stream. However, not all noise sources will
be known in advance, so we will not be able to strictly rely
on the models as we will not be able to perform full tests
and directly measure the noise. In the LISAPathfinder
mission [5] it was seen that at low frequency the ana-
lytical models couldn’t fully explain the measured noise.
Therefore, when we plan for LISA data analysis, we must
be prepared for uncertainty in the noise models.

The goal of this paper is to assess the impact of lacking
a noise model for LISA in parameter estimation of SG-
WBs. We consider four different models of cosmological
and astrophysical SGWBs: a power law to model signals
from stellar origin binary black hole inspirals, a Gaussian
bump to model a background from primordial black hole
generation, a power law with running to model a back-
ground from non-standard inflation and finally a first or-
der phase transition model, representing GW production
from sound waves in the cosmic fluid generated by col-
liding phase transition bubbles [16]. For each model, we
will take a reference amplitude that corresponds to a rel-
atively low signal to noise ratio (SNR) that is close to the
boundary for detection. These are the backgrounds that
will be most difficult to distinguish from instrumental
noise. We will also explore what happens as the back-
ground energy density is varied in each model.

We represent our lack of knowledge of the LISA
instrumental noise by multiplying a set of reference
auto- and cross-spectral densities with cubic splines. For
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the reference spectral densities we use the noise model
from [4], which includes only the so-called secondary
noises [33], the test mass (TM) acceleration and optical
metrology noise (OMS). This noise model assumes
that the laser noise [6], clock noise [46], tilt to length
coupling [23, 37] have been suppressed by the initial
noise reduction pipeline [24, 32]. To represent the fact
that we will have some amount of information from noise
modelling before launch, we place a Gaussian prior on
the weights of the cubic spline. By varying the Gaussian
variance we explore the effect of having more or less
knowledge of the noise.

Several previous studies have tackled the problem of
detecting a SGWB with LISA and distinguishing it from
the noise, but these have used different methods than
the one we employ in this paper. In [20] it was shown
that SGWB reconstruction was possible for generic
SGWB models, if the LISA instrumental noise can be
represented by just two parameters, representing the
level of TM and OMS noise, assumed equal for all arms
of the interferometer. The authors of [2, 26] allowed
the TM and OMS noises to differ from arm to arm, but
still assumed that these noises had a known spectral
shape as a function of frequency. In [10] an arbitrary
noise shape was allowed, described by a spline, but using
a simplified noise model for the single link. Finally,
[33] derived an upper bound on the detectable SGWB
amplitude when being agnostic on both the signal and
noise shape and discussed limitations of the utility of
the null channel for distinguishing between instrumental
noise and a stochastic GW background.

The paper is organised as follows: in Section II we in-
troduce the general data model that we use in the analy-
sis and we describe the Fisher matrix formalism that will
be used for this work. In Section IIC we describe the
spline model that we use to represent the uncertainties
in the power spectral density (PSD) and cross-spectral
density (CSD) of the instrumental noise. In Section IID
we give the analytical noise model for a single LISA link
that is used as the reference model, and the correspond-
ing PSDs and CSDs for the time delay interferometry
(TDI) channels, A, E and ζ. In Section II E we describe
how a stochastic signal appears in the three TDI chan-
nels and their cross-correlations, while in Section II F we
describe the models for the cosmological and astrophys-
ical SGWBs that we use in this paper. In Section IIIA
we show how well we can estimate the parameters of the
different SGWB models when we allow for uncertainty in
our knowledge of the instrumental noise. For each model,
we compare the precision of parameter estimation to that
when noise knowledge is perfect and show how the pa-
rameter precisions vary as a function of the background
energy density, Ω, evaluated at 1mHz. In Section III B
we show how the results change as we vary our priors
uncertainty on the instrumental noise. We conclude our
results in Section III C by showing how well the signal,

noise and galactic foreground can be reconstructed for a
power law SGWB background. Section IV summarises
our conclusions and future perspectives.

II. METHODS

A. Likelihood

We assume that the output of a gravitational wave
detector, s(t), is expressed as a linear combination of a
signal, h(t|µ⃗), determined by a finite set of (unknown)
parameters, µ⃗, and instrumental noise, n(t). If we ig-
nore the presence of calibration errors [42], the content
of a single data stream, i.e., one output channel from one
detector, can be written in the frequency domain as:

s̃(f) = h̃(f |µ⃗) + ñ(f), (1)

where the tilde indicates the Fourier transform. The
likelihood for the observed data can be written as
p(s̃(f)|µ⃗) = p(ñ(f) = s̃(f) − h̃(f |µ⃗)). In a gravitational
wave context it is usual to further assume that the in-
strumental noise follows a Gaussian distribution charac-
terized by a one-sided PSD, Sn(f), defined such that

E[ñ∗(f)ñ(f ′)] =
1

2
Sn(f)δ(f − f ′), (2)

for f , f ′ > 0, where the expectation value E is taken over
the data generating process. The delta function in the
previous equation implies that different frequencies are
not correlated.
In reality the noise model is not known perfectly and

could vary from the assumption above in a number of
ways. For example, the PSD might have a different shape
from the reference one [9], the probability distribution of
the noise might not be Gaussian, or the noise might not
be stationary, leading to correlations between frequen-
cies.
In this work we will continue to assume that the noise

is Gaussian and stationary, but we will allow the power
spectral density to vary using a parametrized spectral

density, Sn(f) → Sn(f |λ⃗), described by parameters λ⃗.
Then the log-likelihood depends on both sets of parame-

ters, µ⃗ and λ⃗, and can be written as:

l := ln p(s̃|µ⃗, λ⃗) = −
n∑

k=1

ln

[
2π

Sn(fk|λ⃗)
4∆f

]
− (3)

1

2

n∑
k=1

|s̃(fk)− h̃(fk|µ⃗)|2
1

4∆f Sn(fk|λ⃗)
(4)

where the sum is performed over n frequencies and
ñ(fk) = s̃(fk) − h̃(fk|µ⃗) are the discrete Fourier com-
ponent at frequency fk = k∆f , of the data minus signal
model. The frequency bin width, ∆f , is related to the
total observation time as T = 1/∆f . The first term does
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not include the 1/2 factor because the real and imagi-
nary parts of ñ(fk) are independent random variables.
This follows from the fact that, for a real time series,
ñ∗(f) = ñ(−f), which combined with Eq. (2) means that
⟨ñ(f)ñ(f ′)⟩ = 0 for f , f ′ > 0. This allows equation 2 to
be rewritten as

⟨ℜ[ñ(fk)]2⟩ = ⟨ℑ[ñ(fk)]2⟩ =
⟨|ñ(fk)|2⟩

2
=

Sn(fk|λ⃗)
4∆f

(5)

for a discrete set of frequencies.
Stochastic gravitational wave backgrounds are not de-

terministic signals and can be treated on the same footing
as the instrumental noise by defining the total variance
at frequency fk as

St(fk|θ⃗, λ⃗) = SGW(fk|θ⃗) + Sn(fk|λ⃗) . (6)

If we assume that all the deterministic sources have
been correctly subtracted from the datastream s the log-
likelihood becomes:

l(θ⃗, λ⃗) = −
n∑

k=1

ln

[
Tπ

St(fk|θ⃗, λ⃗)
2

]

− 1

2

n∑
k=1

|s̃(fk)|2
T
4 St(fk|θ⃗, λ⃗)

(7)

The derivation of this likelihood can be found in Ap-
pendix A.

B. Fisher matrix

We are interested in understanding the impact of noise
knowledge uncertainties on the parameter measurement
precision of stochastic gravitational wave backgrounds.
The Fisher information matrix provides a lower bound
on the covariance of an unbiased estimator of the model
parameters and provides a good approximation to the
precision of parameter estimation in the high signal-to-
noise ratio limit. We will therefore use it to quantify our

ability to measure both the noise parameters, λ⃗, and the

background parameters, θ⃗.
In a general context the Fisher matrix is defined by

Γij = E
[
∂l

∂υi

∂l

∂υj

]
= −E

[
∂2l

∂υi∂υj

]
(8)

where the expectation value E is taken over the data
generating process, and the partial derivatives are taken
with respect to the parameters, υ⃗, on which the likelihood
depends. We want to compute the Fisher matrix on the

extended parameter space υ⃗ = {θ⃗, λ⃗}.
It can be shown that the expectation value of the prod-

uct between the derivative of the log-likelihood with re-
spect to deterministic and stochastic parameters is zero.
Therefore, at the level of the Fisher matrix approxima-
tion it can be shown that the estimation of the noise

and deterministic signal parameters is independent (see
Appendix B 4).
For SGWBs, we can compute the Fisher matrix in con-

tinuous domain as:

Γij = T

∫ ∞

0

(Σ−1)lr
∂Σrp

∂υi
(Σ−1)pm

∂Σml

∂υj
df . (9)

with

Σ(f |υ⃗ = {θ⃗, λ⃗}) = 1

2

 SAA
t SAE

t SAζ
t

SAE∗
t SEE

t SEζ
t

SAζ∗
t SEζ∗

t Sζζ
t

 . (10)

where each element of the matrix can be written as a
sum of an instrumental noise component and a stochas-
tic gravitational wave component as indicated in Eq. 6.
A complete derivation of this formula can be found in
Appendix B.
Prior knowledge on the noise can be incorporated by

imposing a prior on the instrumental parameters, λ⃗.
When doing numerical marginalisation any prior can be
imposed, but in the Fisher matrix formalism it is easiest
to work with a Gaussian prior [42]. The posterior covari-
ance is then given by the inverse of the modified Fisher
matrix:

Γ =

(
Γθθ Γθλ

(Γθλ)T Γλλ +Θλλ

)
(11)

with normal prior on the instrumental noise parameters
with zero mean and covariance given by (Θλλ)−1. The
diagonal elements of the inverse of this matrix provide
estimates for the precision with which the corresponding
parameters can be measured. The estimated precision
of measurement of the SGWB parameters accounting for
noise model uncertainty is thus given by the diagonal
elements of the matrix:

σθ =
√
diag[(Γθθ − Γθλ(Γλλ +Θλλ)−1(Γθλ)T )−1] (12)

Note that in the limit in which the instrumental noise
parameters are perfectly known Θ → ∞ and the mea-
surement precision of the SGWB parameters is given by
σθ =

√
diag[(Γθθ)−1].

C. Modeling noise knowledge uncertainties

To model noise uncertainties, we allow the PSD and
CSD of the instrumental channels to deviate from the
design specification. However, we assume that such de-
viations vary smoothly over a relatively wide range of
frequency and model the noise uncertainties as fractional
deviations from the design PSD/CSD that are described
by natural cubic splines. We write the PSD of the in-
strumental noise in each channel as:

Sn(f |λ) = Sdes(f) 10
C(f |λ⃗) , (13)



4

where C(f |λ⃗) is a natural cubic spline. The parameters

λ⃗ specify the values of the spline at the knots, labelled by
i. In this study we use knots evenly spaced in log10(f)
between log10(f) = −4 and log10(f) = 0 and we fix
the number of knots to 13. Noise curves corresponding
to this model, with the weights at each knot drawn
randomly from a log10(f) ∼ U [−1, 1] distribution, are
shown in fig. 1. We note that this choice of prior means
we are allowing approximately one order of magnitude
variation in the PSD. When we evaluate the Fisher
matrix we will always do so at the reference point where
the weights of the spline are zero, i.e., where the PSD is
equal to the reference value shown in Fig. 2.

We cannot follow the same procedure for specifying the
CSD, because the reference model is smaller by 1 or even
2-3 order of magnitude a low frequency with respect to
the PSD (see Fig. 3 and Fig. 2). It was shown in [26]
that when the LISA response is constructed allowing for
unequal noises in the different laser links, the CSD can be
much larger and become comparable to the PSD. Since
our goal is to allow the splines to vary in such a way to
mimic un-expected and un-modelled noise components
with respect to the simplified scenario (three unequal but
fixed-length arms) we model the CSD as1:

Sn(f |{λi}) =√
Sdes,i(f)Sdes,i(f)σR 10C(f |{log10(fi)},{λi})

+
√
Sdes,i(f)Sdes,i(f) iσI 10

C(f |{log10(fi)},{λi})

(14)

where we fix σR = 0.1, σI = 0.8σR. We do not ex-
pect that varying the relationship between σI and σR

to significantly change the conclusions; although we fix
σI slightly smaller than σR accordingly to Fig. 3. There
at lower frequencies the imaginary components are about
1 order of magnitude smaller than the real components.
The indexes i and j run over the number of detectors or
channels with i ̸= j. The additional factors σI and σR

are used to limit the amplitude, and allow us to model
the CSD as a sum of splines times the geometric mean
of the square root-PSDs. Using the (scaled-)geometric
mean of the PSDs as a reference for the CSD rather than

1 In principle our model does not force the matrix to be positive
definite. We are forcing the reference spectral density matrix to
be positive definite, but in principle we could have a factor of
10 variation in the CSD while the PSD is unchanged. It doesn’t
matter for the Fisher matrix because this is a local approximation
and we are evaluating it at a point where the matrix is positive
definite. The CSD at the central point is 0.1 of its maximum
value, so in an open set around that point it will be positive
definite and thus all derivatives are well defined. The conclusion
is that the model used here is fair for what we want to demon-
strate but would not be a suitable model to use when analysing
the data.

10 4 10 3 10 2 10 1 100
Frequency [Hz]

10 1

100

101

S n
(f)

/S
de

si
gn

(f)

FIG. 1. Deviations from the design power spectral density
obtained using the cubic spline model, with λi ∼ U [−1, 1],
and with knots equally spaced between log10(f) = −4 and
log10(f) = 0. The plot shows the ratio of the total PSD and
the design one for different parameter realizations λi.

the CSD of the reference equal-noise configuration, al-
lows for much larger CSD variations. This is consistent
with the results presented in [26].
It is important to state that our model is not com-

pletely general since we are imposing a certain amount
of smoothness in the PSD variation, and consequently
in the CSD, when we specify the number and spacing of
the knots. Thus we are not able to fit for all possible
noise scenarios. In particular, this model does not
attempt to reproduce the zeros of the TDI transfer
functions faithfully. This will become important above
f ∼ 0.05Hz, but this should not affect our results as the
SGWBs we consider do not have much power at those
frequencies, as can be seen from Fig. 6. Other models
could be considered, for example by imposing the spline
variations at the level of the noise in individual laser
links (generalising the approach taken in [10]), before
applying the TDI transfer function. This should be ex-
plored in the future, but this would increase the number
of parameters further so we might expect there to be
additional degeneracies, which would lead to practical
difficulties in fitting noise and signal simultaneously.
However, for the purpose of the current study, the model
we use is adequate to represent generic, slowly varying,
fluctuations in the PSD and CSD.

D. Noise at the TDI input and outputs

Here, we present the instrumental noise model used
to define the reference PSD in this work. Among the
different noise sources for LISA, the laser noise is the
main source of noise, which must be reduced by eight
orders of magnitude by applying a post-processing
technique called time delay interferometry (TDI) [45].
TDI synthesises an equal arm-length interferometer by
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appropriately delaying and combining the interferomet-
ric measurements in many different ways to form TDI
channels free from laser noise. The standard second
generation TDI channels (unequal and time varying
arm-length) are the Michelson interferometer channels,
X, Y and Z, from which we form the more GW sensitive
channels, A and E [39]. Together with the GW sensitive
channels we consider a null channel, the ζ channel [35]
that is less sensitive to GWs and can in principle be
used as a noise monitor.

In the current work we will assume that laser noise
has already been reduced thus we can work directly with
the first generation TDI [27], allowing us to consider
three unequal but fixed arm-lengths. This choice should
not significantly affect the conclusions of the analysis
but simplifies the transfer function derivations.

We also assume that all known calibrated and mea-
sured instrumental noise sources have been subtracted,
such as the optical tilt to length cross-coupling to
spacecraft motion and clock noise ([23], [18] and [25]).
The remaining noises, for which we have neither a mea-
surement for coherent subtraction nor a high precision
a priori model [33], fall into two broad categories, the
acceleration noise of each individual test-mass (TM) and
an overall optical metrology system (OMS) noise term
for each single link measurement (see [36] for the case of
multiple OMS noise terms).

We represent the TM acceleration noise PSD of a single
TM by Sgij . To directly compare the OMS and TM con-
tributions we can directly convert the acceleration noise
of a single TM to an equivalent displacement, whose PSD
is given by

Sdisp
gij = Sgij/(2πf)

4 (15)

where f is the Fourier frequency. We denote the time
series associated with this displacement as xg

ij(t). We

also define the PSD of the OMS noise as Somsij (f) and
we denote the time series of the single OMS as xm

ij (t).
All TDI combinations can be constructed from a com-
bination of single link TM to TM measurements. Such
measurements are represented by the intermediary vari-
ables [24]:

η̃Nij (ω) = x̃(ω)gjie
−iωLji + x̃(ω)gij + x̃(ω)mij , (16)

where η̃Nij (ω) is the noise in a single link measurement,
the first index i indicates the spacecraft where the mea-
surement is performed at time t, and the second index
j indicates the distant spacecraft from which light was
emitted at time t− τ , and ω = 2πf . Equation 16 implies
that each single link measurement contains TM noise
terms from the distant and local spacecraft, such that the
TM noise appearing in the measurements on the two ends
of the same arm is correlated (between the two links):

⟨η̃Nij (ω)η̃Nji (ω)⟩ ≠ 0 (17)

From these measurements it is possible to build any TDI
channels [6, 34] and therefore the corresponding first gen-
eration orthogonal channels A1 and E1 [27] that will be
used in this work:

A1 =
Z1 −X1√

2
, E1 =

X1 − 2Y1 + Z1√
6

. (18)

The X1 variable is defined as:

X1 =(D13D31 − 1)(η12 +D12η21)

+ (1−D12D21)(η13 +D13η31) , (19)

where the delays Dij corresponds to a constant time
shift and thus in frequency to F{Dij} = e−iωLij . The
Y1 and Z1 are given from X1 by cyclic permutations of
the three satellites. The fully symmetric channel, ζ1, is
defined by:

ζ1 = D12(η31 − η32) +D23(η12 − η13) +D31(η23 − η21) .
(20)

The assumed model for the TM acceleration noise is

E
〈
x̃g
ij(f)x̃

g∗
lm(f ′)

〉
=

1

2
δilδjmδ(f − f ′)Sgij (f)

Sgij (f) =

(
3× 10−15 m

s2
√
Hz

)2

(21)

×

(
1 +

(
0.4 mHz

f

)2
)(

1 +

(
f

8 mHz

)4
)
,

and for the OMS noise

E
〈
x̃m
ij (f)x̃

m∗
lm (f ′)

〉
=

1

2
δilδjmδ(f − f ′)Somsij (f)

Somsij (f) =
(
15 pm/

√
Hz
)2

×

(
1 +

(
2 mHz

f

)4
)
,

(22)

This model assumes that individual noise components
are uncorrelated. In reality the test masses in the same
satellite will share environmental noise, such as temper-
ature fluctuations, so this assumption might not hold.
However, this model serves as a reference one, and any
variation is captured by the flexible spline model previ-
ously presented.
To derive the PSDs and CSDs of the TDI channels A,

E and ζ, as illustrated in [35], one can express the arm-
lengths Lij in terms of the breathing modes of the LISA
triangle, δa and δb as:

L12(t) = L

[
1 +

1

2

(√
3 δa − δb

)]
, (23a)

L23(t) = L (1 + δb) , (23b)

L31(t) = L

[
1− 1

2

(√
3 δa + δb

)]
. (23c)
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FIG. 2. Reference Amplitude spectral density for the Time
delay interferometry channels A, E and ζ considering only test
mass acceleration and optical metrology noise and assuming
a constellation of three fixed unequal arm-lengths.
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FIG. 3. Real and imaginary part of the reference square root
of the cross spectral density for the time delay interferometry
channels AE, Eζ and Aζ considering only TM acceleration
and OMS noise and assuming a constellation of three fixed
unequal arm-lengths.

The full expressions are rather long thus we give them in
a separate Mathematica notebook file (noise-analytical-
model) and we plot them in Fig. 2. The Amplitude
spectral density (ASD) are computed in terms of δa and
δb. Indeed, while L = (L12 + L23 + L31)/3 ≈ 8.3 s is the
average arm-length, the small parameters δa and δb are
typically ∼ 0.005 − 0.009 for realistic ESA orbits [14].
The case δa = δb = 0 corresponds to the equal-arm LISA
scenario.

We consider that the six TMs have the same PSD as
well as the six OMS noise terms, but this suppresses the
contribution in the CSD. It was shown in [26] that if the
levels of the noises differ by 20% then the CSD can be
10% of the PSD at low frequencies and several tens of
percent at high frequency. This motivates the particu-
lar choice of flexible CSD model that we introduced in
Eq. (14) and is illustrated in Fig. 4.
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z1/
2 ] E  spline real

AE spline real
A  spline real

E  spline im. 
AE spline im.
A  spline im.

FIG. 4. Real and Imaginary part of splines-square root cross
spectral density for the time delay interferometry channels
AE, Eζ and Aζ considering test mass acceleration and optical
metrology noise assuming a constellation of three fix unequal
arm-lengths

E. Signal transfer function

The detector response to a stochastic background can
be computed by expressing a GW signal as a superpo-
sition of plane waves, and by assuming that the LISA
constellation has static arm lengths and is in a flat back-
ground spacetime. Following [26], it is possible to show
that the component of the single link measurement ηij(t)
due to a GW is given by:

ηGW
ij (t) = i

∫ ∞

−∞

{
f

fij
e2πif(t−Lij)

∫ [
e−2πifk̂·x⃗i

∑
A

ξAij (f, k̂)h̃A(f, k̂)

]
dΩk̂

}
df,

(24)

where i stands for imaginary component, fij =
(2πLij)

−1, x⃗i denotes the position of satellite i, A =

+, × denotes the GW polarization, h̃A(f, k̂) is the
Fourier transform of the GW signal, f is the GW fre-

quency, k̂ the outward vector in the direction of the in-
coming GW and dΩk̂ is the infinitesimal solid angle.
The above expression quantifies the fractional frequency
shift due to a superposition of plane waves coming from

different directions k̂.
The term ξAij projects the incoming wave with polariza-
tion A onto the detector, and its functional dependence
is given by:

ξAij

(
f, k̂
)
= e−2πifk̂·L⃗ijMij(f, k̂) GA(k̂, l̂ij) , (25)

where

Mij(f, k̂) ≡ eπifLij(1+k̂·l̂ij) sinc
(
πfLij(1 + k̂ · l̂ij)

)
(26)

https://github.com/martinaAEI/noise_knowledge_uncertainty.git
https://github.com/martinaAEI/noise_knowledge_uncertainty.git
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and

GA(k̂, l̂ij) ≡
l̂aij l̂

b
ij

2
eAab(k̂) , (27)

where l̂ij = (x⃗j − x⃗i)/|x⃗j − x⃗i| is a unit vector point-

ing from spacecraft i to j and eAab(k̂) denotes the GW
polarization tensors.

For an a homogeneous, isotropic and non-chiral,
stochastic background, the GW signal is only specified
statistically

⟨h̃A(f, k̂) h̃
∗
B(f

′, k̂′)⟩ = δ(f − f ′)δ(k̂ − k̂′)δAB
PAB
h (f)

16π

and

⟨h̃A(f, k̂) h̃B(f
′, k̂′)⟩ = 0 .

Homogeneity and isotropy implies that PAB
h (f) is diag-

onal, whereas the non-chirality implies P××
h = P++

h , so
that we can define Ph :=

∑
A PAA

h .
We characterise the response of the individual links to

a stochastic background statistically

⟨η̃GW
ij η̃GW

mn ⟩ = 1

2
Sη,GW
ij,mn (f)δ(f − f ′) , (28)

where spectral densities for the link measurements are
given by

Sη,GW
ij,mn (f) =

f2

fijfmn
e−2πif(Lij−Lmn)

∑
A

PAA
h (f) ΥA

ij,mn(f) ,

(29)
with:

ΥA
ij,mn(f) =

∫
dΩk̂

4π
e−2πifk̂·(x⃗i−x⃗m) ξAij (f, k̂) ξ

A
mn(f, k̂)

∗ .

(30)
The power spectral densities of the signal in the TDI

variables described in sec. IID can then be computed
from

⟨Ũ(f)Ṽ ∗(f ′)⟩ = 1

2
SGW
UV (f)δ(f − f ′)

SGW
UV (f) =

∑
ij,mn∈I

cUij(f)c
V ∗
mn(f)S

η,GW
ij,mn (f) , (31)

where Ũ and Ṽ denote any two TDI variables,
which in our case are TDI A, E and ζ, and
I = {12, 13, 23, 21, 31, 32} denotes the set of pairs
of indices that define the six inter-satellite links. The
coefficients cUij/mn map the single-link measurements

onto the TDI variable U . Refer to the Mathematica
code for the computation of such coefficients (noise-
analytical-model).

Note that considering each polarization of the SGWB
contributes equally to the background, i.e. P××

h = P++
h ,

we can rewrite Eq. (31) as a product of the SGWB
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FIG. 5. Upper panel: Gravitational wave transfer functions
T GW (f) of the three time delay interferometry channels A,E
and ζ assuming a constellation of three fixed unequal arm-
lengths; lower panel: real and imaginary components of the
gravitational wave transfer functions T GW (f) of the time de-
lay interferometry channels AE, Eζ,Aζ.

spectral density Ph(f) and a transfer function T GW (f)
which takes into account the LISA detector response, i.e.
SGW
UV (f) = T GW (f)Ph(f).

SGW
UV (f) would correspond to the first term on the right

hand side of Eq. (6). The transfer functions for the three
TDI channels and their cross correlation are shown in
Fig.5.

F. SGWB Signal models

There are a large variety of models for stochastic grav-
itational wave backgrounds that might manifest in the
LISA band [1]. In this work we focus on four models,
which can be described by their energy density, h2ΩGW

[15], which is a function of some parameters, θ:

• Power law:

h2ΩGW (f) ≈ A

(
f

fp

)n

, (32)

where fp is the pivot frequency, defined as the
geometrical mean of the LISA frequency interval

https://github.com/martinaAEI/noise_knowledge_uncertainty.git
https://github.com/martinaAEI/noise_knowledge_uncertainty.git
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(10−4 Hz, 0.1 Hz), fp = 3mHz. The model pa-
rameters are the log-amplitude, A, and slope, n
[7, 30]. We use reference values of n = 2/3 and
A = 7.87× 10−13, representing a SGWB from stel-
lar origin black hole binaries that has energy den-
sity at 1mHz of h2ΩGW (1mHz) = 3.78 × 10−13.
This value was chosen to be compatible with LIGO-
VIRGO-KAGRA constraints [7]

• Gaussian bump:

h2ΩGW = Ae
− 1

2σ2 ln( f
fp

)2
, (33)

where fp is the pivot frequency as before. The
model parameters are the log-amplitude, A, and
width, σ. We use reference values of A = 10−12.48

and σ = 0.3 whose energy density at 1mHz is
h2ΩGW (1mHz) = 4.05× 10−16. This signal is cho-
sen as a simple way to mimic the one which might
arise from particle production taking place for a
limited number of e-folds during inflation (as, for
instance, required by some models of primordial BH
generation). (See e.g. [11, 12, 21] )

• Power law with running:

h2ΩGW = A

(
f

fp

)n+α ln( f
fp

)

, (34)

where fp is the pivot frequency as before. The
model parameters are the log-amplitude, A, the
slope, n, and the running index, α. We use ref-
erence values of A = 10−12.65, n = 1 and α = −0.1.
This signal is motivated by non-standard inflation-
ary models. For example, gravitational wave gen-
eration can be enhanced by sustained particle pro-
duction during inflation, leading to a power law
stochastic GW background, which would deviate
from a simple power law at higher frequency when
back-reaction kicks in (see e.g. [13]). The energy
density at 1mHz is h2ΩGW (1mHz) = 6.61× 10−14

• First Order Phase Transition:

h2ΩGW (f) = h2Ωp

(
f

fp

)3
 7

4 + 3
(

f
fp

)2
n

, (35)

where fp = 2 · 10−4 Hz (note this is different to the
reference frequency in the previous models). The
model parameters are the energy density, h2Ωp,
and spectral index, n. We use reference values of
A ≡ h2Ωp = 10−10 and n = 7/2 whose energy
density at 1mHz is h2ΩGW (1mHz) = 2.59×10−12.
This signal is motivated by the production of sound
waves in the cosmic fluid from colliding phase tran-
sition bubbles [17, 28].

In our analysis, we also include the contribution to the
spectral density from the foreground of galactic binaries
(GB). We use the following model for the foreground [1]:

• Foreground of Galactic Binaries:

SGB(f) =AGB

(
f

Hz

)− 7
3

e−(f/f1)
α

× 1

2

[
1 + tanh

(
fknee − f

f2

)]
(36)

with:

f1 = 10a1 log10(T )+b1 , fknee = 10ak log10(T )+bk

.

setting A = 1.15 · 10−44; α = 1.56; a1 = −0.15; b1 =
−2.72; ak = −0.37; bk = −2.49; f2 = 6.7 × 10−4Hz.
When considering the background in conjunction with
other SGWBs we allow the amplitude to vary, but keep
the other parameters fixed.

The relation between the energy density ΩGW and the
stochastic GW background power spectral density Ph(f)
is given by [15]:

ΩGW (f) =
4π2

3H2
0

f3Ph(f), (37)

where H0 is the Hubble constant fixed to be 67.8
km/s/Mpc, as a consequence h = 0.678. The conversion
between the energy density ΩGW (f) and gravitational
power spectral density Ph(f) used to compute Eq.(31) is
then [15]:

Ph(f) = 7.98× 10−37

(
Hz

f

)3

h2ΩGW (f)
1

Hz
, (38)

.

We report in Fig. 6 the ASD of the four SGWB models
together with the ASD of the reference instrumental
noise in TDI channel A. [9]

We also provide the computation of the SNRs of these
different backgrounds in the TDI channel A using the
following formula [44]:

SNRA =
√
T

[∫ ∞

0

SGW
AA (f)2

SA
n (f)

2
df

]1/2
(39)

with an observation time span of T = 4 years. Here
SGW
AA (f) is the spectral density in channel A that can be

computed from Eq. (31) and SA
n is the PSD of the A

channel. The results2 are shown in Table I.

2 We note that this formula is derived assuming that we have access
to two independent channels that have uncorrelated noise and
perfectly correlated signals. This is not a good approximation to
LISA, so the SNR is not directly interpretable. However, it still
provides an indication of the relative detectability of different
backgrounds.
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FIG. 6. Amplitude spectral density of the stochastic GW
background models and the amplitude spectral density of the
reference test mass and optical metrology noise in the time
delay interferometry channel A.

SGWB Model SNR w/o GB SNR w/ GB

Power law with running 14.54 13.35
Power law 48.70 42.89

Gaussian bump 13.51 11.65
First order phase transition 118.68 64.18

TABLE I. Signal to noise ratio in TDI channel A for the four
SGWB models, with and without the presence of the galactic
foreground as an additional noise component. The galactic
foreground here considered has an SNR of 1627.39

It is possible to notice that including the foreground as
part of the noise (SA

n (f) := SA
GB(f) + SA

n (f)) leads to
a substantial decrease of the SNR for the FOPT back-
ground but the SNR does not change very much for the
other models.

We plot in fig. 7 the value of the SNR in channel A
vs. the energy density at 1mHz for the different models.
The dotted lines assume no presence of the foreground,
whereas the continuous lines include the presence of the
foreground. As expected there is a direct correlation be-
tween increasing the energy density and an increase in the
SNR. Moreover, the presence of the foreground mostly af-
fects the SNR of the FOPT. In fact, in the presence of the
foreground the energy density must be two times larger
to have the same SNR as it would in the absence of a
foreground.

III. RESULTS

A. Impact of instrumental noise knowledge
uncertainty on SGWB recovery

Here, we explore how the measurement precision of the
SGWB parameters changes in the presence of instrumen-
tal noise knowledge uncertainty, for each of the SGWB
models described in Section II F. We use the Fisher ma-
trix formalism described in Section II B, which assumes

100 101 102 103 104

SNR TDI A

10 17
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10 11

1m
H

zh
2  

 Time delay interferometry channel A 

Power law with running
Power law
FOPT
Gaussian bump

Power law and GB
Power law with running and GB
FOPT and GB
Gaussian bump and GB

FIG. 7. Signal to noise ratio of four different SGWB signals
in the TDI channel A, Power law, Power law-with-running,
Gaussian bump and First order phase transition, versus the
energy density at 1mHz, both considering (continuous lines)
or not (dashed lines) the presence foreground

that the noise is uncorrelated at different frequencies. We
assume we use three TDI channels in our analysis, A, E
and ζ, as described in Section IID. We model uncertain-
ties in the PSD and CSD at each frequency following
the model described in Section IIC. To build the Fisher
matrix we need the following elements:

1. The derivatives of the PSD and CSD at each
frequency with respect to the parameters of the
SGWB model.

2. The derivatives of the PSD and CSD at each fre-
quency with respect to the parameter (amplitude)
of the Galactic Binaries. The addition of this pa-
rameter extends the dimension of the Fisher matrix
by one.

3. The derivatives of the PSD and CSD at each fre-
quency with respect to the parameters of the instru-
mental noise model. The instrumental noise model
is based on 9 different splines: 3 splines to model
the PSD of A, E and ζ, and 3 splines each for real
and imaginary parts of the CSDs for AE, Aζ and
Eζ. Each spline has a number of parameters equal
to the umber of knots, which we take to be 13. The
total number of noise parameters is therefore 9 x 13
= 117.

4. The evaluation of the Fisher matrix from these el-
ements using Eq. (9), which is summed over fre-
quency.

5. The choice of a prior on the instrumental noise pa-
rameters. We use a Gaussian prior, which is imple-
mented in the Fisher matrix formalism by adding
the prior matrix to the Fisher matrix before com-
puting its inverse (see Eq. (11)). For this first study
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we take the priors on each noise parameter to be
independent, with zero mean and equal variance,
σinst. In this section we fix σinst = 1, which means
we are allowing for up to an order of magnitude
uncertainty in the instrumental noise at each fre-
quency.

6. We compute the inverse of the Fisher matrix after
adding the prior to obtain an estimate of the mea-
surement uncertainty, from the square root of the
diagonal elements of the inverse as explained in Sec.
II B. We also compute the inverse of the SGWB-
parameter only sub-matrix of the Fisher matrix,
which represents the expected uncertainty in the
absence of instrumental noise uncertainties.

For each SGWB model we will present the results in two
different ways. Firstly, we will show the ratio of the
uncertainties in the SGWB parameters in the presence
of instrumental noise uncertainties to those uncertain-
ties when perfect knowledge of the instrumental noise is
assumed. These results illustrate the impact of lack of
noise knowledge on SGWB characterisation. Secondly,
we will show the actual uncertainties in the SGWB pa-
rameters, as computed from the Fisher matrix. Of par-
ticular interest is the uncertainty in the log-energy den-
sity of the background. As a rule of thumb, a back-
ground will be detectable if the uncertainty ∆ ln(A) < 1 (
∆ ln(A) = (∆A)/A). In both cases, we will plot results as
a function of the background amplitude/the background
energy density at a reference frequency of 1mHz (the log-
arithm of these quantities are linearly related, so they can
be easily represented using bottom/top axes in a single
figure). For the second type of plot, solid lines show re-
sults in the presence of noise knowledge uncertainty, and
dashed lines give results assuming perfect noise knowl-
edge. In both the analysis we consider the foreground
amplitude to vary and we consider it as additional source
of noise together with the instrumental noise.

1. Power law

A power law SGWB is described by two parameters:
the slope and the amplitude. The full Fisher matrix, in-
cluding instrumental noise and foreground parameters, is
120× 120. Figure 8 shows the results computed for this
model. We see that in the presence of instrumental noise
uncertainties, the uncertainty in the SGWB parameters
increases by a factor of ∼ 55–60, with the uncertainty in
the slope being slightly more affected than that of the
amplitude. The increase is lower for high background
amplitudes, as expected, but only when the background
is one to two orders of magnitude brighter than the ref-
erence value. Considering the raw uncertainties, we see
that the uncertainty in the log-energy density is typically
a factor of ∼ 50 larger and the background energy den-
sity would have to to be a factor of ∼ 50 times higher
to be characterised with the same measurement precision
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FIG. 8. Results for the power law SGWB model considering
the foreground as additional source of noise. The upper panel
shows the ratio of the uncertainties of the SGWB parameters
(amplitude and slope) when including instrumental noise un-
certainties or assuming perfect noise knowledge. This ratio is
plotted versus the amplitude (bottom axis) and SGWB en-
ergy density at 1mHz (top axis). The lower panel shows the
estimated parameter uncertainties for the two cases. Once
again this is as a function of amplitude/energy density, but
for a restricted range. The horizontal red dashed line cor-
responds to an uncertainty of one, which is our threshold on
the uncertainty in log-energy density for deciding that a back-
ground is detectable. The vertical red dashed line indicates
the reference SGWB amplitude given in Section II F.

when there is instrumental noise uncertainty as it could
be without those uncertainties. However, a background
with amplitude equal to the reference value should (just)
be detectable even allowing for confusion with instrumen-
tal noise mismodelling.

2. Power law with running

For the power law with running SGWB, the fisher ma-
trix is 121 × 121, as the SGWB model depends on 3
parameters: slope, amplitude and running index, α. The
results for this model are shown in fig. 9. In this case
we see that the uncertainties in the SGWB parameters
increase by a factor of ∼ 30–75, with the uncertainty
on the amplitude being most affected in this case. Once
again, the relative increase in the uncertainty is some-
what lower at higher background amplitudes. The lower
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FIG. 9. As Figure 8, but now for the power-law with running
SGWB model

panel of fig. 9 shows that the background is not detectable
at the reference amplitude. An energy density ∼ 20 times
higher would be required for a detection. In general, the
background has to have an energy density ∼ 60 times
higher to be characterised with the same measurement
precision when there is instrumental noise uncertainty as
it could be without those uncertainties and there is a sim-
ilar increase in the parameter measurement uncertainty
at fixed background energy density.

3. Gaussian bump

As for the power law, the Fisher matrix is a 120× 120
as we have 2 signal parameters: the Gaussian width and
the amplitude. The results for this model are shown in
Figure 10. In this case, the degradation in the precision
of parameter measurement is a factor of ∼ 2–8 when al-
lowing for lack of knowledge of the instrumental noise.
This difference in behaviour is related to the different
shapes of the SGWBs being considered. A Gaussian is
more distinct from the spline model being used to rep-
resent the instrumental noise uncertainties than a power
law, and hence the degree of confusion between the two
models is less in this case. From the lower panel of Fig-
ure 10: we see that the energy density in a Gaussian
bump SGWB has to be a factor of ∼ 10 times higher for
it to be characterised with the same measurement pre-
cision when there is instrumental noise uncertainty as it
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FIG. 10. As Figure 8, but now for the Gaussian bump
SGWB model

could be in the absence of those uncertainties. A Gaus-
sian bump background at the reference amplitude would
be detectable, and the width of such a Gaussian could be
measured to a few tens of percent precision. This mea-
surement precision improves approximately linearly with
the background energy density.

4. First order phase transition

The FOPT model is again characterised by two pa-
rameters, an amplitude and a spectral index, and has
a 120 × 120 Fisher matrix. The results for this model
are shown in Figure 11. When allowing for instrumental
noise knowledge uncertainties, the precision with which
the SGWB log-energy density can be characterised de-
grades by a factor of ∼ 20. The degradation in the de-
termination of the spectral index is even larger, ∼ 35.
Once again, to achieve the same measurement precision,
the background energy density would have to be ∼ 20
times larger than it would need to be in the absence
of noise knowledge uncertainties. Nonetheless, a FOPT
background at the reference amplitude would still be de-
tectable and provide a measurement of the spectral index
at the level of ∼ ±0.8.
The previous results were computed considering the

presence of the galactic foreground. In the appendix
C we report similar results, computed without taking
into consideration the Galactic foreground. Redoing
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FIG. 11. As Figure 8, but now for the first order phase
transition SGWB model

these analyses ignoring the foreground we do not see big
differences in the uncertainty ratio, nor in the absolute
uncertainties, when these are compared at fixed SNR,
i.e., when the signal-to-noise ratio is recomputed without
the galactic binaries included in the spectral density.
To illustrate this, we show in Fig.12 the precision
of the measurement of the log-energy density of the
background, as a function of the SNR in TDI channel
A, for all SGWB models and both including and not
including the galactic binary foreground. We see that
the uncertainty is typically larger when the foreground
is present, but this is typically less than a factor of a
few. The Gaussian bump and power law background are
most affected, with the uncertainty at fixed SNR and the
SNR required for detection both decreasing by a factor
of a few when the galactic binary background is removed
from the spectral density. For the Gaussian bump, the
uncertainty decreases by a factor of a little more than
two when the Galactic background is excluded, and the
SNR needed to reach the ∆ ln(A) < 1 threshold for
detection decreases by a similar factor. For the power
law, the uncertainty decreases by about a factor of 4,
and the ∆ ln(A) < 1 threshold required for detection is
reached at an SNR that is a factor of ∼ 4 smaller. For
the power law with running and the FOPT backgrounds,
the uncertainty at fixed SNR is almost unchanged, and
the threshold SNR for detection is within a factor of 1.5
and 2, respectively.
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FIG. 12. Signal to noise ratio of four different SGWB signals
in the TDI channel A, Power law, Power law-with-running,
Gaussian bump and First order phase transition, versus the
error in log amplitude both considering (continuous lines) or
not (dashed lines) the presence foreground

This behaviour can be understood by looking at the
shapes of the various SGWBs in Figure 6. Figure 7
demonstrates that the removal of the foreground does
not affect the SNR very much. The only SGWB that
shows a significant change is the FOPT, for which most
of the power is at frequencies where the foreground is sig-
nificant. However, in the region around 300µHz, where
the majority of the SNR is generated, the shape of the
FOPT is very different to the foreground. This is also
true for the power-law-with running model around 5mHz,
where the majority of its SNR is generated. The power-
law model, on the other hand, is quite parallel to the
foreground at low frequency, and the Gaussian bump is
quite parallel to the foreground at a few mHz. This most
likely explains why the latter two backgrounds are more
difficult to distinguish from a galactic foreground, and
therefore more affected by its inclusion.

B. Setting a noise knowledge requirement

In this section we will now explore how the amount
of uncertainty in the instrumental noise impacts the
results. In practice we will not be completely ignorant
of the instrumental noise. Measurements on-board
the satellites will provide an indication of the size
of certain noise components. In principle, it might
therefore be possible to place a requirement on how well
the instrumental noise must be known in order to not
degrade the science output of the mission. To assess
this, we will recompute the results while changing the
variance of the Gaussian prior on the instrumental noise
spline parameters. We will vary the prior on the spline
weights from very small values (log10(σinst) = −10),
representing near-perfect knowledge of the noise, to very
high values log10(σinst) = 6, representing no knowledge
of the noise.
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FIG. 13. As Figure 8, but now for fixed background am-
plitude and varying the variance of the Gaussian prior on
the instrumental noise spline model. This plot is for a power
law background, and the amplitude has been fixed such that
the SNR in TDI channel A is 138 (continous line) and 43.7
(dashed lines).

We fix the amplitude of the background for each
SGWB model, so that it corresponds to an SNR of
∼ 120− 140 in each case 3. This choice of SNR was mo-
tivated by Figure 12, which shows that an SNR greater
than 100 is required in order to ensure all types of SGWB
are detectable. For the case of the power law we also
show results with the amplitude set to the reference en-
ergy density, which shows that the exact choice of back-
ground amplitude does not make a significant difference
to the qualitative behaviour, only to the absolute value
of the uncertainty.

For all SGWB models we again present the results in
two different ways — as a ratio of the SGWB parame-
ter measurement uncertainties when instrumental noise
uncertainties are considered to those assuming perfect
noise knowledge, and as the absolute measurement un-
certainty. Results for the power law model are shown

3 Specifically the SNR of the power law with running is 135, the
SNR of the power law is 138, the SNR of the FOPT is 142 and
the SNR of the Gaussian bump is 120.

in Figure 13, for the Power-law-with-running model in
Figure 14, for the Gaussian bump model in Figure 15
and for the FOPT in Figure 16. The results for all four
SGWB models are qualitatively similar. For very low
prior uncertainties the ratio of the uncertainties tends to
unity. This is expected as this limit corresponds to the
limit in which the instrumental noise is perfectly known.
As the prior uncertainty is increased beyond ∼ 10−6 the
measurement precision in the presence of noise knowl-
edge uncertainties starts to increase. When the noise
knowledge uncertainty reaches ∼ 10−2 for power law and
Gaussian bump, ∼ 10−1 for power law-with-running and
10 for FOPT, the measurement precision ratio saturates.
This final value reflects the expected uncertainty in the
absence of any noise knowledge. The results given in
Section IIIA were all computed in this regime.
The main conclusion from these results is that if we

wanted to ensure that there was no degradation in LISA
science due to lack of noise knowledge, the necessary
requirement on the noise knowledge would be << 10%.
In the LISA Pathfinder mission, which was designed
to accurately characterize the free-fall performance of
test masses in a space-based environment, the observed
noise could only be explained within some margin: the
physical origin of the measured sub-mHz acceleration is
only partially understood, as more than 50% of its PSD
is still unmodeled [19, 41].

It is therefore unrealistic to expect that a noise require-
ment at the ∼ 1–10% level could be met. At noise un-
certainties above this threshold, there is little difference
between some and no noise-knowledge, at least within the
model for instrumental noise variations considered here.
We conclude that no useful and achievable noise knowl-
edge requirement could be implemented in practice.
While we will not be able to achieve the precision that

would be possible under ideal circumstances, it is im-
portant to emphasise that this does not mean we will
not be able to detect and characterise modelled SGWBs.
In all cases, at SNR of ∼> 100, the amplitude can be
constrained to a few tens of percent, even without any
knowledge of the instrumental noise.

C. Signal reconstruction

To finish this section we will use our Fisher matrix
results to illustrate how well we can reconstruct the
Power law, the foreground, and the instrumental noise.
To do this, we will approximate the posterior distri-
bution on the model parameters using a multi-variate
Gaussian with covariance matrix equal to the inverse
of the Fisher matrix. We can then take random draws
from this fake4 posterior distribution and plot the PSD

4 Even if the measurements x are Gaussian the posterior is not
because is a function of θ. A Gaussian with unknown variance σ
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FIG. 14. As Figure fig. 13 but now for the power-law-with-
running model. The background amplitude has been fixed to
give an overall SNR of 135.

of the SGWB, the foreground and instrumental noise
corresponding to the drawn parameters. In fig. 17 we
follow this procedure for a power law signal with an
SNR of 872. The choice of the SNR is driven to avoid
the breakdown of the Fisher matrix approximation for
the SGWB parameters, because the SGWB parameter
uncertainties are large and no longer in the linear signal
regime as explained and, shown in details, in Appendix
C 1.

The three panels show the reconstructed ASDs for the
Power law, for the foreground and for the instrumental
noise and the total, which is the sum of the three.

What we would expect is that our ability to measure
the total spectral density is roughly independent of the
relative amplitudes of the two components, since this is
what we actually see and measure in the data. Our model
attempts to split that measurement into constituent com-
ponents. If one of those components is much weaker than
the other we would not expect to recover it as well as

is not a Gaussian on that variance, p(x|θ) ∝ 1
σ
exp(− x2

2σ2 ), is a
Gaussian in x, but not in σ
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FIG. 15. As Figure fig. 13 but now for the Gaussian bump
model. The background amplitude has been fixed to give an
overall SNR of 122.

when the components are making comparable contribu-
tions to the data. Top panel of Fig. 17 (and the Figure 26
in the appendix C 1) is consistent with this expectation.
We see indeed in Fig. 17 that the galactic binaries are
well recovered. Moreover, the only noise reconstruction
for the TDI A and E suffers from the presence of the
GW background and foreground in the regime 0.4mHz
– 4mHz where these two signals have the majority of
power. As a final point, it is clear that the SGWB is be-
ing best constrained around a frequency of 4mHz where
the power of the GB is less and the uncertainty in the
instrumental noise is also largest (although still small) at
this point. This can be understood from Figure 6, which
shows that the power law background is closest to the in-
strumental noise ASD at that frequency and the Galac-
tic binaries pick at 1mHz, and so this frequency range
dominates the SNR in the signal. We expect to be able
to measure the background best in the frequency range
where it is most dominant relative to the instrumental
noise and distinguishable from the galactic binaries.

IV. DISCUSSION AND CONCLUSION

We have explored the impact of noise knowledge un-
certainty on measuring the parameters of various mod-



15

10 8 10 5 10 2 101 104

inst

0

10

20

30

40
/

re
f

ln(A)
n

10 8 10 5 10 2 101 104

inst

10 1

ln(A)
n  

FIG. 16. As Figure fig. 13 but now for the FOPT model.
The background amplitude has been fixed to give an overall
SNR of 142.

elled stochastic gravitational wave backgrounds. This
was done by modelling instrumental noise uncertainties
using cubic splines to represent deviations away from the
design PSDs and CSDs for the three TDI channels A, E
and ζ. We then used a Fisher matrix analysis to eval-
uate the expected uncertainties in the measurements of
the model parameters when fitting a model including the
instrumental noise uncertainties and compared it to fit-
ting a model without those uncertainties. The degree of
uncertainty was characterized by including a Gaussian
prior on the instrumental noise parameters, allowing us
to quantify the impact of imposing a requirement on our
noise knowledge.

This analysis showed that, for all SGWB models,
allowing for instrumental noise uncertainties leads to a
significant increase in the uncertainty in our measure-
ments of the background parameters. The increase in
uncertainty was a factor of 2− 8 for the Gaussian bump
model, which reduces to 2− 4 when not including GB as
foreground, 55 − 60 for the power law (15 − 30 without
GB as foreground), 20 − 35 for the First order phase
transition (20−50 without GB as foreground) and 30−75
for the power law with running (20 − 75 without GB as
foreground). These increased uncertainties correspond
to the threshold background energy density required for
detection increasing by a factor of 10 (5 without GB)

FIG. 17. We show the Power law signal, Galactic binaries
and noise ASDs corresponding to random draws from the pos-
terior, approximated using the Fisher matrix as described in
the text. In each panel the curves correspond to the three TDI
channels: A (blue), E (red) and ζ (green). Upper first panel:
reconstructed SGWB; upper second panel: reconstructed TM
and OMS instrumental noise; middle panel: reconstructed
Galactic binaries; lower panel: total reconstructed ASD (sig-
nal + noise + GB).
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for the Gaussian bump model, a factor of 60 with and
without GB for the Power-with-running and a factor
of 20 with and without GB for all other models (50
for the power law when including GBs). The threshold
energy density at 1mHz at which the backgrounds start
to be detectable are 4× 10−13, 4× 10−13, 2× 10−16 and
10−12 (10−13, 2.5× 10−13, 8× 10−17 and 5× 10−13 if we
do not include the GB foreground) for the power law,
power law with running, Gaussian bump and FOPT
models respectively. Comparing these to the reference
background amplitudes introduced in Section II F we
see that the power law, the Gaussian bump and FOPT
backgrounds are detectable at the reference amplitudes,
while the power law with running is not as the threshold
energy density is 1.5 times higher than the reference.
However, for this latter background the amplitudes were
specified based on the SNR and not on a physical model.
The reference amplitudes for the power law and FOPT
backgrounds are based on physical model predictions,
so it is more important that these backgrounds are still
detectable. We note that this result does depend on
the particular choice of model we used for representing
the instrumental noise uncertainty. If this model is
made even more flexible, for example by increasing
the number of spline knots used, the threshold would
increase further and potentially also make the reference
backgrounds undetectable.

When we vary our assumed level of knowledge of
the instrumental noise, we find that the uncertain-
ties on the SGWB parameters show a similar trend
for all models, starting to degrade at relative small
uncertainties, increasing and then saturating after a
certain point. The point at which the sensitivity
starts to degrade is when the uncertainty in the log-
spectral density of the noise reaches ∼ 10−6–10−5,
depending on the SGWB model. The uncertainty
saturates at log-spectral density uncertainties of ∼
10−2/10−1/10−2/101 (10−2/10−1/10−3/10−1 in the ab-
sence of the GB foreground) for the power law/power-
law with running/Gaussian bump/FOPT backgrounds
respectively. This means that if we wanted to limit the
degradation in the science that arises from lack of noise
knowledge we would have to impose a very stringent re-
quirement on our knowledge of the noise. This is likely to
be impossible to implement in practice, so we will have to
accept that our ability to resolve SGWBs will not be as
good as calculations that assume perfect noise knowledge
predict.

It is important to note that these results are based on
some assumptions which might not hold in practice. In
particular, we have considered only modelled SGWBs
and we have assumed a particular form for variations in
the PSD that forces variations to be smoothly varying
as a function of frequency. If the number of knots is
increased to obtain a more flexible instrumental noise
model, with potentially faster variations of the PSD as
a function of frequency, we already see a degradation

of 2 or 3 orders of magnitude in the estimation of the
log-energy density.
It is the distinguishability of the models that allows
us to measure the parameters of the SGWBs. In the
extreme picture where we do not want to make any
assumption at all about the form of the instrumental
or SGWB spectral densities, then spectral separation
will not be possible. We will be able to report measured
power spectral density in all channels, and cross-spectral
densities between them, and translate these into upper
limits on the SGWB amplitude; but any interpretation
of this as an actual detection will require independent
confirmation from another detector [33].

All previous studies of the separation of instrumental
noise and stochastic backgrounds have required assump-
tions: in [10] it was assumed that the instrumental un-
certainty is a spline and that the SGWB has a power
law spectrum; in [26] it was assumed that the instru-
mental noise is determined by 12 individual noise levels;
and in this paper we are assuming something similar to
[10], although with a bit more flexibility, a wider variety
of SGWB models and a different noise model for single
satellite links. The SGWBinner [16] is agnostic on the
spectrum of the background but it can only work be-
cause it assumes a specific model for the instrumental
noise. That is not going to be possible in practice. SG-
WBinner could be adapted to use a more flexible noise
model, similar to the model used here, but the preci-
sion on the background recovery will be degraded. If
we have a completely general instrumental noise model
and a completely general SGWB model then we won’t
be able to separate them. In that case, the only hope
would be that the SGWB is above the design sensitivity
and we trust that the instrumental noise meets the mis-
sion requirements, in which case the best interpretation
of such an observation would be a SGWB. However, even
then an assumption would be made that the mission had
met the design sensitivity requirements. An exploration
of how our ability to separate instrumental noise as the
spectral models of the SGWB and the instrumental noise
are made more complicated should be the focus of future
work.
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Appendix A: Likelihood derivation

We derive the likelihood starting from the noise prop-
erties and explain why it takes the form shown in Sec. II.
If we assume that the real time series n(t) is a stationary,
zero-mean, Gaussian and ergodic random process, then
the Fourier transform of the noise ñk = ñ(fk) at each
frequency fk is normally distributed with zero-mean and
variance σ2

k. Thus, the natural log-likelihood at each fre-
quency takes the form of a two-dimensional normal dis-
tribution

ln p(ñk) = −1

2

(ℜ[ñk]
2

σ2
k

+
ℑ[ñk]

2

σ2
k

)
− 1

2
ln[(2πσ2

k)
2] (A1)

where we assumed that the real ℜ and imaginary ℑ part
of the noise are not correlated and have the same vari-
ance. If we further assume that the variance of the noise
at different frequencies follow a one-sided power spectral
density Sn(f) then :

< ñ∗(f ′)ñ(f) > =
1

2
Sn(f)δ(f − f ′) (A2)

< ñ(f ′)ñ(f) > = 0 (A3)

where we used the expectation value of <> over the data
generating process. For a set of frequencies the first re-
lation can be written as

< ñ∗
kñj > =

T

2
Sn(fk)δjk (A4)

Therefore the variance of the real and imaginary part of
the noise is given by

< ℜ[ñk]
2 >=< ℑ[ñk]

2 >=
T

4
Sn(fk) = σ2

k . (A5)

We can write the natural log-likelihood for all the mea-
sured frequencies as:∑

k

ln p(ñk) = −
n∑

k=1

ln[2π
T

4
Sn(fk)]−

1

2

n∑
k=1

|ñ(f)|2
T
4 Sn(fk)

(A6)
which becomes in the continuum limit:

ln p(ñ) = − ln

[
2π

1

4
det[Sn(f)δ(f−f ′)]

]
−1

2
4

∫ ∞

0

|ñ(f)|2

Sn(f)
df

(A7)

Note that in the continuum limit the variance of the noise
can be thought as an operator. In fact, one can define
the inner product

(a(t)|b(t)) = 4ℜ
∫ ∞

0

∫ ∞

0

ã∗(f) Σ−1(f, f ′)b̃(f ′) df df ′

(A8)
with Σ−1 defined through the relation:∫ ∞

0

Σ−1(f, f ′)Σ(f ′, f ′′)df ′ = δ(f − f ′′) , (A9)

where if we set in Eq.A9 that Σ(f ′, f ′′) = δ(f ′−f ′′)Sn(f
′)

we obtain

Σ−1(f, f ′′)Sn(f
′′) = δ(f − f ′′) (A10)

and the inner product becomes

(a(t)|b(t)) = 4ℜ
∫ ∞

0

∫ ∞

0

ã∗(f) δ(f − f ′)b̃(f ′)

Sn(f ′)
df df ′

= 4ℜ
∫ ∞

0

ã∗(f)b̃(f)

Sn(f)
df (A11)

Appendix B: Fisher matrix derivation

1. Single detector

To compute the Fisher matrix of Eq. 8 we need the
first derivative of the log-likelihood l with respect to the
parameters of the power spectral density.
Here we present the derivation of the Fisher matrix

for the noise parameters λ⃗ affecting the one-sided spec-

tral density Sn(f |λ⃗), but this can be easily extended also
including the gravitational wave background parameters

Sn(f |λ⃗) → Sn(f |λ⃗)+SGW(f |θ⃗). We differentiate the log-

likelihood of equation A6 with respect the parameters λ⃗:

∂l

∂λi
=

n∑
k=1

[− 1

Sn(fk)

∂Sn(fk)

∂λi
+

1

2

|ñ(fk)|2
T
4 Sn(fk)2

∂Sn(fk)

∂λi
],

(B1)

where we have omitted the dependency from λ⃗ to have a
lighter notation. The second derivative of the likelihood
is then

∂2l

∂λi∂λj
=

n∑
k=1

[
1

S2
n(fk)

∂Sn(fk)

∂λi

∂Sn(fk)

∂λj

− 1

Sn(fk)

∂2Sn(fk)

∂λi∂λj

− 1

2

2|ñ(fk)|2
T
4 Sn(fk)3

∂Sn(fk)

∂λj

∂Sn(fk)

∂λi

+
1

2

|ñ(fk)|2
T
4 Sn(fk)2

∂2Sn(fk)

∂λj∂λi
] (B2)
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using the definition of eq. (A4) the second and last term
cancels and we get:

Γij =

n∑
k=1

1

Sn(fk)2
∂Sn(fk)

∂λi

∂Sn(fk)

∂λj
. (B3)

If we want to get the continuum limit we need to recast
a factor of Tdf:

Γij = T

∫ ∞

0

1

Sn(f)2
∂Sn(f)

∂λi

∂Sn(f)

∂λj
df (B4)

2. Multiple detectors: real and imaginary part as
separate random variables

If we want to generalize our derivation to multiple de-
tectors or channels we need to define the noise proper-
ties of each channel. For simplicity let us consider two
channels A and E with 4 independent random variables
X(fk) = Xk = {ℜ[X̃A

k ],ℑ[X̃A
k ],ℜ[X̃E

k ],ℑ[X̃E
k ]} at each

frequency fk. Since the final likelihood will be given by
the product over all the frequencies, we consider only one
frequency and we drop the subscript ”k”. We can spec-
ify the spectral densities of each channel and the cross-
spectral densities with:

< X̃c∗(f ′)X̃c(f) > =
1

2
Sc(f)δ(f − f ′) (B5a)

< X̃c(f ′)X̃c(f) > = 0 (B5b)

< X̃E∗(f ′)X̃A(f) > =
1

2
S∗
AE(f)δ(f − f ′) (B5c)

< X̃A∗(f ′)X̃E(f) > =
1

2
SAE(f)δ(f − f ′) (B5d)

< X̃A(f ′)X̃E(f) > = 0 (B5e)

where the first two rows are valid for both channels c =
A,E, and Sc is real and SAE is complex. From the above
expression we can deduce:

< ℜ[X̃c]ℜ[X̃c] > + < ℑ[X̃c]ℑ[X̃c] > =
Sc

2
(B6a)

< ℜ[X̃c]ℜ[X̃c]−ℑ[X̃c]ℑ[X̃c] > = 0 (B6b)

< ℜ[X̃c]ℑ[X̃c] > = 0 (B6c)

< ℜ[X̃A]ℜ[X̃E ] > + < ℑ[X̃A]ℑ[X̃E ] > =
ℜ[SAE ]

2
(B6d)

< ℜ[X̃A]ℜ[X̃E ] > − < ℑ[X̃A]ℑ[X̃E ] > = 0 (B6e)

< ℜ[X̃A]ℑ[X̃E ] > − < ℑ[X̃A]ℜ[X̃E ] > =
ℑ[SAE ]

2
(B6f)

< ℜ[X̃A]ℑ[X̃E ] > + < ℑ[X̃A]ℜ[X̃E ] > = 0 , (B6g)

where in the last four rows c = A,E. Note that these
are in total 10 independent conditions (3 equations for
A, 3 equations for E and 4 equations for AE) that spec-
ify uniquely the 10 independent elements of a symmetric

covariance matrix.
For a single frequency we can generalize the likelihood to
two channels as:

p(X) =
1√

(2π)2×Nc det(Σ)
e−

1
2X

TΣ−1X (B7)

where Nc = 2 are the number of channels, X is a
quadri-dimensional vector define above, Σ is the multiple-
channels covariance matrix:

Σ =


SA

4 0 ℜ(SAE)
4

ℑ(SAE)
4

0 SA

4
ℑ(SAE)

4
ℜ(SAE)

4
ℜ(SAE)

4
ℑ(SAE)

4
SE

4 0
ℑ(SAE)

4
ℑ(SAE)

4 0 SE

4

 (B8)

where here each element is evaluated at the fixed fre-
quency. It can be shown that the expectation value of
XTΣ−1X equals the degrees of freedom, in this case 4.
We have two channels, where each one has two degrees
of freedom associated with the real and imaginary part
of X̃.
We can then derive the Fisher matrix for the multi-

ple channel case. Taking the first derivative of the log-
likelihood

∂ ln p(X)

∂λi
= −1

2

1

det(Σ)

∂ det(Σ)

∂λi
− 1

2
XT ∂Σ−1

∂λi
X (B9)

where we can use the following property of the determi-
nant:

∂ det(Σ)

∂λi
= det(Σ) Tr[Σ−1 ∂Σ

∂λi
]

= det(Σ)
[
Σ−1

]
lm

[ ∂Σ
∂λi

]ml

(B10)

to obtain

∂ ln p(X)

∂λi
= −1

2

[
Σ−1

]
lm

[ ∂Σ
∂λi

]ml

− 1

2
XT ∂Σ−1

∂λi
X .

(B11)

Then, the second derivative of the log-likelihood takes
the form:

∂2 ln p(X)

∂λi∂λj
= −1

2

∂(Σ−1)lm

∂λi

∂Σml

∂λj

− 1

2
Σ−1

lm

∂2Σml

∂λi∂λj
− 1

2
XT ∂2Σ−1

∂λiλj
X (B12)

.
We can finally compute the Fisher matrix for a single

frequency with:

Γij =
1

2

[∂Σ−1
lm

∂λi

∂Σml

∂λj
+Σ−1

lm

∂2Σml

∂λi∂λj
+Σml

∂2(Σ−1)lm

∂λiλj

]
,

(B13)

where we have considered < XT
l

∂2Σ−1
lm

∂λiλj Xm >=
∂2Σ−1

lm

∂λiλj Σml. If we use the property

∂(Σ)−1
lm

∂λ
= −(Σ)−1

ln

∂(Σ)nq
∂λ

(Σ)−1
qm (B14)
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we obtain the following expression:

Γij =
1

2
Tr
[
− Σ−1 ∂Σ

∂λi
Σ−1 ∂Σ

∂λj
+Σ−1 ∂2Σ

∂λi∂λj
+Σ

∂2Σ−1

∂λi∂λj

]
(B15)

which can be further simplified if we use the following
properties:

∂(ΣΣ−1) = 0 (B16a)

∂ΣΣ−1 +Σ∂Σ−1 = 0 (B16b)

∂2ΣΣ−1 + 2∂Σ∂Σ−1 +Σ∂2Σ−1 = 0 (B16c)

∂2ΣΣ−1 − 2∂ΣΣ−1 ∂ΣΣ−1 +Σ∂2Σ−1 = 0 (B16d)

Note that in the above expression the first and last term
of Eq.B16d correspond to the last two terms in the Fisher
matrix expression (B15). The final expression for all fre-
quencies can be easily obtained by taking the sum over
all the frequencies:

Γij =
1

2

n∑
k=1

[(Σ−1
k )lr

∂Σrp
k

∂λi
(Σ−1

k )pm
∂Σml

k

∂λj
] . (B17)

Note that there is an additional factor of 1/2 with respect
to Eq. B3. If we insert only the first 2 columns and
rows of Σ we obtain the previous equation for the single
channel as expected.

3. Multiple detectors: complex random variables

Equivalently, the likelihood can be written in terms of
complex variables X̃A and X̃E [38]

p(X̃A, X̃E) =
e−[X̃A,X̃E ]HΣ−1[X̃A,X̃E ]

(2π)Nc det(Σk)
(B18)

where ”H” indicates the Hermitian conjugate, the factor
of 1/2 disappeared because it is a complex distribution
and must match Eqs (B7)–(B8), and the new complex
covariance matrix is defined as

Σ =
1

2

(
SA SAE

S∗
AE SE

)
, (B19)

where Σ is now an Hermitian matrix and can be obtained
from the conditions imposed in Eqs. B5. The expec-
tation value of [X̃A, X̃E ]

HΣ−1[X̃A, X̃E ] over complex

variable realizations [X̃A, X̃E ] is now 2. However, since
the exponential does not have any factor of 1/2 for a
complex distribution, we recover the same number of
degrees of freedom in the argument of the exponent as
in the previous derivation, i.e. we got exp [ 12 4] for the
case of multiple detectors with real and imaginary part
as separate random variables’ and exp [2] for the case
considered here.

The derivation of the Fisher matrix differs from the
previous one (Eq. B17) only by the factor 1/2:

Γij =

n∑
k=1

[
(Σ−1

k )lr
∂Σrp

k

∂λi
(Σ−1

k )pm
∂Σml

k

∂λj

]
, (B20)

where the matrix Σk is given by Σ with spectral densities
evaluated at given frequency fk.
Note that we can recover the single channel realization
by using the first element of Σ.
The continuum limit of the Fisher matrix in this formu-
lation is given by

Γij = T

∫ ∞

0

(Σ−1
k )lr

∂Σrp
k

∂λi
(Σ−1

k )pm
∂Σml

k

∂λj
df . (B21)

4. Deterministic sources and noise cross-correlation

In the presence of a deterministic source, h̃(fk|µ⃗), the
derivative of the log-likelihood in Eq. (7) with respect to
the source parameters, µ⃗, is:

∂l

∂µi
= −

n∑
k=1

|s̃(fk)− h̃(fk|µ⃗)|
T
4 Sn(fk|λ⃗)

∂h̃(fk|µ⃗)
∂µi

, (B22)

and the derivative with respect to the parameters char-

acterising the spectral density, λ⃗, is:

∂l

∂λi
=

n∑
k=1

[−1

2

T

det(Sn(fk|λ⃗))
+

+
|s̃(fk)− h̃(fk|µ⃗)|2

T
2 Sn(fk|λ⃗)2

]
∂Sn(fk|λ⃗)

∂λi
. (B23)

The first of these expressions is odd in the noise compo-
nent, ñ(fk) = s̃(fk) − h̃(fk|µ⃗), while the second term is
even. Since E[ñ(fk)] = 0, from this we deduce that

EL

[
∂l

∂µi

∂l

∂λj

]
= 0, (B24)

i.e., at this level of approximation the terms in the Fisher
matrix that mix signal and noise parameters vanish. We
conclude that the estimation of the noise parameters and
of the signal parameters is, at leading order, independent.
Lack of knowledge of the noise should therefore not sig-
nificantly affect measurements of the parameters of de-
terministic signals, except indirectly through the change
in the spectral density that enters the likelihood for the
deterministic sources.

Appendix C: Impact of instrumental noise
knowledge uncertainty on SGWB recovery in

absence of galactic foreground

Below we show the same computations we did in Sec.
III but in case we do not consider the presence of the
foreground.
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FIG. 18. Results for the power law SGWB model without
foreground

a. Power law

Figure 18 shows the results computed for the power law
model. We see that in the presence of instrumental noise
uncertainties, the uncertainty in the SGWB parameters
increases by a factor of ∼ 19–36, with the uncertainty
in the slope being more affected than that of the am-
plitude. Considering the raw uncertainties, to achieve
the same measurement precision, the background energy
density would have to be ∼ 33 times larger than it would
need to be in the absence of noise knowledge uncertain-
ties. However, a background with amplitude equal to
the reference value should be detectable even allowing
for confusion with instrumental noise mis-modelling.

b. Power law with running

The results for this model are shown in Figure 19. In
this case we see that the uncertainties in the SGWB pa-
rameters increase by a factor of ∼ 21–72, with the uncer-
tainty on the log-amplitude being most affected in this
case. Once again, the relative increase in the uncertainty
is somewhat lower at higher background amplitudes. The
lower panel of fig. 19 shows that the background is not
detectable at the reference amplitude. An energy density
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FIG. 19. Results for the power-law with running SGWB
model without foreground.

∼ 5 times higher would be required for a detection. In
general, the background again has to have an energy den-
sity ∼ 100 times higher to be characterised with the same
measurement precision when there is instrumental noise
uncertainty as it could be without those uncertainties.

c. Gaussian bump

The results for this model are shown in Figure 20. In
this case, the degradation in the precision of parameter
measurement is a factor of ∼ 2.3–4 when allowing for lack
of knowledge of the instrumental noise. From the lower
panel of Figure 20 we see that the energy density in a
Gaussian bump SGWB has to be just a small factor of
∼ 2.5 times bigger to achieve the same measurement pre-
cision when the instrumental noise is not known perfectly.
Moreover a Gaussian bump background at the reference
amplitude can be measured to percent precision at the
reference amplitude. The width of the Gaussian can be
measured to a few tens of percent precision at the refer-
ence amplitude, improving approximately linearly with
the background energy density.

d. First order phase transition

The results for First order phase transition are shown
in Figure 21. The results for this SGWB model are quite
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FIG. 20. Results for Gaussian bump SGWB model without
foreground
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FIG. 21. Results for first order phase transition SGWB
model without foreground.
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FIG. 22. As Figure 18, but now for fixed background am-
plitude and varying the variance of the Gaussian prior on the
instrumental noise spline model. This plot is for a power law
background, and the amplitude has been fixed such that the
SNR in TDI channel A is 136 (continous lines) and 43 (dashed
lines)

similar to those for the power law background. When
allowing for instrumental noise knowledge uncertainties,
the precision with which the SGWB log-amplitude
can be characterised degrades by a factor of ∼ 18.
The degradation in the determination of the spectral
index is even larger, ∼ 50. Once again, to achieve the
same measurement precision, the background energy
density would have to be ∼ 50 times larger than it
would need to be in the absence of noise knowledge
uncertainties. Nonetheless, a FOPT background at
the reference amplitude would still be detectable and
provide a measurement of the spectral index at the level
of about 0.5 percent.

We can do the same analysis we did in section III B
but without including the foreground. The results for
all four SGWB models are qualitatively similar among
themselves and also to the previous case with foreground
in Sec. III B. Figure 22 consider the power law case, Fig.
23 the case of power law with running, Fig. 24 the case
of gaussian model and Fig. 25 the case of FOPT model.

The main conclusion from these results is that again
if we wanted to ensure that there was no degradation
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FIG. 23. As Figure 22 but now for the power-law-with-
running model. The background amplitude has been fixed to
give an overall SNR of 145.

in LISA science due to lack of noise knowledge, the
necessary requirement on the noise knowledge would be
≪ 10%.

1. Signal reconstruction without foreground of
Galactic binaries

We consider a power law signal with an SNR of 48.70
in Fig. 26. The three panels show the reconstructed
ASDs for the SGWB and for the instrumental noise and
the total, which is the sum of the three. No foreground
has been considered in this case. In Fig 27 we show
corresponding results for a power law with a higher SNR,
of 862.

We see that our ability to reconstruct the signal com-
ponent of the data stream is poor when the SNR is low.
However, we are able to obtain good measurements of the
instrumental noise and the total spectral density. We
note that the total ASD reconstruction in Figure 26 is
somewhat poorer than the noise-only component, which
does not fit with the expectation that we are actually
measuring the total. This happens due to the break-
down in the Fisher matrix approximation for the SGWB
parameters in this case, because the SGWB parameter
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FIG. 24. As Figure 22 but now for the Gaussian bump
model. The background amplitude has been fixed to give an
overall SNR of 135.

uncertainties are large and no longer in the linear signal
regime. At higher SNR, we start to be able to recon-
struct the SGWB more precisely, shown by a reduction
in the scatter in Figure 27. As the SNR is increased we
would expect the scatter to reduce further. The recon-
struction of the noise spectral density is comparable to
what is seen in the lower SNR case, but we would even-
tually expect it to degrade as the SGWB becomes more
dominant in the data. The reconstruction of the total
spectral density is similar to the low SNR case, as ex-
pected. However, this higher SNR case does not show
the noise at low frequency that arises from the break-
down of the Fisher matrix approximation, presumably
because the measurement uncertainties are within the
linear regime in this case. although, what is interesting
to notice in the total reconstruction is that the channels
A and E are affected by the SGWB where between 1mHz
and 4mHz the noise level deviated from the expected one
shown in Fig 2.
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