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Le Petit Prince Hong Kong (LPPHK): 
Naturalistic fMRI and EEG data 
from older Cantonese speakers
Mohammad Momenian  1,2 ✉, Zhengwu Ma3, Shuyi Wu3, Chengcheng Wang3, 
Jonathan Brennan4, John Hale5, Lars Meyer  6,7 & Jixing Li  3 ✉

Currently, the field of neurobiology of language is based on data from only a few Indo-European 
languages. The majority of this data comes from younger adults neglecting other age groups. Here we 
present a multimodal database which consists of task-based and resting state fMRI, structural MRI, 
and EEG data while participants over 65 years old listened to sections of the story The Little Prince in 
Cantonese. We also provide data on participants’ language history, lifetime experiences, linguistic and 
cognitive skills. Audio and text annotations, including time-aligned speech segmentation and prosodic 
information, as well as word-by-word predictors such as frequency and part-of-speech tagging derived 
from natural language processing (NLP) tools are included in this database. Both MRI and EEG data 
diagnostics revealed that the data has good quality. This multimodal database could advance our 
understanding of spatiotemporal dynamics of language comprehension in the older population and 
help us study the effects of healthy aging on the relationship between brain and behaviour.

Background & Summary
Language comprehension in daily life is a process which does not happen in a vacuum; the environment could 
be noisy, people have different speaking rates (some speak faster than others), and sociocultural variables such 
as social class might influence what variety of language people speak. Most of the research in the neurobiology 
of language is done on linguistic processes which are not representative of the language used in natural contexts. 
There is, however, an increasing interest in doing research using more naturalistic tasks (See Table S1 for a list 
of published databases on naturalistic language). Naturalistic data could be more reliable and ecologically valid 
because such data is representative of what the brain does in real life1. Using naturalistic data, researchers can 
study language at different levels of language (word, phrase, sentence, and discourse) at the same time and inves-
tigate how these levels interact with each other2.

Language comprehension is usually studied using techniques such as fMRI and M/EEG. fMRI has an advan-
tage in spatial resolution showing where exactly in the brain a mental process happens. However, in studying 
language temporal dynamics are as important as spatial correlates. MEG and EEG have great temporal resolu-
tion making them valuable tools for studies of language comprehension. Almost all previous naturalistic data-
bases have used fMRI neglecting to cater for questions about temporal dynamics of language3 (see Table S1). 
There is a need for naturalistic studies which provide data on spatiotemporal dynamics of language.

Research shows that the majority of previous studies in psycholinguistics (85%) are done in only 10 lan-
guages with English accounting for 30% of the published studies4. Most Indo-European languages are very 
similar in terms of morpho-syntactic properties and script. More research needs to be done on understudied 
languages which have different properties. This could accommodate more diversity in the research on neurobi-
ology of language and help the findings be more representative of the world’s population.
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One issue with prior naturalistic research is that they have only provided data on healthy younger adults 
(See Table S1) neglecting other populations such as children and older adults. The World Population Aging 
Report5 shows that the population of seniors aged 65 years and over will double in the next three decades. This 
means that all stakeholders need to be ready to embrace this population shift. It will be, therefore, very important 
to study how healthy aging could influence the relation between brain and behavior, particularly in naturalistic 
settings where the cognitive demands could be higher for older people.

We know that healthy aging is usually accompanied by individual differences in cognitive decline6. Any data-
base on language in older adults should also provide information about key cognitive skills which are involved 
in language comprehension if resources are available. Without data on cognitive functions, it will be difficult 
to document the role of individual differences in language comprehension in healthy aging. Only one database 
(see1) has provided such data.

In this study, we present a database which includes 52 Cantonese speakers (over 65 years old) listening to 
20 minutes of the story The Little Prince. We collected both fMRI (task based and resting state) and EEG data 
from the same participants. Data on language history and lifetime experiences as well as behavioural data about 
linguistic skills and cognitive functions such as inhibition, short-term memory, processing speed, verbal fluency, 
and picture naming speed were collected. We think this is the first naturalistic database on older people which 
provides both fMRI and EEG data as well as extensive cognitive data for each participant. This valuable contri-
bution aligns with our vision for the LPP database expansion7, incorporating diverse modalities, languages, and 
annotations to foster interdisciplinary research in psycho- and neurolinguistics.

Methods
Participants. We recruited 52 healthy, right-handed older Cantonese participants (40 females, mean 
age = 69.12, SD = 3.52) from Hong Kong for the experiment, which consists of an fMRI and an EEG session. 
In both sessions, participants listened to the same sections of The Little Prince in Cantonese for approximately 
20 minutes. We made sure each participant was right-handed and a native Cantonese speaker using the Language 
History Questionnaire8 (LHQ3). Additionally, participants reported normal or corrected normal hearing. They 
confirmed they had no cognitive decline. Two participants did not take part in the fMRI session and an addi-
tional 4 participants’ fMRI data were removed due to excessive head movement, resulting in a total of 46 par-
ticipants (39 females, mean age = 69.08 yrs, SD = 3.58) for the fMRI session and 52 participants (40 females, 
mean age = 69.12 yrs, SD = 3.52) for the EEG session. Table S2 shows participants’ demographic information and 
quiz response accuracy. Prior to the experiment, all participants were provided with written informed consent. 
All participants received monetary compensation after each session. Ethical approval was obtained from the 
Human Subjects Ethics Application Committee at the Hong Kong Polytechnic University (application number 
HSEARS20210302001). This study was performed in accordance with the Declaration of Helsinki and all other 
regulations set by the Ethics Committee.

Procedures. The study consisted of an fMRI session and an EEG session. The order of the EEG and fMRI 
sessions was counterbalanced across all participants, and a minimum two-week interval was maintained between 
sessions (See Fig. 1 for an overview).

fMRI experiment. Before the scanning day, an MRI safety screening form was sent to the participants to make 
sure MRI scanning was safe for them. We also sent them simple readings and videos about MRI scanning so 

Fig. 1 Schematic overview of the LPPHK data collection procedures, preprocessing, technical validation and 
annotation. During data collection (blue), neural imaging signals were measured while participants listened to 
4 sections of the audiobook. The sessions were counterbalanced with half of the participants starting with fMRI 
and the other half with EEG. The sequence for fMRI data collection always commenced with anatomical MRI, 
followed by functional and resting-state MRI. After preprocessing the data (green), behavioral and overall data 
quality were assessed (light red). Audio and text annotations were extracted using NLP tools (dark red).
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that they could have an idea of what it would be like to be in a scanner. On the day of scanning, participants 
were initially introduced to the MRI facility and comfortably positioned inside the scanner, with their heads 
securely supported using paddings. An MRI-safe headphone (Sinorad package) was provided for participants 
to wear inside the head coil. The audio volume for the listening task was adjusted to ensure audibility for each 
participant. A mirror attached to the head coil allowed participants to view the stimuli presented on a screen. 
Participants were instructed to stay focused on the visual fixation sign while listening to the audiobook.

The scanning session commenced with the acquisition of structural (T1-weighted) scans. Subsequently, par-
ticipants engaged in the listening task concurrently with fMRI scanning. The task-based fMRI experiment was 
divided into four runs, each corresponding to a section of the audiobook. Comprehension was assessed by a 
series of 5 yes/no questions (20 questions in total, see Table S2) on the content they had listened to. These ques-
tions were presented on the screen, with participants indicating their answers by pressing a button. The session 
concluded with the collection of resting-state fMRI data.

Cognitive tasks. Four cognitive tasks were selected to assess participants’ cognitive abilities in various domains, 
including the forward digit span task, picture naming task, verbal fluency task, and Flanker task (see Fig. 2). 
These tasks were delivered after the fMRI session in a separate soundproof booth.

The forward digit span task9 measured the span of short-term memory. Participants were presented with 
audible random sequences of digits 0–9 in Cantonese and were instructed to verbally recall them in the same 
order (see Fig. 2a). The participants had a chance to practice before the main task started. The span ranged from 
4 digits to 14 digits. For scoring, we gave partial credit (0.5) if participants could answer 1 item correctly and full 
credit (1) for 2–3 correct answers (See Table S3).

In the picture-naming task, participants were required to quickly and accurately name objects and actions 
using line drawings from the Object and Action Naming Battery10 (ONAB). This battery has been normed across 
multiple languages, including Cantonese11 (see Fig. 2b). Participants had a brief practice session before the main 
task started. Average picture naming latency is reported in Table S3 for each participant.

The verbal fluency task9 involved participants generating as many words as possible within 60 seconds that fit 
into four randomized test categories (mammals, non-mammals, fruits, electronic appliances). Verbal responses 

Fig. 2 Behavioral cognitive tasks procedure and Language History Questionnaire (LHQ) score distribution. 
(a) Forward digit span task. (b) Picture naming task. (c) Verbal fluency task. (d) Flanker task. (e) Language 
History Questionnaire (LHQ) provides scores for proficiency, immersion, and dominance for the languages 
participants reported. All the participants can speak Cantonese.
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were recorded and later scored by independent judges (see Fig. 2c). The score is the average score among all four 
categories (See Table S3).

The Flanker task12 assessed response inhibition and processing speed. Participants were asked to identify the 
direction of a central target arrow while disregarding four flanking arrows (see Fig. 2d). The score for inhibition 
is usually calculated as a difference score where the latency in the congruent condition is subtracted from the 
latency in the incongruent condition. We presented raw RT for each condition in Table S3 so that researchers 
could use them flexibly based on their research questions. We considered participants’ average reaction time 
in neutral conditions as an indication of processing speed (see Table S3). In the neutral condition, there are no 
conflicting or facilitating cues which makes it a good measurement for processing speed13.

EEG experiment. During the EEG experiment, participants were seated comfortably in a quiet room and stand-
ard procedures were followed for electrode placement and EEG cap preparation. Participants were instructed to 
focus on a fixation sign displayed on a monitor. The EEG recording was then initiated, with participants listen-
ing to the audiobook. The audio volume was adapted to each participant’s hearing ability before the recording 
using a different set of stimuli. We used Foam Ear Inserts (Medium 14 mm). Similar to the fMRI experiment, 
participants listened to four sections of the audiobook, each lasting approximately 5 minutes. After each run, 
participants were asked to answer a total of 20 yes/no questions, with 5 questions assigned to each run. They 
indicated their answers by pressing a button. The EEG recording was conducted continuously throughout all 
four runs until their completion.

Questionnaires. We administered LHQ3 and the Lifetime of Experiences Questionnaire14 (LEQ) during EEG 
cap preparation. The participants did not need to move or fill in these questionnaires themselves; a research 
assistant asked the questions one by one in Cantonese and input the responses in an online Google form. LHQ 
is designed to document language history by producing aggregate scores for language proficiency, exposure, and 
dominance in all the languages spoken by the participants (See Fig. 2e). LEQ is a tool to document what sorts 
of activities (e.g. sports, music, education, profession, etc) participants engage in over their lifetime. It measures 
lifetime experiences in three periods of life: from 13 to 30 (young adulthood), from 30 to 65 (midlife), and 
after 65 (late life). LEQ produces a total score (see participants.tsv in the OpenNeuro) which is an indication of 
cognitive activity. Collecting data using these two questionnaires allowed us to have a thicker description of our 
participants’ linguistic, social, and cognitive experiences.

Stimuli. The experimental stimuli utilized in both the EEG and fMRI consisted of approximately 20 minutes 
of the story The Little Prince in Cantonese audiobook. It was translated and narrated in Cantonese by a native male 
speaker. The stimuli consist of a total of 4,473 words and 535 sentences. To facilitate data analysis and participant 
engagement, the stimuli were further segmented into four distinct sections, each spanning nearly five minutes. 
To assess listening comprehension, participants were presented with five yes/no questions after completing each 
section, resulting in a total of 20 questions throughout the experiment (see Table S4). To make sure the speed of 
story narration was normal for the participants, we asked a few people who were different from the participants 
in this study to judge the speed and comprehensibility. They all reported the speed was normal, neither so slow 
nor so fast.

Data acquisition. The MRI data were collected at the University Research Facility in Behavioral and Systems 
Neuroscience (UBSN) at The Hong Kong Polytechnic University. EEG data was collected at the Speech and 
Language Sciences Laboratory within the Department of Chinese and Bilingual Studies at the same university.

fMRI data. MRI imaging data were acquired using a 3 T Siemens MAGNETOM Prisma system MRI scanner 
with a 20-channel coil. Structural MRI was acquired for each participant using a T1-weighted sequence with the 
following parameters: repetition time (TR) = 2,500 ms, echo time (TE) = 2.22 ms, inversion time (TI) = 1,120 ms, 
flip angle α (FA) = 8°, field of view (FOV) = 240 × 256 × 167 mm, resolution = 0.8 mm isotropic, acquisition 
time = 4 min and 32 s. The acquisition parameters for echo planar T2-weighted imaging (EPI) were as follows: 
60 oblique axial slices, TR = 2000 ms, TE = 22 ms, FA = 80°, FOV = 204 × 204 × 165 mm, 2.5 mm isotropic, and 
acceleration factor 3. E-Prime 2.0 (Psychology Software Tools) was used to present the stimuli.

EEG data. A gel-based 64-channel Neuroscan system on a 10–20 electrode template was used for data acquisi-
tion, sampling at a rate of 1000 Hz. To mark the onset of each sentence, triggers were set at the beginning of each 
sentence. STIM2 software (Compumedics Neuroscan) was used for stimulus presentation.

Preprocessing. All MRI data were preprocessed using the NeuroScholar cloud platform (http://www.human-
brain.cn, Beijing Intelligent Brain Cloud, Inc.), provided by The Hong Kong Polytechnic University. This platform 
uses an enhanced pipeline based on fMRIPrep15,16 20.2.6 (RRID: SCR_016216) and supported by Nipype17 1.7.0 
(RRID: SCR_002502). Then we used the pydeface (https://github.com/poldracklab/pydeface) package to remove 
the voxels corresponding to the faces from both anatomical and preprocessed data to anonymize participants’ 
facial information.

Anatomical. The structural MRI data underwent intensity non-uniformity correction18, skull-stripping, and 
brain tissue segmentation of cerebrospinal fluid (CSF), white matter (WM), and gray matter (GM) based on the 
reference T1w image. The resulting anatomical images were nonlinearly aligned to the ICBM 152 Nonlinear 
Asymmetrical template version 2009c (MNI152NLin2009cAsym) template brain. Radiological reviews were 
performed on MRI images by a medical specialist in the lab. Incidental findings were noticed for participants 
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sub-HK031 and sub-HK049. There was a sub-centimeter (0.7 cm) blooming artefact in the right putamen, 
likely a cavernoma for participant sub-HK031. For participant sub-HK049, there was a left thalamic (0.7 cm) 
oval-shaped susceptibility artefact and a 2.6 cm cystic collection in the right posterior fossa.

Functional. The preprocessing of both resting and functional MRI data included the following steps: (1) 
skull-stripping, (2) slice-timing correction with the temporal realignment of slices according to the reference 
slice, (3) BOLD time-series co-registration to the T1w reference image, (4) head-motion estimations and spatial 
realignment to adjust for linear head motion, (5) applying parameters from structural images to spatially nor-
malize functional images into Montreal Neurological Institute (MNI) template, and (6) smoothing by a 6 mm 
FWHM (full-width half-maximum) Gaussian kernel.

EEG. The pre-processing was carried out using EEGLAB19 and in-house MATLAB functions. The preproc-
essing of EEG data included the following steps: (1) a cutoff frequency filter with 1 Hz high pass and 40.0 Hz 
low pass cut-off was applied followed by a notch filter at 50 Hz to reduce electrical line noise, (2) use of kurtosis 
measure to identify and remove bad channels, (3) application of the RUNICA algorithm (from EEGLab toolbox, 
2023 version), a machine learning algorithm that evaluates ICA-derived components, for automated rejection of 
artifacts, including signal noise from eye and muscle, high-amplitude artifacts (e.g., blinks), and signal discon-
tinuities (e.g., electrodes losing contact with the scalp), (4) interpolating data for bad channels using spherical 
splines for each segment. (5) re-referencing the data by using both electrodes M1 and M2 as the reference for all 
channels and (6) down-sampling all the data to 250 Hz.

annotations. We present audio and text annotations, including time-aligned speech segmentation and pro-
sodic information, as well as word-by-word predictors derived from natural language processing (NLP) tools. 
These predictors include aspects of lexical semantic information, such as part-of-speech (POS) tagging and word 
frequency. An overview of our annotations is presented in Fig. 3. These annotations can also be accessed on 
OpenNeuro (see the Data Records section for details).

Prosodic information. We extracted the root mean square intensity and the fundamental frequency (f0) from 
every 10 ms interval of the audio segments by utilizing the Voicebox toolbox (http://www.ee.ic.ac.uk/hp/staff/
dmb/voicebox/voicebox.html). Peak RMS intensity and peak f0 for each word in the naturalistic stimuli were 
used to represent the intensity and pitch information for each word.

Word frequency. Word segmentation was performed manually by two native Cantonese speakers. The 
log-transformed frequency of each word was also estimated using PyCantonese20, Version 3.4.0 (https://pycan-
tonese.org/). The built-in corpus in PyCantonese is the Hong Kong Cantonese Corpus21 (HKCancor), collected 
from transcribed conversations between March 1997 and August 1998.

Part-of-speech tagging. Part-of-speech (POS) tagging for each word in the stimuli was extracted using the 
PyCantonese20, Version 3.4.0 (https://pycantonese.org/). Following the manual segmentation of words, we input 
these segments into the Cantonese-exclusive NLP tool PyCantonese, which then provided POS tags for each 
word according to the Universal Dependencies v2 tagset22 (UDv2).

Data Records
We have anonymized all records by removing information and anatomical data that could potentially identify 
the participants. Result files are available from the OpenNeuro repository (https://doi.org/10.18112/openneuro.
ds004718.v1.0.8)23. For a visual representation of the data collection structure, refer to Fig. 4. A comprehensive 
description of the available content is provided in the README file on the repository. The scripts utilized for 
this research paper are accessible both on the repository and GitHub at https://github.com/jixing-li/lpp_data.

Fig. 3 Annotation information for the stimuli. (a) Word boundaries in the audio files, included in files: lppHK_
word_information.txt. (b) f0 and RMS intensity for every 10 ms of the audios, included in files: wav_acoustic.csv 
(c) Tokenization, POS tagging, and log-transformed word frequency in files: lppHK_word_information.txt.
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Participant responses. Location participants.json, participants.tsv.
File format tab-separated value.
Participants’ sex, age, and accuracy of quiz questions for each fMRI and EEG experiment in tab-separated 

value (tsv) files. Data is structured as one line per participant.
Audio files. Location stimuli/task-lppHK_run-1[2–4].wav.

Fig. 4 Organization of the data collection. (a) General overview of directory structure. (b) Content of 
subject-specific directories for raw data, including EEG, structural, resting-state, and functional MRI data. 
(c) Content of subject-specific directories of preprocessed data for both EEG and fMRI data. (d) Content of the 
experimental stimuli directory. (e) Content of the annotation file directory. (f) Content of the quiz and cognitive 
behavioral task results directories.
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File format wav.
The 4-section audiobook from The Little Prince in Cantonese.
Anatomical data files. Location sub-HK < ID > /anat/sub-HK < ID > _T1w.nii.gz
File format NIfTI, gzip-compressed.
The raw high-resolution anatomical image after defacing.

Functional data files. Location sub-HK < ID > /func/sub-HK < ID > _task-lppHK_run-1[2–4]_bold.nii.gz
File format NIfTI, gzip-compressed.
Sequence protocol
sub-HK < ID > /func/sub-HK < ID > _task-lppHK_run-1[2–4]_bold.json.
The preprocessed data are also available as:
derivatives/sub-HK < ID > /func/sub-HK < ID > _task-lppHK_run-1[2–4]_desc-preprocessed_bold.nii.gz

Resting-state MRI data files. Location sub-HK < ID > /func/sub-HK < ID > _task-rest_bold.nii.gz
File format NIfTI, gzip-compressed.
Sequence protocol
sub-HK < ID > /func/sub-HK < ID > _task-rest_bold.json.
The preprocessed data are also available as
derivatives/sub-HK < ID > /func/sub-HK < ID > _rest_bold.nii.gz.

EEG data files. Location sub-HK < ID > /eeg/sub-HK < ID > _task-lppHK_eeg.set
File format set (a type of MATLAB file, with a file in the .fdt extension containing raw data)
The preprocessed data are also available as:
derivatives/sub-HK < ID > /eeg/sub-HK < ID > _task-lppHK_eeg.set (together with a file in the .fdt exten-

sion containing raw data)
Annotations. Location annotation/snts.txt, annotation/lppHK_word_information.txt, annotation/wav_

acoustic.csv
File format comma-separated value.
Annotation of speech and linguistic features for the audio and text of the stimuli.
Quiz questions. Location quiz/lppHK_quiz_questions.csv
File format comma-separated value.
The 20 yes/no quiz questions were employed in both the fMRI and EEG experiments.

technical Validation
To ensure adequate comprehension, we calculated participants’ response accuracy of the quiz questions during 
the EEG and fMRI experiments. Quality assessment for EEG data was focused on the bad channel portions and 
the highest amplitude of epoched data. The quality of fMRI scans was evaluated using the MRI Quality Control 
tool24 (MRIQC). Moreover, three whole-brain functional analyses were conducted utilizing pitch (f0), intensity 
and word rate annotations. These analyses serve to showcase the high data quality similar to prior research, 
while substantiating the precise timing accuracy between fMRI time-series for each participant25,26.

Behavioral results. In both the EEG and fMRI experiments, participants were presented with the same set 
of 20 yes/no quiz questions in total. The average accuracy across participants was 66.25% (SD = 0.13) for the EEG 
experiment and 59.24% (SD = 0.12) for the fMRI experiment. The observed lower accuracy compared to a previ-
ous database25 could potentially be attributed to the advanced age range of our participants, as age-related mem-
ory decline may influence their performance, as well as education level. One sample question is shown below.

Example. Question: 小王子是否從另一個星球來到地球?
(Did the Little Prince come to Earth from another planet?)
Answer: 是
(Yes)

Quality assessment for EEG data. The quality assessment was conducted after preprocessing of EEG 
data. An overview of both qualitative and quantitative measurements for the signal quality is shown in Fig. 5.

Number of Bad channel removals. By using the kurtosis measure, we identified bad channels and computed 
the number of interpolated channels, which is presented in Table S5 and Fig. 5a. It is shown that only 15 out of 
50 participants had bad channels during data acquisition which accounts for lower than 10% of all the channels.

High amplitudes of Epochs. Epochs with amplitudes of above + 150 mV and below −150 mV in any of the 60 
channels were excluded from averaging. Under the threshold of 150 mv, more than half of event epochs were 
rejected for four participants (incl. sub-HK005, sub-HK019, sub-HK029 and sub-HK037). We adjusted different 
thresholds for these participants for further analyses, with 300 mV for sub-HK005, 200 mV for both sub-HK019 
and sub-HK037, and 350 mV for sub-HK029. The epochs that survived from the threshold are counted and 
shown in Table S5 and Fig. 5b.

Intersubject correlation (ISC). To examine the consistency of the EEG responses across subjects, we performed 
an ISC analysis on the EEG data epoched from 0–600 ms after each word onset for all subjects (See26). We then 
examined the statistical significance of the ISC results using a one-sample one-tailed t-test with a cluster-based 
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permutation test27 involving 10,000 permutations. Our results showed significant activation in the left and right 
temporal lobes (see Fig. 5d), suggesting greater consistency in the auditory regions.

Event-related potentials (ERPs). ERPs refer to brain activities that are elicited in response to specific stimuli. To 
obtain ERPs, we first segmented the continuous EEG signals into distinct epochs, locking at the onset of each 
word and extending 600 ms thereafter. This process resulted in a total of 4473 event-based epochs. Subsequently, 
we separately selected 50 trials out of 2924 trials for lexical words and 50 trials out of 1549 trials for functional 
words and calculated the average responses across all participants and all 64 channels over the epoch period 
(600 ms), resulting in two event-based evoked data (Fig. 5e,f).

MRI Data quality assessment. We utilized the MRIQC to evaluate MRI data quality based on the eval-
uation reports of generated image-quality metrics (IQMs). We visually checked the assessment reports for each 
participant and plotted the group-level IQMs for both anatomical and functional data (Fig. 6a,b). These metrics 
demonstrate the high quality of both anatomical and functional data, characterized by low head motion and arti-
fact, stable spatial and temporal brain signals, and minimal outliers.

Anatomical data. Low values of the coefficient of joint variation of gray matter and white matter (CJV) and the 
entropy-focus criterion (EFC) indicate minimal head motion and artifacts. High values of the contrast-to-noise 
ratio (CNR) and the foreground-background energy ratio (FBER) suggest clear tissue distribution and a reason-
able image energy distribution. Additionally, the white matter to maximum intensity ratio (WM2MAX) shows 
that the white matter intensity is appropriate, as it falls within the optimal range. The signal-to-noise ratio (SNR) 
of both gray matter and white matter demonstrates good quality.

Functional data. High temporal signal-to-noise ratio (tSNR) and low temporal derivative of time courses of 
root mean square over voxels (DVARS) indicate strong temporal stability. Low averaged framewise displacement 
(FD) and AFNI’s outlier ratio (AOR) show well-controlled head motion and artifacts. Furthermore, low mean 
full width at half maximum (FWHM) and AFNI’s quality index (AQI) reflect strong spatial distribution of image 
intensity. Low values of global correction (GOR) and the number of dummy scans indicate appropriate correc-
tion and a stable initial scan state.

Neural labeling. The general linear model (GLM) method was employed to derive the prosody- and 
word-relevant regions using our pitch and word annotations. We calculated the f0 and intensity for every 10 ms 
of the audio and marked the onset of each word in the audio (word rate). We then convolved the f0, intensity, 
and word rate annotations with a canonical hemodynamic response function and regressed them against the 
preprocessed fMRI timecourses using GLMs. At the group level, the contrast images for the f0, intensity and word 
rate regressors were examined by a one-sample t-test. Statistical significance was held at p < 0.05 FWE and the 
true positive was estimated by all-resolution inference28 (ARI). Figure 7 illustrates the GLM methods to localize 
the f0, intensity, and word rate regions. To illustrate the precise anatomical correspondence of our results with 

Fig. 5 EEG Data quality assessment. (a) Number of interpolated channels per participant. (b) Number of 
epochs that survived from thresholded for each participant. (c) Sensor layout of the EEG system (64 channels, 
Neuroscan). (d) Intersubject correlation (ISC) results for the EEG data. The average response across 50 trials for 
both lexical words (e) and functional words (f).

https://doi.org/10.1038/s41597-024-03745-8
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prior data, we overlaid fMRI term-based meta-analysis from Neurosynth (Retrieved October 2023) for the “pitch” 
areas (https://neurosynth.org/analyses/terms/pitch/; from 102 studies), the “acoustic” areas (https://neurosynth.
org/analyses/terms/acoustic/; from 171 studies) and the “words” areas (https://neurosynth.org/analyses/terms/
words/; from 948 studies). Our results are consistent with prior literature (see Fig. 8). Significant clusters from our 
GLM analysis and their statistics are shown in Table S6.

Fig. 6 MRI data quality assessment. (a) Group-level image-quality metrics (IQMs) of anatomical data. (b) 
Group-level IQMs of functional data.

Fig. 7 General linear model (GLM) analyses to localize the f0, intensity and word rate regressors. (a) Onset 
timepoints, f0 and intensity of each word in the audiobook were extracted and marked as 1 to be convolved with 
the canonical hemodynamic response function, separately. (b) At the first level, the time course of each voxel’s 
BOLD signals was modeled using the design matrix, including word rate, f0 and intensity as regressors. For the 
second-level analysis, a one-sample t-test was conducted on the distribution of the beta values for the included 
regressors across subjects at each voxel. The threshold of statistical significance was set at p < 0.05 FWE, k 
cluster > 50.
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Usage Notes
The LPPHK fMRI-EEG dataset can advance our understanding of speech and language processing in the human 
brain, especially for older speakers, during naturalistic listening. However, there are several limitations and 
usage bottlenecks including annotations and analyses. We think discussing these limitations here can help others 
use the data more efficiently.

Annotation bottleneck. Most linguistic annotations in our study were generated automatically uti-
lizing the NLP tool, PyCantonese. However, a portion of the annotations required manual input from native 
Cantonese speakers. This manual aspect could lead to inconsistencies, potentially affecting subsequent annota-
tions. Specifically, word segmentation tasks were conducted manually by two native speakers of Cantonese. Their 
manually segmented results were then used to ascertain word frequencies within the reference corpus, namely 
the Hong Kong Cantonese Corpus (HKCanCor). Notably, discrepancies between human and NLP-segmented 
results were observed, resulting in several words—707 out of 4473 total stimuli—exhibiting a zero frequency in 
the corpus.

Analysis bottleneck. Although the GLM is widely employed in fMRI data analysis, there is a noticeable shift 
towards the adoption of encoding models in naturalistic paradigms. Nonetheless, there is still a need for accu-
rate and systematic approaches to analyze complex, high-dimensional naturalistic fMRI data. Recent progress in 
machine learning-based methods and the integration of existing computational models has shown promise in 
improving compatibility with the intricate patterns of neural activity. Hence, we strongly encourage the develop-
ment of advanced analysis approaches that take into account the various parameters of naturalistic stimuli. This 
will facilitate a more comprehensive exploration of the LPPHK fMRI-EEG dataset.

Multi-functional analyses. LPPHK fMRI-EEG dataset is a valuable neuroscience resource since it com-
bines neural data from two different modalities. We would like to propose several feasible research possibilities 
using this dataset. Firstly, owing to its remarkable spatial and temporal resolution, this dataset has the potential to 
elucidate the complex neural information processing and how it maps across various brain regions. As one part of 
the current proposed M/EEG-fMRI fusion analytical framework, this dataset can serve as a template for exploring 
further research possibilities. Secondly, as a dataset featuring an older age group, it offers a valuable resource for 
comparisons with other age groups, or even populations with specific clinical disorders. Finally, this database 
provides opportunities for a cross-linguistic analysis. For example, since Cantonese contains abundant inverted 
sentences and flexible word order, it provides valuable data which could be compared with previous databases 
such as LPPC-fMRI25.

Code availability
The data for the LPPHK is publicly available at the OpenNeuro repository (https://openneuro.org/datasets/
ds004718). The scripts can be accessed through GitHub (https://github.com/jixing-li/lpp_data).

Fig. 8 General linear model (GLM) results. The GLM results show the significant clusters for the (a) word, (b) 
intensity and (c) pitch regions using word rate, intensity and f0 annotations as regressors. In the second column 
of the 3D brain images, the light-colored areas represent related clusters obtained from meta-analyses of the 
word, acoustic, and pitch regions in Neurosynth. To determine statistical significance, a threshold of p < 0.05 
FWE, k > 50 was applied.
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