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Abstract: The identification of key parameters that correlate with 
catalytic performance through a combination of experiments and 
model calculations can accelerate the development of improved 
catalysts and reveal the relevant underlying processes. However, the 
analysis of correlations in heterogeneous catalysis is often hindered 
by inconsistent data. Besides, nontrivial, yet unknown relationships 
may be important, and the intricacy of the various processes may be 
significant. Here, we address these challenges for perovskite-
catalyzed CO oxidation by linking systematic experiments and 
artificial intelligence (AI). For this purpose, 14 AMn(1-x)CuxO3 phase-
pure perovskites with A = Pr, La were synthesized, characterized, and 
tested according to rigorous experiments. To the so-generated 
consistent dataset, we applied the symbolic-regression SISSO 
approach and identified a descriptor for CO consumption rates as an 
analytical expression containing the bulk and surface A content, the 
copper surface content, and the deviation (D) of the normalized lattice 
constants from the cubic root of the normalized cell volume. Crucially, 
D reflects a crystallographic distortion that depends on the element at 
the A site. Thus, in addition to the relative abundance of redox-active 
species on the surface, the species at the A-sites also influence the 
performance by modulating the properties of the material and the 
surface. 

Introduction 

Perovskites[1] are a promising materials class[2] for energy-related 
application and key to future catalysis technologies.[2b] Mixed 
oxides perovskites have been applied, for instance, to 
environmental catalysis[3] and to electrocatalysis.[2b] Due to the 
high degree of flexibility of the perovskite structure with respect to 

the composition, an immense number of compounds can be 
obtained by combining different elements and by varying the 
stoichiometry. Double perovskite oxides with the formula AB(1-

x)B’xO3 can accommodate different A, B, and B’ elements at 
different proportions. In this perovskite structure, one large A 
cation (e.g., lanthanide) occupies a site that is coordinated with 
12 oxygen anions (O2-) and the smaller B and B’ cations (e.g., 
transition metals) are coordinated with 6 oxygen anions forming 
BO6 (or B’O6) octahedra. The properties and catalytic 
performance of these materials can be adjusted by the 
composition. However, elucidating the underlying mechanisms 
and efficiently exploring the practically infinite space of possible 
perovskites are extremely challenging tasks. This is because 
heterogeneous catalysis is governed by a high intricacy of many 
underlying processes such as surface reactions, the material’s 
dynamic restructuring, and the interplay of bulk and surface 
properties. This prevents the explicit, atomistic modelling of the 
full catalytic progression.[4] Indeed, the surface motifs that are 
present under reaction conditions and the reaction mechanisms 
that operate on those surfaces are typically unknown and 
continuously adapt to the progress of the reaction and the 
associated changes in chemical potential. 
The CO oxidation to CO2 by molecular oxygen is an example of 
an important reaction for environmental catalysis and for the 
purification of hydrogen for energy generation. This reaction  is 
catalyzed by perovskite oxides.[3, 5] Despite being one of the most 
investigated heterogeneous reactions,[6] the mechanisms 
governing CO oxidation on perovskites are not well understood. 
The performance of perovskites in oxidation catalysis has been 
related to different underlying processes such as the availability 
and redox potential of surface B sites and the materials’ capacity 
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to provide lattice oxygen. In particular, series of double 
perovskites containing lanthanides at the A site and different 
proportions of manganese and a second metal at the B and B’ 
sites, respectively, (e.g., LaMn(1-x)CuxO3) have been studied in 
detail to probe the influence of the composition on the catalytic 
performance.[7]  Some studies report that the CO consumption 
rates are proportional[7k, 7m] or present a volcano-type 
relationship[7b, 7c] with respect to the content of copper in LaMn(1-

x)CuxO3. Accordingly, it has been suggested that the function of 
manganese is the activation of molecular oxygen and that of 
copper the adsorption of carbon monoxide.[7c] The influence of the 
A element has been investigated for cobalt-based materials with 
the general formula ACoO3, where A is a lanthanide.[8] The activity 
was related to spin and valence states of cobalt as well as to the 
reducibility and to the strength of oxygen binding on the surface. 
The A sites influence the bulk and surface properties of 
perovskites, for instance by inducing crystallographic strain,[9] i.e., 
when the structure deviates from the ideal cubic perovskite 
structure. This also results in changes in the surface structure and 
electronic properties that might affect catalysis. In particular, small 
A cations induce octahedral tilting, creating more covalent 
bonding structures compared to those obtained with larger A 
cations.[10]  Indeed, we recently demonstrated this phenomenon 
for the case of perovskites AMn(1-x)CuxO3 with A = La, Pr.[11] 
However, the effect of crystallographic distortions, i.e., distortions 
in the bulk, not only at the surface, has not yet been investigated 
in CO oxidation catalyzed by double perovskite oxides. 
Furthermore, the correlations and key parameters proposed in the 
literature are partly contradictory. In particular, the conclusions 
depend on the composition of the respective catalyst series 
investigated and do not apply to CO oxidation over perovskites in 
general. 
In order to unveil the underlying mechanisms and to design new 
materials, the identification of key parameters correlated with the 
catalytic performance is crucial. Artificial intelligence (AI) has 
been increasingly applied to identify nonlinear correlations and 
complex patterns in data in materials science and catalysis.[12] 
However, the inconsistency of experimental data in 
heterogeneous-catalysis research hinders the application of AI to 
reported data (see ref. [13] and references therein). Indeed, the 
measured materials properties, e.g., surface compositions, 
depend on the experimental workflow of sample synthesis, the 
pretreatment, and the measurement conditions. These workflows 
often involve different synthetic procedures and multi-step 
treatments such as calcination or annealing, which are performed 
before the catalytic reaction is carried out. Besides, the measured 
catalytic performance is strongly influenced by the reaction 
conditions, e.g., start-up procedure (induction period under the 
reaction feed also referred to as catalyst formation or activation), 
temperature, contact time, or feed composition. This is because 
the surface and solid-state chemistry of the material is coupled 
with the chemistry of the catalytic reaction. Finally, the presence 
of small amounts of by-phases formed as minor impurities during 
synthesis can also lead to inconsistencies when searching for 
structure-performance relationships. Such minor amounts of 
additional catalyst components can significantly influence the 
performance. They are often only detectable by electron 
microscopic or other methods of spatial resolved or trace analysis 

and might be overlooked by (bulk) techniques for materials’ 
characterization such as XRD and therefore not taken into 
account. In addition to data inconsistency, the extremely small 
number of materials that can be accessed by detailed, consistent 
experiments prevents the application of widely used AI methods 
such as neural networks. These AI methods typically require 
orders of magnitude more data points (e.g., >104) compared to 
the number of materials that can be studied by consistent 
experiments (e.g., <102). 
To address these issues, we recently proposed a combination of 
rigorous experimental protocols, which produce consistent 
data,[14] with the data-efficient symbolic-regression AI approach 
SISSO (sure-independence screening and sparsifying 
operator).[15] This strategy enables the identification of the key 
physicochemical parameters correlated with the performance, out 
of many candidate parameters, also referred to as primary 
features, characterizing the materials and possibly relevant 
underlying processes. In analogy to genes in biology, these key 
parameters were called “materials genes”, since they describe the 
materials behavior similar to how many genes in biology and 
medicine describe characteristics such as hair color, i.e., they 
capture complex patterns without providing the full, explicit 
description of all underlying processes and their interplay. 
Furthermore, the analytical expressions identified by SISSO, 
hereafter referred to as descriptors, and AI in general provide a 
statistical description, i.e., they provide mean values with a certain 
variance or uncertainty. Importantly, the SISSO approach can be 
applied even to the small number of materials that can be 
accessed by consistent experiments. 
In this paper, we utilize the materials-genes concept to model and 
design perovskite catalysts, using the CO oxidation as an 
example. In particular, we consider double perovskite oxides of 
the type AMn(1-x)CuxO3 (A = La, Pr). By simultaneously analyzing 
different copper contents and A-site elements with different sizes, 
we capture the influence of both copper substitutions and A 
element on the performance of the perovskites. We identify a 
descriptor for the measured reaction rates in the form of an 
analytical expression, which enables the prediction of the activity 
of materials and compositions that were not included in the 
training set. 

Results and Discussion 

Synthesis, characterization and catalytic testing of the 
perovskite materials 

We synthesized 14 AMn(1-x)CuxO3 (A = La, Pr, 0 ≤ x ≤ 0.4) phase-
pure materials by solution combustion synthesis,[16] and 
measured 30 physicochemical parameters per material by the 
characterization techniques inductively coupled plasma optical 
emission spectroscopy (ICP OES), oxygen analysis, x-ray 
diffraction (XRD), x-ray photoelectron spectroscopy (XPS) and N2 
adsorption. The full list of the 30 parameters used is provided in 
Table S1. Raw data of CO oxidation experiments are shown in 
Figure S1. Further details on the preparation procedure, 
characterization techniques, and catalyst testing are described in 
the Supporting Information. All numerical physicochemical 
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catalyst characterization results and the CO oxidation rates are 
given electronically in the Supporting Information in the file 
dataset.xls.  
X-ray diffraction reveals that all samples present a perovskite-like 
phase-pure structure (Table 1). The orthorhombic crystal structure 
is observed for the majority of the synthesized materials. Only the 
lanthanum-based perovskites with low copper content exhibit the 
rhombohedral crystal symmetry. In order to quantify the 
distortions of the perovskites with respect to the ideal cubic 
structure, we determined the observed tolerance factor 𝑡"#$	based 
on the Rietveld refinement analysis and on the expression 
 

𝑡"#$ =
'()*+

',)*+∗	 .
   .         (Eq. 1) 

 
Here, < 𝐴O >3  and < 𝐵O >3  are the mean values of the 
interatomic A-O and B-O distances, respectively. The observed 
tolerance factor for a cubic perovskite is equal to the unity. For the 
synthesized materials, the values of 𝑡"#$	are between 0.984 and 
0.993, where the values decrease with increasing copper amount 
(see dataset.xls in the Supporting Information). Besides, 𝑡"#$ 
values are lower for the praseodymium-based materials 
compared to the lanthanum-based ones. This indicates that the 
smaller size of praseodymium induces higher octahedral tilting 
and higher crystallographic strain. Three additional parameters 
calculated by the Rietveld refinement analysis express the 
crystallographic distortion: the deviation (𝐷 ) of the normalized 
lattice constants from the cubic root of the normalized cell volume, 
the deviation of single A-O distance values from the mean 
(< 𝐴O >6), and deviation of single B-O distance values from the 
mean. (< 𝐵O >6). 𝐷 quantifies the geometric distortion of the unit 
cell from the ideal cubic state (Table 1). It is defined so that 
distortions in both orthorhombic and rhombohedral crystal 
symmetries can be expressed by the same quantity: 
 

𝐷 = (89:8∗)<=(#9:8∗)<=(>9:8∗)<

?
 .         (Eq. 2) 

 
In Eq. 2, normalized lattice parameters are used that depend on 
the crystal symmetry. For the orthorhombic crystal structure in 
setting Pbnm, we use: 
 

𝑎A = 8
.
 (Eq. 3), 𝑏A = #

.
 (Eq. 4), 𝑐A = >

.
 ( Eq. 5). 

 
For the rhombohedral structure in a hexagonal coordinate system 
(R-3cH), we use: 
 

𝑎A = 8
.
 (Eq. 6) and 𝑐A = >

D.
 (Eq. 7). 

 
The parameter a* is the pseudo-cubic lattice parameter defined 
by the formula 
 

𝑎∗ = 𝑉′G   (Eq. 8). 
 

The parameter a* represents the geometric mean of the 
normalized lattice parameters but may also be regarded as the 
cell parameter a of a virtual cubic cell with the same normalized 

volume 𝑉′  which is the actual unit cell volume divided by the 
number of ABO3 formula units: 

𝑉A = H
IJKLG

 (Eq. 9). 

The parameters < 𝐴O >6  and < 𝐵O >6  reflect cuboctahedral, 
and octahedral/Jahn-Teller distortions, respectively. In addition to 
the mentioned quantities, we obtained other parameters from the 
XRD analysis such as the normalized unit cell volume. In total, 13 
parameters characterizing the perovskite structures and their 
distortions were obtained from XRD (Table S1 and dataset.xls). A 
more detailed discussion of complex crystallographic 
characteristics of the materials studied here is provided 
elsewhere.[11] 
The ICP OES and oxygen analysis on the one hand, and XPS on 
the other hand were used to measure the composition of the bulk 
𝑥NOPQ and surface 𝑥ROST	of the perovskites, respectively. In order to 
quantify the relative amount of redox-active species (B and B’) 
with respect to the atoms of element A in the structure, we 
determined the ratio between the sum of atomic fractions of B and 
B’ (𝑥, and 𝑥,A, respectively) and the atomic fraction of A (𝑥() as 
 

𝑥,/( =
VK=VK9
VJ

. (Eq. 10) 

 
The ratio for bulk atomic fractions (denoted 𝑥,/(NOPQ) is higher for 
lanthanum-based samples compared to the praseodymium-
based ones (Table 1). In contrast, the ratio for surface atomic 
fractions (denoted 𝑥,/(ROST) is higher for the praseodymium series 
compared to the lanthanum series. This can be attributed to the 
enhanced crystallographic distortion of praseodymium-based 
materials, which hinders the homogeneous embedding of the two 
B sites into the octahedral of the bulk in the praseodymium-based 
perovskites. However, except for the concentration gradients 
between surface and bulk (Table 1), the materials are 
homogeneous. Only in the praseodymium-based material with the 
highest copper content, PrMn0.6Cu0.4O3, small amounts of 
exsolved CuO nanoparticles were detected in a minority of cases 
by scanning-transmission-electron-microscopy energy-dispersive 
x-ray analysis. [11] Thus, the 𝑥ROST  values correspond to the 
average of different surface terminations in the near-surface 
region that is detected by laboratory XPS and they also include 
the contribution of CuO, in the case of the material PrMn0.6Cu0.4O3. 
In addition to 𝑥,ROST, 𝑥,AROST, and 𝑥(ROST, the atomic fraction of oxygen 
on the surface 𝑥)ROST, and the onset of the valance band relative to 
the Fermi level were also measured by XPS (see dataset.xls in 
the Supporting Information). These parameters reflect the surface 
and electronic properties of the materials. We also analyzed the 
oxygen 1s spectra measured by laboratory XPS and determined 
the relative amount of different oxygen species such as regular 
lattice oxygen, oxygen located near to defects, surface oxygen, 
oxygen in adsorbed carbonates, hydroxyl groups, water and 
adsorbed oxygen-containing species (Table S2, Figures S2 and 
S3, and dataset.xls). It should be mentioned that the above-
mentioned segregation of CuO in the Pr-based material with the 
highest Cu content seems to affect the O 1s spectrum. In total, 
chemical analyses (ICP OES and oxygen analysis) and XPS 
provided 4 and 13 parameters, respectively (Table S1). Finally, 
the N2 physisorption provided the specific surface area of the 
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perovskites. The values of surface area vary between 2.5 and 12 
m2·g-1 (see dataset.xls file in the Supporting Information). 
The perovskites were tested in CO oxidation at 130 °C under 
steady state in a plug flow reactor (Figure S1 and measured rates 
in the file dataset.xls in the Supporting Information). We compared 
the reactivity of the tested materials by analyzing the CO 
consumption rates 𝑟Y)Z[\ROS[], in mmol·h-1·g-1. In particular, we plot 
the reaction rates as function of x in AMn(1-x)CuxO3 (A = La, Pr) in 
Figure 1A. The measured rate values range from 74.2 mmol·g-1·h-

1 to 349 mmol·g-1·h-1. Thus, the considered perovskites present 
significantly different reactivity. The less and most active 
materials, among all tested ones, are PrMn0.75Cu0.25O3 and 
LaMn0.60Cu0.40O3, respectively. The lanthanum-based materials 
achieve higher rates compared to the praseodymium-based ones. 
In particular, the lanthanum-based perovskites with high x display 
the highest rates for CO consumption. For the lanthanum-based 
materials, the rates are in general directly proportional to x. This 
behavior is in line with previous reports for perovskites containing 
manganese and copper as B and B’ elements.[7k, 7m] However, this 
behavior is not observed for the praseodymium series. Indeed, 
the rates are inversely proportional to x for the praseodymium-
based materials. This shows that the nominal stoichiometry is not 
enough to capture the reactivity of all the considered materials. 

We note that the materials LaMn0.65Cu0.35O3, PrMn0.75Cu0.25O3, 
and PrMn0.60Cu0.40O3 deviate from the linear trend, which 
indicates that x might not be an appropriate descriptor. We have 
also investigated the evolution of the reaction rates with respect 
to the relative copper surface atomic fraction (𝑥YO,S[PROST ), as the 
relative copper content has been suggested to correlate with the 
activity of LaMn(1-x)CuxO3 perovskites towards CO oxidation.[7b, 7c, 

7k, 7m] The value 𝑥YO,S[PROST  is defined by  
 

𝑥YO,S[PROST = V^_
`_ab

VJ
`_ab=V^_

`_ab=Vcd
`_ab. (Eq. 11) 

 
In Eq. 11, 𝑥(ROST, 𝑥YOROST, and 𝑥efROST are the surface atomic fraction of 
A, copper, and manganese with respect to all metals present on 
the surface. The reaction rates are directly and inversely 
proportional to 𝑥YO,S[PROST  for the lanthanum- and praseodymium-
based materials, respectively (Figure 1B). Thus, the trends 
observed in Figure 1A also emerge when the influence of the 
relative copper surface content on the rates is analyzed. 
Therefore, nor the degree of exchange of manganese by copper 
(x) neither the relative copper surface atomic fraction is able to 
describe the reactivity of the double perovskites across different 
A elements and proportions of B and B’ elements simultaneously.

Table 1. Summary of the properties of perovskite materials with general formula AMn(1-x)CuxO3 (A = La, Pr, Sm, 0 ≤ x ≤ 0.4) measured by XRD, ICP OES, XPS, and 
N2 physisorption. 

A x Space group 𝐷 𝑥,/(NOPQ 𝑥,/(ROST 𝑥(NOPQ	(at%)[c] 𝑥(ROST	(at%)[c] 𝑥YOROST	(at%)[c] Material ID[d] 

La 0 R-3cH [a] 0.0203 1.02 0.76 0.20 0.23 0.00 S30649 

La 0.10 R-3cH 0.0252 0.97 0.77 0.19 0.23 0.03 S30867 

La 0.20 R-3cH/Pbnm 0.0242 1.00 0.84 0.20 0.20 0.04 S31180 

La 0.25 Pbnm[b] 0.0126 1.06 0.83 0.19 0.21 0.06 S30635 

La 0.30 Pbnm 0.0128 1.07 0.82 0.20 0.22 0.07 S30659 

La 0.35 Pbnm 0.0114 1.02 0.71 0.19 0.25 0.07 S30624 

La 0.40 Pbnm 0.0116 1.01 1.03 0.20 0.21 0.12 S31285 

Pr 0 Pbnm[b] 0.018 0.95 1.19 0.20 0.18 0.00 S31345 

Pr 0.10 Pbnm 0.0266 0.95 1.13 0.20 0.20 0.03 S31070 

Pr 0.20 Pbnm 0.0324 0.96 1.11 0.20 0.21 0.06 S31021 

Pr 0.25 Pbnm 0.0311 0.98 0.92 0.21 0.23 0.07 S30637 

Pr 0.30 Pbnm 0.0309 0.95 0.91 0.21 0.23 0.07 S30934 

Pr 0.35 Pbnm 0.0273 0.98 0.78 0.21 0.25 0.08 S31176 

Pr 0.40 Pbnm 0.0268 1.01 0.64 0.18 0.25 0.08 S29908 

Sm 0 Pbnm 0.167 1.00 0.94 0.18 0.18 0.00 S30103 

[a]R-3cH : rhombohedral symmetry. [b] Pbnm: orthorhombic symmetry. [c] Percentage of atoms. [d] Samples ID according to the internal database of Fritz Haber 

Institute for unique identification of the sample batches. 
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Figure 1. (A) CO consumption vs. the degree of exchange of manganese by copper (x); (B) CO consumption rate vs. the copper relative surface fraction (𝑥YO,S[PROST ); 

(C) Correlation between the model identified by the SISSO (𝑟Y)ghgg)) and the CO consumption rates; (D) Map of potential catalysts created using the SISSO analysis; 

The SISSO model correctly captures the reactivity of the SmMnO3 material, which was not used for training; Red, blue, and orange markers show results for 

lanthanum, praseodymium, and samarium-based materials, respectively; CO oxidation was carried out at 130 °C, a 	W/F = 0.036 g·s·mL-1, where 𝑊 is the mass of 

the catalyst in g and 𝐹 is the total flow rate in mL·h-1, with a feed CO/O2/inert: 1/20/79; The dashed lines in D indicate the isovalue curves associated to 0, 200 and 
400 mmol·g-1·h-1. 

AI analysis  

In order to identify a descriptor that captures the reactivity towards 
CO oxidation for both lanthanum- and praseodymium-based 
perovskites, we apply the SISSO approach.[17] This method 
identifies models describing a target of interest T (e.g., reaction 
rates) as analytical expressions depending on key parameters, 
out of many offered ones. The SISSO approach starts with the 
collection of its input parameters, termed primary features. Then, 
a large number (e.g., up to millions) of candidate analytic 
expressions are generated by combining the primary features 
according to (nonlinear) mathematical operators such as addition, 
multiplication, division, and exponential. Finally, compressed 
sensing is applied in order to identify the few expressions, which 
combined by means of weighing coefficients, best correlate with 
the target for the dataset. The models identified by SISSO have 
the form 
 

𝑇(lmlln) = 𝑐o + 	𝑐q𝑑qs
qtD 			,  (Eq. 12) 
 

where 𝑐q are fitted coefficients and 𝑑q are the selected analytical 
expressions, which correspond to components of a descriptor 
vector. Because the functional forms of SISSO models are flexible 
and can easily fit the rather small number of data points generated 

in this work, the appropriate model complexity needs to be 
determined in order to avoid models that fit the provided data but 
are not generalizable. We evaluate the optimal complexity with 
respect to the predictability through a leave-one-material-out-
cross-validation (CV) approach (method described in the 
Supporting Information, Figure S4).[15a] The 30 parameters 
obtained from XRD, ICP OES, oxygen analysis, XPS, and N2 
physisorption were used as primary features in the SISSO 
analysis (Table S1, dataset.xls file in the Supporting Information). 
The best model identified by SISSO for the CO oxidation steady-
state rates, corresponding to the model obtained using the entire 
dataset at the optimal complexity, correctly describes the 
reactivity trend across both lanthanum and praseodymium series 
of perovskites (Figure 1C). This model has the following 
expression: 
 

𝑟Y)
(ghgg)) = 1230 + 21.43 V^_

`_ab

{
− 2655 𝑥(ROST + 𝑥(NOPQ .  (Eq. 13) 

 
The key parameters that appear in the model expression of Eq. 
13 are the surface copper content (𝑥YOROST) determined by XPS, the 
deviation (𝐷) of the normalized lattice parameters from the cubic 
root of the normalized unit cell volume determined by XRD, and 
the concentration of A in the bulk and on the surface of the 
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materials (𝑥(NOPQ and 𝑥(ROST, respectively), determined by ICP OES 
and XPS, respectively (Table 1). The relevance of 𝑥YOROST can be 
related to the function of copper as an adsorption center for CO, 
as suggested by previous works.[7c] The parameter 𝐷 , in turn, 
points at a crucial role of bulk crystallographic distortions in the 
reactivity. Indeed, octahedral tilting induced by different 
compositions[10] can alter the electronic structure of the 
perovskites and thus the bonding patterns, [9] in particular the 
balance between ionic and covalent bonding contributions. These 
different bulk bonding patterns consequently translate into 
different surface reactivity. Noteworthy, SISSO selects 𝐷 as a key 
parameter rather than 𝑡"#$  or the mean values and standard 
deviations of interatomic distances (e.g,. metal-oxygen or oxygen-
oxygen) and B-O-B angles, which were also offered as candidate 
parameters. Finally, 𝑥(NOPQ  and 𝑥(ROST  reflect the influence of bulk 
and surface composition in the catalytic performance, in particular 
the relative 𝐴  content. It should be noted that the surface 
compositions measured by XPS are not independent, since 
𝑥(ROST + 𝑥YOROST + 𝑥efROST + 𝑥)ROST = 1 . Thus, the lanthanum or 
praseodymium surface atomic contents are indirectly related to 
the atomic contents of copper, manganese, and oxygen. The 
surface oxygen contents or the relative amount of oxygen species 
measured by XPS, which were also offered as parameters in our 
analysis, were not selected by SISSO as important parameters.  
This may imply that oxygen activation is no limiting factor under 
the given reaction conditions in an oxygen-rich feed. The total 
surface area measured by N2 physisorption was not selected by 
SISSO either. Overall, the identified materials genes suggest that 
a combination of the abundance of certain adsorption centers with 
their local electronic structure is the key for CO oxidation on the 
perovskites. These insights agree with the previous reports in the 
sense that complex relationships are involved.[7c, 7g, 7k, 7l] However, 
Eq. 13 highlights that parameters characterizing crystallographic 
distortions such as D are required to describe CO oxidation rates 
across different A elements, in particular to simultaneously 
capture the lanthanum- and praesodymium-based materials, 
which experimentally show different trends. Interestingly, the rate 
decreases with increasing crystallographic strain, which again 
underlines that oxygen activation is less important than the 
activation of CO on metal cations at the surface. The crucial 
impact of the mentioned distortions in the CO oxidation activity 
has been overlooked by previous works, but it was identified here 
via systematic experiments and AI. Based on the model identified 
by SISSO, we construct a map of potential catalyst (Figure 1D). 
This map shows how the reaction rates are predicted (grey color 
scale) based on the two descriptor components, i.e., the two 
terms containing analytical expressions in Eq. 13. 
In order to assess the generalizability of the descriptor identified 
by SISSO, we synthesized, characterized and tested the 
SmMnO3 material, which contains a different A element 
(samarium) with respect to those employed to train the model. 
This catalyst (orange markers in Figure 1) was subjected to the 
same characterization methods and catalytic experiment applied 
to the (La,Pr)Mn(1-x)CuxO3 series for the rate determination. The 
rate of SmMnO3 (346 mmol·g-1·h-1) is correctly predicted to be 
among the highest ones (orange markers in Figures 1C and 1D). 
This result suggests that the identified descriptor is valid beyond 
the compositional space used for its generation. Indeed, the 

model of Eq. 13 is expected to be valid for new materials 
containing different elements in their compositions as long as the 
reactivity of the examined compounds is governed by the same 
processes governing the catalytic performance in the perovskites 
used to train the model. Even though the candidate descriptive 
parameters included in this work only reflect the thermodynamic 
properties of the catalysts, the obtained SISSO models describe 
the reaction rates obtained at fixed reaction conditions with good 
accuracy. The inclusion of parameters that correlate with the 
catalyst dynamics and with the reaction environment, i.e., 
parameters determined in operando experiments, might be 
crucial for the description of reactions and materials over multiple 
reaction conditions.[15a, 15b] 

Conclusion 

In summary, we synthesized, characterized, and tested in CO 
oxidation 14 phase-pure AMn(1-x)CuxO3 perovskites (A = La, Pr) 
according to a systematic experimental procedure. The activity of 
AMn(1-x)CuxO3 perovskites towards the catalytic CO oxidation 
cannot be easily correlated with the copper content, but it is 
captured by the SISSO AI approach. By applying a SISSO 
analysis, we identified a descriptor for CO consumption rates that 
contains the copper surface content, the deviation of the 
normalized lattice parameters from the cubic root of the 
normalized unit cell volume, and the concentration of the A in the 
bulk and on the surface of the materials as key parameters. The 
descriptor is of more general validity than previously proposed 
ones and it allows predictions also for materials that do not 
contain copper. Crucially, this descriptor highlights the so far 
overlooked role of crystallographic strain, which depends on the 
A element. This example clearly shows that the relationships 
between the material properties of perovskites and catalysis are 
of a complex nature and that an optimal catalyst cannot be found 
simply by varying the composition or a crystallographic parameter. 
The approach described in this paper accelerates the 
development of improved perovskite materials for catalysis by 
providing insights into the key processes underlying catalysis and 
thus proposing approaches to the inorganic chemist or materials 
scientist that are not readily apparent. 

Supporting Information 

The Supporting Information contains the list of physicochemical 
parameters used in the AI analysis, details on the materials 
synthesis, characterization, and CO oxidation experiments as well 
as details on the cross-validation strategy. Additional references 
are cited within the Supporting Information.[16, 18] The values of all 
physicochemical parameters used in the AI analysis for the 14 
materials considered in our study are provided in the file 
dataset.xls. 
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