日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Vibrational Energy Transfer in Collisions of Molecules with Metal Surfaces

MPS-Authors
/persons/resource/persons15297

Kandratsenka,  Alexander       
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons82302

Golibrzuch,  Kai
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

/persons/resource/persons16046

Wodtke,  Alec M.       
Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society;

External Resource
There are no locators available
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Rahinov, I., Kandratsenka, A., Schäfer, T., Shirhatti, P. R., Golibrzuch, K., & Wodtke, A. M. (2024). Vibrational Energy Transfer in Collisions of Molecules with Metal Surfaces. Physical Chemistry Chemical Physics, 26, 15090-15114. doi:10.1039/D4CP00957F.


引用: https://hdl.handle.net/21.11116/0000-000F-3B8D-1
要旨
The Born-Oppenheimer Approximation (BOA), which serves as the basis for our understanding of chemical bonding, reactivity and dynamics, is routinely violated for vibrationally inelastic scattering of molecules at metal surfaces. The title-field therefore represents a fascinating challenge to our conventional wisdom calling for new concepts that involve explicit electron dynamics occurring in concert with nuclear motion. Here, we review progress made in this field over the last decade, which has witnessed dramatic advances in experimental methods, thereby providing a much more extensive set of diverse observations than has ever before been available. We first review the experimental methods used in this field and then provide a systematic tour of the vast array of observations that are currently available. We show how these observations – taken together and without reference to computational simulations – lead us to a simple and intuitive picture of BOA failure in molecular dynamics at metal surfaces, one where electron transfer between the molecule and the metal plays a preeminent role. We also review recent progress made in the theory of electron transfer mediated BOA failure in molecule-surface interactions, describing the most important methods and their ability to reproduce experimental observation. Finally, we outline future directions for research and important unanswered questions.