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Cognitive flexibility across the lifespan: developmental 
differences in the neural basis of sustained and transient 
control processes during task switching
Sina A Schwarze1, Yana Fandakova2,* and  
Ulman Lindenberger1,3,*

The ability to flexibly switch between task sets increases early and 
decreases late in life. This lifespan pattern differs between mixing 
costs, denoting performance decrements during task switching 
compared with single tasking, and switch costs, denoting 
performance decrements on trials after the task has switched 
relative to trials where the task repeats. Generally, mixing costs 
reach their lifespan minimum later and increase again earlier than 
switch costs. We propose that lifespan changes in cognitive 
flexibility are associated with neural processes implementing 
sustained and transient control processes that underlie mixing and 
switch costs, respectively. To better understand the lifespan 
development of sustained and transient control processes, future 
research needs to delineate longitudinal changes in functional 
connectivity patterns and task-set representations.
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Introduction
Flexibly adapting to changing environmental demands is 
a challenge individuals face on a daily basis, already at a 

young age. As a key component of executive functions 
[1,2], cognitive flexibility enables goal-directed behavior 
and is positively associated with multiple real-life out
comes, including academic achievement [3] and the 
maintenance of higher cognitive functioning and in
dependence in later adulthood [4,5].

Task switching represents one typical situation requiring 
cognitive flexibility. When a new task becomes relevant, 
individuals need to engage transient, trial-based control 
processes to update the newly relevant task set (i.e. the set 
of rules that link specific stimuli with their corresponding 
actions) and to inhibit the previous, no-longer-relevant task 
set. Transient control processes are immediately relevant 
when switching occurs and are reflected in slower and less 
accurate responses (i.e. switch costs) when switching from 
one task to another (i.e. switch trial) compared with re
peating the same task (i.e. repeat trial) within mixed-task 
blocks of a task-switching paradigm [6–8].

Furthermore, task switching entails sustained (i.e. con
tinuous) control processes reflected in performance dif
ferences between two different contexts — in the task- 
switching paradigm, these contextual differences refer to 
performance differences between single-task blocks, in 
which the same task is executed repeatedly across trials, 
and mixed-task blocks, in which different tasks are in
termixed (i.e. global switch costs). Thus, each trial in 
mixed-task blocks could potentially require a switch to a 
different task. Global switch costs [9] can be con
ceptualized as behavioral expressions of the underlying 
sustained processes of maintenance, selection and 
monitoring of multiple task sets, and the readiness to 
switch [10–12]. These costs are inherently associated 
with switch costs as both repeat and switch trials within 
mixed-task blocks are considered. In contrast, mixing 
costs, or the comparison of trials in single-task blocks to 
repeat trials in mixed-task blocks [13], are assumed to be 
largely independent of switch costs. However, mixing 
costs may not capture the demands on sustained control 
to the extent that global switch costs do, as they only 
regard selected trials (i.e. repeat trials) within mixed-task 
blocks (for a detailed discussion, see Ref. [14]).
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Task-switching ability increases across childhood and early 
adolescence and decreases in later adulthood [15–17]. 
Cross-sectional evidence comparing different age groups 
suggests that patterns of age differences differ between 
mixing and switch costs [17–20]: for instance, Reimers and 
Maylor [17] investigated task switching between 10 and 66 
years using an alternating-runs task-switching paradigm in 
which the task changed every second trial during mixed 
blocks. The authors showed that compared with switch 
costs, global costs decreased later in childhood and in
creased earlier with aging. However, given the lack of 
longitudinal studies and limitations of the tasks used with 
very young children, it is unclear whether switch costs 
might show a similar magnitude of age differences when 
investigating very young children or older old adults. The 
patterns of cross-sectional age differences in mixing and 
switch costs are consistent with different developmental 
trajectories for these costs and offer a starting point for 
considering the role of sustained and transient processes for 
cognitive flexibility development. Elucidating the parti
cular shape of these developmental trajectories requires 
longitudinal studies to test within-person change in tran
sient and sustained processes across the lifespan.

On the neural level, task switching engages frontoparietal 
regions, including the inferior frontal junction (IFJ), the 
superior parietal lobe, the dorsolateral prefrontal cortex 
(PFC), and the dorsal anterior cingulate cortex [21,22]. 
These regions support task switching as parts of larger 
networks [23]. Particularly, the frontoparietal and the cin
gulo-opercular networks play a key role for cognitive 
flexibility [24,25]. While frontoparietal activation has been 
associated with task switching relatively consistently, evi
dence for the involvement of cingulo-opercular regions is 
less consistent [26]. These differences may reflect a more 
prominent role of the frontoparietal network for cognitive 
flexibility or the limited number of studies that have ex
amined sustained control processes [26].

The evidence on age differences in the neural correlates of 
sustained and transient control and their contributions to 
variability in cognitive flexibility has not been integrated 
across child development and aging research. To fill this 
gap, we summarize the current state of research on cog
nitive flexibility development with a selective focus on 
neuroimaging studies of task switching in children and 
older adults. We then outline future research directions 
that can enhance our understanding of the ways in which 
changes in sustained and transient control processes relate 
to changes in cognitive flexibility across the lifespan.

Child and adolescent development of 
cognitive flexibility: refined frontoparietal and 
cingulo-opercular recruitment
Cognitive flexibility continues to improve throughout 
childhood and adolescence [17,18,27–29], presumably 

reflecting the increasingly refined recruitment of fron
toparietal and cingulo-opercular brain regions. Specifi
cally, during task switching, children recruit similar brain 
regions as adults (see Ref. [22] for a recent meta-ana
lysis) but show less pronounced upregulation of activa
tion from single-task blocks to mixed-task blocks and 
from repeat to switch trials within mixed-task blocks 
[29–34]. This pattern of results suggests that children 
have difficulties adapting activation as efficiently as 
adults when control demands increase during task 
switching. One contributing factor may be related to the 
protracted structural development of these regions [35]
and the white matter tracts connecting them [36]. Be
havioral and neuroimaging findings converge to suggest 
that transient control processes approach adult levels 
earlier than sustained control processes. For instance, we 
recently investigated the role of sustained and transient 
control processes for cognitive flexibility in 8- to 11-year- 
old children and young adults using a cued task- 
switching paradigm with three tasks [29]. We observed 
greater differences between age groups for mixing costs 
and sustained control activation than for switch costs and 
transient control activation in frontoparietal and cingulo- 
opercular regions (Figure 1a; [29], see also Ref. [32]).

In addition to shifting, task-switching paradigms like the 
one implemented in Ref. [29] involve further transient 
control processes, such as inhibition, working memory 
updating, and stimulus-driven attention. They also rely on 
sustained control processes, including working memory 
maintenance and selection, monitoring, and readiness to 
switch. Beyond studies investigating task switching, sti
mulus-driven performance relying on transient processes 
has been suggested to reach adult levels earlier than 
proactively prepared performance relying on sustained 
processes [37]. Proactive control of task sets relies heavily 
on the ability to represent multiple relevant task sets over 
an extended period (e.g. throughout blocks of task- 
switching blocks) [38] and has been linked to the devel
opment of active task-set maintenance in working memory 
[39,40]. Proactive control can be observed by 8 years of age 
[41] and continues to improve throughout adolescence 
[15,17]. For instance, in a recent eye-tracking study of cued 
task switching, children fixated the rule information more 
extensively than adults during a preparatory period, with 
more pronounced differences for younger (8–11 years) than 
for older children (11–13 years) [42]. Children also showed 
less preparation-related activation in frontoparietal and 
cingulo-opercular regions than adults during a cued task- 
switching paradigm [31], suggesting that the greater re
liance on reactive control might reflect limited recruitment 
of sustained neural processes to enable proactive control.

Taken together, these results suggest that younger 
children show difficulties with the sustained preparation 
of task execution and instead rely more strongly on 
transient rule updating, whereas older children and 
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adolescents approach adult levels of sustained control 
supporting a more proactive state that allows for faster 
processing of the cue information and less reliance on 
reactive control.

Normal aging of cognitive flexibility: less- 
specific frontoparietal and cingulo-opercular 
recruitment
Cognitive flexibility, and task switching in particular, 
declines in later adulthood [20]. Compared with younger 
adults, older adults consistently show larger mixing costs 
[9,20], whereas age-related deficits in switch costs are 
less pronounced or even absent [20,43]. Neuroimaging 
evidence supports the notion that sustained control 
shows more pronounced age-related declines. In a cued 
task-switching paradigm differentiating between sus
tained and transient neural processes [44], older adults 
(65–87 years) showed reduced sustained activation in the 
anterior PFC (aPFC) relative to younger adults, poten
tially reflecting less efficient maintenance and readiness 
to switch between rules. In parallel, older, but not 
younger, adults showed increased transient aPFC acti
vation for switch trials. While increased sustained aPFC 
activation was associated with lower mixing costs in 
younger adults, increased transient aPFC activation was 
associated with higher switch costs in older adults. 
These findings suggest that with age, brain regions in
volved in sustained control may be engaged during 
transient control with detrimental effects on perfor
mance [45,46]. However, multiple studies [46–48] did 
not find age differences in transient activation on switch 
and repeat trials between younger and older adults.

In sum, age-related declines in sustained control might 
elicit a shift from proactive to reactive control during 
tasks requiring cognitive flexibility [38,49]. This shift 
may be partly associated with the loss of frontal gray 
matter volume in late adulthood [50] and changes in 
structural connections linking frontal and parietal re
gions [51].

Interim summary
Taken together, we propose that the development of 
task switching across the lifespan reflects the interaction 
between developmental changes in (1) transient control 
processes allowing for moment-to-moment adjustments 
in task-set updating and inhibition, which develop re
latively early on and show less pronounced declines in 
aging; and (2) sustained control processes related to the 
readiness to switch, and the maintenance, selection, and 
monitoring of relevant task sets, which continue to de
velop well into adolescence and show relatively earlier 
age-related declines. During child development, fron
toparietal and cingulo-opercular regions become more 
adaptively recruited in service of transient and sustained 
control during switching. In contrast, normal cognitive 

aging is marked by less adaptive recruitment of frontal 
regions for sustained control. The divergence of lifespan 
development in transient and sustained processes is in
triguing, given that the underlying neural correlates of 
both processes encompass frontal, parietal, and cingulo- 
opercular areas, which show pronounced structural 
changes across the lifespan [35,50]. We propose that two 
relatively underexplored factors might contribute to this 
divergence: (1) changes in the fine-tuning of connections 
among frontoparietal and cingulo-opercular brain re
gions; and (2) changes in the distinctiveness of abstract 
representation of task rules. Our considerations build on 
frameworks considering the role of representations and 
control in lifespan cognitive development [52] and ex
tend those to the neural basis of task-switching devel
opment.

Lifespan changes in the specialization of 
brain networks
During child development, brain networks show a 
complex pattern of strengthening and weakening of 
functional connections that have been suggested to 
support flexible behavior [53]. Network organization 
(e.g. measured via the segregation and integration be
tween functional networks) and the strength of con
nections within and between networks during rest 
continues to mature until early adulthood (see Ref. [54]
for a review of brain network development across mul
tiple measures), with the degree of network segregation 
and integration depending on a network’s respective 
position along the sensorimotor-association axis [55,56]. 
For instance, Pines et al. [55] demonstrated that asso
ciation networks, including the frontoparietal and cin
gulo-opercular networks, showed increasing segregation 
with age (8–23 years), while sensorimotor networks 
showed increasing integration. Likewise, normal aging is 
associated with changes in the functional network ar
chitecture of the brain: compared with younger adults, 
connections within frontoparietal and cingulo-opercular 
networks in older adults are weaker, whereas connec
tions between these networks are stronger [57] (see Ref. 
[87] for a review of brain network aging).

One study investigated dynamic resting-state con
nectivity among frontoparietal and cingulo-opercular 
networks in the context of cognitive flexibility across the 
lifespan (6–85 years). Multiple patterns of connectivity 
were defined by their specific within- and between- 
network connectivity and differed in the amount of time 
they were present during a scan [58]. A greater number 
of switches between these connectivity patterns over 
time was associated with better cognitive flexibility 
across age groups. However, the number of pattern 
switches was reduced in children and older adults, sug
gesting that differences in functional network archi
tecture due to maturation and senescence may limit 
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flexible network recruitment during task switching [58]. 
These findings suggest that resting-state networks as
sociated with transient and sustained control become 
increasingly specialized during child development and 
allow more flexible transitions between brain states, 
while network specialization and flexibility decline in 
aging. This pattern suggests that young adults’ network 
architecture allows for more adaptive recruitment of 
functional connections depending on task demands. 
However, determining whether children and older 
adults recruit connections within and between networks 

differently than young adults to achieve flexible beha
vior requires investigations of connectivity during task 
performance.

Using task-based functional connectivity, we examined 
whether children recruit connections differently than 
young adults with increased sustained control demands 
during task switching. Children (8–11 years) showed 
increased connectivity between the IFJ and the anterior 
lateral PFC (lPFC) during mixed-task blocks compared 
with single-task blocks [29] (Figure 1b; see also Ref. [59]

Figure 1  

Current Opinion in Behavioral Sciences

Summary of developmental findings of Schwarze et al. [29]. (a) Adults showed greater upregulation of activation in frontal and parietal brain regions 
with increased task-switching demand (task switching compared with single tasking) than children. (b) Compared with adults, children showed greater 
increases of connectivity between the IFJ and the lPFC with higher task-switching demands. (c) Left panel: Task-based activation (task switching > 
single tasking) across adults (P  <  .05, FWE corrected) used as reference for estimating how similar an individual child’s activation pattern was to the 
average adult pattern. Middle panel: Example of a child showing more adult-like activation for the contrast shown in blue (P  <  .001, uncorrected). 
Right panel: Example of a child showing less adult-like activation for the contrast shown in red (P  <  .001, uncorrected). (d) The relationship between 
the increase in connectivity and performance depended on how adult-like a child’s brain activation was. Children who showed less adult-like 
activation (red line) showed better performance with increased connectivity, whereas children who showed more adult-like activation (blue line) 
showed worse performance with increased connectivity.  
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for similar results). Children with less adult-like sus
tained control activation along with increased IFJ–lPFC 
connectivity showed lower mixing costs, while increased 
IFJ–lPFC connectivity in children with more adult-like 
sustained control activation was associated with greater 
mixing costs (Figure 1c,d). These findings suggest that 
increased connectivity with additional prefrontal regions 
might represent an alternative, potentially devel
opmentally earlier mechanism to support sustained 
control that might be afforded by less segregated asso
ciation networks in late childhood. Less adult-like acti
vation suggests limited sustained control such that these 
children might benefit from increased IFJ–lPFC con
nectivity to provide additional support of task-set man
agement and selection [60,61] or increased involvement 
of metacontrol [62,63]. However, longitudinal studies of 
task-based connectivity are needed to clarify the role of 
such a mechanism during the development of cognitive 
flexibility. Our findings that for children with more 
adult-like activation patterns, increased IFJ–lPFC con
nectivity was detrimental for performance (red line in 
Figure 1d) suggest that ongoing network segregation 
during development might offer room for selecting in
efficient or inappropriate strategies. These findings un
derline the complexity and nonlinearity of the 
relationship between task-related activation, con
nectivity, and behavior [64–66].

At the other end of the lifespan, using task-based con
nectivity during cued task switching, one study found 
stronger frontoparietal connectivity in younger adults 
compared with older adults (60–85 years) during the cue 
period, with no age differences in frontoparietal and cin
gulo-opercular connectivity during presentation of the 
target [48]. Thus, older adults may have difficulty engaging 
proactive control due to reduced communication among 
frontoparietal and cingulo-opercular regions [49].

In summary, the extent to which functional connections 
can be dynamically adapted to changing task demands 
appears to change across the lifespan, thereby affecting 
cognitive flexibility. The cingulo-opercular network [11]
might be particularly critical for co-ordinating dynamic 
adaptations of network configuration in the context of 
sustained control [67–69]. While the cingulo-opercular 
network has not received as much attention as the 
frontoparietal network in cognitive flexibility develop
ment, the proposed protracted development of sustained 
control warrants the re-evaluation of this focus, espe
cially in a lifespan context. Studies directly contrasting 
task-related connectivity associated with transient and 
sustained processes across ages can help advance our 
understanding of the ways in which network segregation 
followed by desegregation across the lifespan, including 
frontoparietal and cingulo-opercular networks, enables 
flexible adjustments of network configuration and con
nection strength with varying task demands.

Changing distinctiveness of abstract 
representations across the lifespan
When switching to a different task, the demand to up
date the relevant task sets has been suggested to result 
in less stable task-set representations on switch than on 
repeat trials, thereby contributing to increased switch 
costs [6]. Additionally, the previously relevant task set is 
thought to linger and thus dilute the currently relevant 
task set [8,70].

Recent task-switching studies used multivariate classi
fication methods for neuroimaging data, including ap
plying classifiers to predict the currently relevant task 
from neural activation patterns (i.e. multivariate pattern 
analysis) or quantifying the similarity among neural ac
tivation patterns between different tasks (i.e. re
presentational similarity analysis). They showed that in 
young adults, task-set representations were less distinct 
on switch compared to repeat trials [71,72] (but see Refs. 
[73,74]). These results are particularly intriguing with 
respect to task-switching development. One recurring 
explanation for less flexible behavior in children and 
older adults is that their task-set representations are less 
distinct compared with young adults [27,32,40]. We 
tested this hypothesis in childhood by comparing 8- to 
11-year-olds and young adults during cued task 
switching [72]. In both groups, neural task-set re
presentations of the currently relevant task were less 
distinct on switch than on repeat trials in frontoparietal, 
cingulo-opercular, and temporo-occipital brain regions. 
Switch-related reductions in neural distinctiveness were 
comparable between children and young adults, in
dicating relatively mature task-set representations (see 
also Ref. [75]), but were more highly correlated across 
frontoparietal and cingulo-opercular regions in children 
than in adults. In a related study comparing 7- to 9-year- 
olds and young adults during a one-back working 
memory task requiring participants to attend to one of 
two dimensions, both task-relevant and task-irrelevant 
information could be decoded in children in visual 
cortex regions, while only task-relevant information 
could be reliably decoded in adults [76]. While these 
studies offer initial hints at possible differences in task- 
set representations between children and adults, they 
also suggest that age differences might depend on the 
required manipulations of task-set representations and 
might differ between cognitive control domains (i.e. task 
switching [72] vs working memory and attention in [76]). 
Thus, while we propose a key role of increasingly dis
tinct representations to support cognitive flexibility de
velopment, further research is needed to disentangle 
their precise trajectory depending on the task demands.

At the other end of the lifespan, aging has been asso
ciated with general neural dedifferentiation [77–80] re
sulting in less specific representations of incoming 
information during passive viewing, episodic [81] and 
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working memory tasks [82]. Of particular relevance to 
the present discussion, Weeks et al. [83] applied a 
whole-brain pattern classifier to neuroimaging data of a 
delayed match-to-sample task, including face and scene 
categories, of which only one category was subsequently 
cued and tested. Older adults (60–77 years) showed 
more evidence for sustained representation of the irre
levant information during the working memory delay 
period compared with young adults.

The investigation of the role of task-set representations’ 
distinctiveness for the development of cognitive flex
ibility has only recently begun, and a direct lifespan 
comparison may be particularly informative. First, we 
expect that older adults (but not children) will already 
demonstrate overall less distinct representations of the 
relevant task set in the execution of single tasks that will 
propagate further and affect sustained control. Second, 
when only parts of the task set change, both children and 
older adults experience difficulties with the transient 
updating of task sets [84]. Based on recent findings of 
performance being most efficient if tasks are represented 
in a conjunct manner in the brain, including corre
sponding cues, stimuli, responses, and the mappings 
among them [70,85], we expect that age differences in 
representations might be especially relevant for transient 
control processes.

Outlook
To move toward a mechanistic understanding of lifespan 
changes in cognitive flexibility, and task switching in 
particular, we need to chart the development of sus
tained and transient control processes at behavioral and 
neural levels of analysis. Cross-sectional age group 
comparisons suggest that sustained processes show more 
protracted development in childhood and earlier decline 
in later adulthood than transient processes, indicating 
differential lifespan trajectories of general/mixing and 
switch costs. A closer look at age differences in func
tional connectivity and neural task-set representations is 
likely to refine our understanding of the development of 
sustained and transient control processes. We expect 
developmental differences in network characteristics 
and task-based connectivity to be particularly important 
for the development of sustained control, whereas 
changes in task-set representations might be especially 
relevant for transient control development. Initial evi
dence suggests neural distinctiveness and network seg
regation are positively related in sensorimotor networks 
across younger and older adults [86], underlining the 
need to investigate the codevelopment of representa
tions and connectivity for cognitive flexibility. Long
itudinal evidence delineating concurrent (e.g. linking 
current levels of sustained and transient control) and 
lead-lag relations (i.e. how transient and/or sustained 
control at an earlier time point impacts change in 

sustained/transient control at a later time point) will 
advance our understanding of the underlying develop
mental dynamics. Longitudinal studies can further pro
vide hints for prevention and intervention, such as 
specific age ranges that might benefit from training or 
forms of environmental support targeted at either sus
tained or transient control processes. Finally, future 
studies should explore the domain generality of sus
tained and transient control by testing how their devel
opment trajectories differentially impact other executive 
functions such as working memory or inhibition.
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