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Abstract: The identification of key materials’ parameters that 
correlate with the catalytic performance can accelerate the 
development of improved heterogeneous catalysts and unveil the 
relevant underlying physical processes. However, the analysis of 
correlations is often hindered by inconsistent data. Besides, nontrivial, 
yet unknown relationships may be important, and the intricacy of the 
various processes may be significant. Here, we tackle these 
challenges for the CO oxidation reaction catalyzed by perovskites via 
a combination of rigorous experiments and artificial intelligence (AI). 
A series of 13 ABO3 (A = La, Pr, Nd, Sm; B = Cr, Mn, Fe, Co) 
perovskites was synthesized, characterized, and tested in catalysis. 
To the resulting dataset, we applied the symbolic-regression SISSO 
approach. We identified an analytical expression as a descriptor for 
the activity that contains, as key materials’ parameters, the 
normalized unit cell volume, the Pauling electronegativity of the 
elements A and B, and the ionization energy of the element B. 
Therefore, the activity is described by crystallographic distortions and 
by the chemical nature of A and B elements. The generalizability of 
the identified descriptor is confirmed by the good overall quality of the 
predictions for the activity of 3 additional ABO3 and of 16 chemically 
more complex AMn(1-x)B’xO3 (A = La, Pr, Nd; B’ = Fe, Co Ni Cu, Zn) 
perovskites. These AMn(1-x)B’xO3  materials contain substitutions of 
Mn at the B sites as well as chemical elements that were not part of 
the training set (Ni, Cu, Zn). 

Introduction 

Perovskites[1] are a promising materials’ class[2] for energy-related 
applications and key to future catalysis technologies.[2b] 
Applications of perovskite oxides include environmental 
catalysis[3] and electrocatalysis.[2b] Due to the high flexibility of the 
perovskite structure in terms of composition, an immense number 
of compounds can be obtained by combining different elements 
in ABO3 materials and by varying the stoichiometry, e.g., in AB(1-

x)B’xO3 or A(1-x)A’xBO3 systems. In the perovskite structure, 

relatively large A cations (e.g., lanthanides) occupy sites that are 
coordinated with 12 oxygen anions (O2-) and smaller B cations 
(e.g., transition metals) are coordinated with 6 oxygen anions to 
form BO6 corner-sharing octahedra. The stability of the perovskite 
structure relative to other possible structures and the distortion of 
the crystal structure can be estimated from the ratio of the ionic 
radii of the constituent elements via tolerance factors.[4] The 
properties and catalytic performance of perovskites can be 
adjusted by the composition. However, elucidating the underlying 
relationships between materials’ parameters and the performance, 
known as descriptors, and efficiently exploring the virtually infinite 
space of possible perovskites are challenging tasks. This is 
because heterogeneous catalysis is governed by a high intricacy 
of many superimposed and entangled processes such as the 
interplay between bulk and surface properties, the surface 
reactions, and the dynamic restructuring of the material under 
working conditions. This prevents the explicit, atomistic modelling 
of the full catalytic progression.[5] Indeed, the surface motifs that 
are present under reaction conditions and the reaction 
mechanisms that operate on those surfaces are typically 
unknown and continuously adapt to the progress of the reaction 
and the associated changes in chemical potential. 
The CO oxidation to CO2 by molecular oxygen is an example of 
an important reaction for environmental catalysis and for the 
purification of hydrogen for energy generation.[6] This reaction can 
be catalyzed by perovskite oxides.[3, 6-7] However, the 
mechanisms operating on perovskites are not well understood. 
The performance has been related to different underlying 
processes, such as the transfer of lattice oxygen to reacting 
species and the redox processes occurring on B sites.[8] 
Accordingly, the activity was correlated to the perovskite capacity 
to provide lattice oxygen and to the abundance and redox 
potential of surface B species. Additionally, the choice of the A 
element can result in crystallographic strain[9] and thus in 
deviations from the ideal cubic perovskite structure, which can in 
turn affect the surface properties and catalytic performance.[10] In 
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particular, small A cations induce octahedral tilting, creating more 
covalent bonding structures compared to those obtained with 
larger A cations.[11] It turns out that the reported relationships 
describing the performance of perovskites in CO oxidation are 
partly contradictory. In particular, the conclusions depend on the 
composition space of the investigated perovskites. Furthermore, 
to the best of our knowledge, the influence of A and B elements 
has not yet been studied simultaneously and systematically. 
In order to unveil descriptors and to design new materials, the 
identification of key materials’ parameters correlated with the 
catalytic performance is crucial. Artificial intelligence (AI) has 
been increasingly applied to identify nonlinear correlations and 
complex patterns in data in materials science and catalysis.[12] 
However, the inconsistency of experimental data in 
heterogeneous-catalysis research hinders the application of AI to 
reported data (see ref. [13] and references therein). Indeed, the 
measured materials properties, e.g., surface compositions, 
depend on the experimental workflow of sample synthesis, the 
pretreatment, and the measurement conditions. Besides, the 
measured catalytic performance is strongly influenced by the 
reaction conditions, e.g., start-up procedure (induction period 
under the reaction feed, also referred to as catalyst formation or 
activation), temperature, contact time, or feed composition, 
because the surface and solid-state chemistry of the material is 
coupled with the chemistry of the catalytic reaction. Finally, the 
presence of small amounts of by-phases formed as minor 
impurities during synthesis can also lead to inconsistencies when 
searching for structure-performance relationships. In addition to 
data inconsistency, the extremely small number of materials that 
can be accessed by detailed experiments prevents the application 
of widely used AI methods such as neural networks. These AI 
methods typically require orders of magnitude more data points 
compared to the number of materials that are investigated by 
systematic experiments. 
To address these issues, we recently proposed a combination of 
rigorous experimental protocols, which produce consistent 
data,[14] with the data-efficient symbolic-regression AI approach 
SISSO (Sure-Independence Screening and Sparsifying 
Operator).[15] This strategy enables the identification of the key 
physicochemical parameters correlated with the performance, out 
of many offered candidate descriptive parameters, termed 
primary features. These primary features characterize the 
materials and correlate with many potentially relevant underlying 
processes. In analogy to genes in biology, the key parameters 
identified in a SISSO analysis were called “materials genes”, 
since they describe the materials behavior similar to how genes 
in biology and medicine describe characteristics such as hair color, 
i.e., they capture complex patterns without providing the full, 
explicit description of all underlying processes. Indeed, the 
relationships between the identified key materials parameters and 
the performance might be indirect. SISSO identified models in the 
form of analytical expressions. These expressions are the 
pursued descriptors. SISSO can be applied even to the small 
number of materials that is accessed by rigorous experiments in 
catalysis and physical chemistry. We note, however, that SISSO 
and AI in general provide a statistical description, which is 

associated to a certain variance or uncertainty and a certain 
domain of applicability.[16]  
In this paper, we utilize the materials-genes concept to model and 
design perovskite catalysts, using the CO oxidation as a model 
reaction. Crucially, we analyze the influence of a wide range of A 
and B elements on perovskite reactivity simultaneously by 
considering 13 ABO3 perovskites composed by combinations of 
the A elements La, Pr, Nd, and Sm with the B elements Cr, Mn, 
Fe, and Co. Based on this training set, we identify an analytical 
expression correlated with the activity that contains, as key 
parameters, the normalized unit cell volume, the electronegativity 
of A and B elements, and the ionization energy of the B element. 
This descriptor highlights the so far overlooked role of 
crystallographic distortions on the reactivity of the perovskites, in 
addition to catalyst properties encoded in the chemical nature of 
A and B elements. The identified expression is used to predict the 
activity of an additional set of 3 ABO3 and 16 AMn(1-x)B’xO3 (A = 
La, Pr, Nd; B’ = Fe, Co Ni Cu, Zn; ) perovskites that was not used 
for training. The good overall quality of the predictions suggest 
that the expression is generalizable.  

Results and Discussion 

Synthesis, characterization, and catalysis 

We synthesized 13 ABO3 (A = La, Pr, Nd, Sm; B = Cr, Mn, Fe, 
Co) perovskites by the solution combustion method.[17] The 
perovskites were characterized by inductively coupled plasma 
optical emission spectroscopy (ICP OES) or equivalent X-ray 
fluorescence analysis (XRF), oxygen analysis, X-ray diffraction 
(XRD), X-ray photoelectron spectroscopy (XPS), and N2 
adsorption. Then, we tested the perovskites in CO oxidation. The 
preparation procedure, characterization techniques and catalytic 
testing are described in detail in the Electronic Supporting 
Information (ESI).  
XRD reveals that all samples present a perovskite-like structure 
(Table 1). The materials are phase-pure, with the exception of 
NdFeO3, for which we identified small amounts of a by-phase (2% 
Nd2O3). The orthorhombic crystal structure is observed for the 
majority of the synthesized materials. Only LaMnO3 and LaCoO3 
perovskites exhibit the rhombohedral crystal symmetry. In order 
to quantify the distortions of the perovskites with respect to the 
ideal cubic structure, we determined the observed tolerance 
factor !"#$	based on the Rietveld refinement analysis using the 
expression 
 

!"#$ =
'()*+

',)*+∗	 .
   .         (Eq. 1) 

 
Here, < 0O >3  and < 4O >3  are the mean values of the 

interatomic A-O and B-O distances, respectively. The observed 
tolerance factor for a cubic perovskite is equal to 1.00. For the 
synthesized materials, the values of !"#$	are in the range [0.978, 
0.993] (Table 1). For a fixed B element, the !"#$ values decrease 
according to the A element following the trend La > Pr > Nd > Sm. 
This shows that the octahedral tilting and crystallographic strain 
increases (and !"#$  decreases) as the size of the A species 
decreases.[11b] Additional parameters were obtained using the 
Rietveld refinement analysis. These parameters were defined so 

https://doi.org/10.26434/chemrxiv-2024-8xkh5-v2 ORCID: https://orcid.org/0000-0003-3002-062X Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-8xkh5-v2
https://orcid.org/0000-0003-3002-062X
https://creativecommons.org/licenses/by/4.0/


    

3 
 

that materials presenting different crystal symmetry (orthorhombic 
and rhombohedral) could be compared in a consistent manner. 
The normalized cell volume (5′) is an example of such parameter. 
The quantity 5′ is the unit-cell volume divided by the number of 
ABO3 formula units in the unit cell. It measures the packing of the 
atoms in the structure and it is determined by the size of A and B 
cations and by the distortions of the octahedra.  In total, 13 
parameters characterizing the perovskite structures and their 
distortions were obtained from XRD (see full list in Table S1). The 
formulas for defining these parameters are explained in detail in 
the ESI and the complex crystallographic characteristics of 
perovskite oxides are discussed in detail elsewhere.[11b] 
ICP OES (or XRF), oxygen analysis, and XPS were used to 
measure the A, B, and oxygen contents in the bulk and on the 
surface of the perovskites. The bulk and surface contents of B, 
measured for the 13 ABO3 perovskites in atomic percentage and 
denoted 7,89:; and 7,<9=>, respectively, are shown in Table 1. The 
7,89:; values are similar among the 13 materials and they are in 
the range [0.17, 0.22]. In contrast, the 7,<9=>	values are more 
spread in the range [0.03, 0.22]. Thus, the surface stoichiometry 
varies more than the bulk stoichiometry among the considered 
materials. In particular, materials such as LaFeO3 and NdFeO3 
present significantly lower content of B in the surface (0.03) 

compared to the bulk (0.21 and 0.22, respectively). However, 
there is no clear trend linking the bulk and surface compositions 
with the A and B elements. In total, ICP OES (or XRF), oxygen 
analysis, and XPS provided 6 parameters characterizing the 
perovskite bulk and surface compositions. Finally, the N2 
physisorption provided the specific surface area of the 
perovskites (Table 1). The values of surface area are in the range 
[0.60, 13.40] m2·g-1. 
The perovskites were tested in CO oxidation in an automated 
reactor[18] according to a standard operating procedure. We 
assessed the catalytic performance by analyzing the temperature 
required to reach 10% CO conversion, hereafter denoted ?@A 
(Table 1). The value of ?@A	reflects the activity, and the lower the 
?@A, the higher the activity. The ?@A values are in the range [116, 
435] °C, showing that the considered training set of perovskites 
present remarkably diverse activity. The ?@A  generally depends 
on the B element and increases in the following order: Co < Mn < 
Fe < Cr. However, there are exceptions, e.g.,  ?@A

BCD=)E < ?@A
BCFG)E  

or ?@A
HIJK)E < ?@A

L=DM)E . The least and most active materials of the 
13 perovskites in the training set are PrCrO3 and LaCoO3, 
respectively, with ?@A values of 435 and 116 °C, respectively. 

Table 1. Measured reactivity and some properties of the 13 ABO3 (A = La, Pr, Nd, Sm; B = Cr, Mn, Fe, Co) perovskites used to train the SISSO model. 

Material Space Group ?@A (°C)[c] !"#$
[d] 5′ (AA) [e] 7,89:;

[f] 7,<9=>
[g] NOPQ	(m

2/g)[h] Material ID[i] 

LaCrO3 Pbnm[a] 425 0.989 58.66 0.20 0.15 12.85 27499 

PrCrO3 Pbnm[a] 
435 0.984 57.61 0.20 0.14 12.10 

29306 

NdCrO3 Pbnm[a] 403 0.983 57.21 0.19 0.14 11.10 29307 

SmCrO3 Pbnm[a] 
371 0.981 56.47 0.19 0.16 11.40 

29310 

LaMnO3 R-3cH[b] 180 0.993 58.43 0.17 0.17 13.40 28837 

PrMnO3 Pbnm[a] 
152 0.987 57.91 0.20 0.21 5.68 

30276 

NdMnO3 Pbnm[a] 137 0.985 57.75 0.17 0.05 5.68 30283 

LaFeO3 Pbnm[a] 268 0.987 60.71 0.21 0.03 3.12 24878 

PrFeO3 Pbnm[a] 259 0.982 59.6 0.19 0.04 1.82 25041 

NdFeO3 Pbnm[a] 
297 0.981 59.11 0.22 0.03 4.49 

24890 

SmFeO3 Pbnm[a] 
374 0.978 58.24 0.21 0.22 0.60 

34224 

LaCoO3 R-3cH[b] 116 0.992 56.04 0.19 0.10 18.5 29645 

PrCoO3 Pbnm[a] 
147 0.988 54.39 0.18 0.19 7.50 

30380 

[a] Pbnm: orthorhombic symmetry. [b]R-3cH: rhombohedral symmetry. [c] Temperature for 10% CO conversion. [d] Observed tolerance factor measured by XRD. 

[e] Normalized unit-cell volume measured by XRD. [f] Atomic fractions of B in the bulk measured by ICP OES. [g] Atomic fractions of B on the surface measured by 

XPS. [h] Specific surface area measured by N2 physisorption.  [i]Samples ID according to the internal database[19] of the Fritz Haber Institute for unique identification 

of the sample batches.  
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Figure 1. The activity of the 13 ABO3 (A = La, Pr, Nd, Sm; B = Cr, Mn, Fe, Co) perovskites is not appropriately described by one single parameter, but it is well 

captured by the nonlinear analytical expression (descriptor) depending on multiple parameters identified by SISSO. The temperature for achieving 10% CO 

conversion (?@A) is plotted vs. (A) the atomic fraction of B on the surface measured by XPS (7,<9=>), (B) vs. the electronegativity of the B element (RS,), and (C) vs. 

the descriptor identified by SISSO. This descriptor contains the key parameters reduced unit-cell volume (5′), electronegativity of A and B elements (RS( and RS,), 

and the ionization energy of B element (TR,). The black squares correspond to the 13 ABO3 perovskites of the training set. The red, blue, and green circles 

correspond to, respectively, 3 additional ABO3 perovskites (SmMnO3, SmCoO3, and NdCoO3), 12 AMn(1-x)CuxO3 (A = La, Pr) perovskites, and 4 AMn0.7B’xO3 (A = 

Pr, Nd; B’= Fe, Co, Ni, Zn) perovskites. The SISSO descriptor correctly predicts the activity of most of the materials that were not used to train the model, displayed 

with circle markers. The dashed line in (C) corresponds to the SISSO model of Eq. 3.  

In an attempt to identify simple, linear correlations describing the 
activity, we plotted ?@A  as a function of 7,<9=>  (Figure 1A, black 
squares), since the surface amount of B has been related to the 
activity of perovskites in CO oxidation.[8] However, we do not see 
a correlation between ?@A and 7,<9=>. No correlation is observed 
between ?@A and the parameters 7(89:;, 7,89:;, 7)89:;, 7(<9=>UVG, and 
7)<9=>UVG either (Figure S1). We have also verified whether ?@A is 
correlated with the Pauling electronegativity RS of the B element, 
denoted RS,  (Figure 1B, black squares). We observe that ?@A 
increases, reaches a maximum, and then decreases as a function 
of RS, . However, there are significant differences in the ?@A 
values according to the A elements when the B element is fixed. 
The labels in Figure 1B indicate the B elements associated with 
the points falling within the respective vertical lines. This shows 
that the choice of the A element has a significant influence on the 
activity, in addition to the B element. We identified no clear 
correlation between ?@A and RS(	or the ionization energy (TR) of 
the A and B elements (Figure S1). In summary, nor the relative 
amount of A, B or oxygen in the bulk or on the surface neither the 
elemental properties of A or B elements alone are able to describe 
the reactivity of the perovskites towards CO oxidation across all 
the 13 ABO3 materials. 

AI analysis 

In order to identify a descriptor that can appropriately capture the 
activity towards CO oxidation for the 13 ABO3 (A = La, Pr, Nd, 
Sm; B = Cr, Mn, Fe, Co) materials, we applied the SISSO 
approach.[20] This method identifies models of a target of interest 
W(YZYY[) as analytical expressions containing key parameters, out 
of many offered primary features. SISSO was used to derive, for 
instance, a tolerance factor indicating the perovskite stability[4b] 
that is more accurate than the Goldschmidt tolerance factor.[4a] In 
this paper, the target that we will model is ?@A.  

The SISSO approach starts with the collection of primary features. 
Then, a large number (e.g., up to millions) of expressions are 
generated by combining the primary features according to unary 
and binary mathematical operators such as addition, 
multiplication, division, and exponential. Finally, compressed 
sensing is applied to identify the few expressions, which 
combined by weighing coefficients, best correlate with the target 
for the dataset. The models identified by SISSO for an arbitrary 
target W have the general form 
 

W(YZYY[) = ]A + 	]_`_a
_b@ ,  (Eq. 2) 
 

where ]_ are fitted weighing coefficients and `_ are the selected 
analytical expressions, which correspond to components of a 
descriptor vector. Because the functional forms of SISSO models 
are flexible and can easily fit the rather small number of materials 
considered in this work, the appropriate model complexity needs 
to be determined. This is done to avoid identifying models that fit 
the training data but which are not generalizable. We evaluated 
the optimal complexity with respect to the predictability through a 
leave-one-material-out-cross-validation (CV) approach. Details of 
the SISSO analysis are provided in the ESI.[15a]  

The 20 parameters obtained from all the characterization 
techniques were used as primary features in the SISSO analysis. 
Additionally, we included the elemental parameters 
electronegativity and ionization energy that reflect the chemical 
nature of the A and B elements of the perovskite, RS(, RS,,	TR( 
and TR, . These physicochemical parameters are associated to 
free atoms. They were measured are are reported in the literature 
(see values in Table S3).[21] In total, 24 primary features were 
considered in our SISSO analysis. The full list of primary features 
is shown in Table S1 of the ESI. The values of these primary 
features for all the materials discussed in this paper are available 
in the dataset.xls supplementary file. 
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The best model identified by SISSO for ?@A correctly captures the 
reactivity trend among the 13 ABO3 perovskites (Figure 1C). This 
model has the following expression: 
 

?@A
(BcBB)) = 2316 − 45227 Zlm

no(lapq	lam)
.  (Eq. 3) 

 
The key parameters that appear in Eq. 3 are the normalized unit-
cell volume (5′) determined by XRD, the Pauling electronegativity 
of the A and B elements (RS( and RS, , respectively), and the 
ionization energy of the B element (TR,). The relevance of 5′ can 
be associated to the role of crystallographic distortions. Indeed, 
octahedral tilting induced by different cation sizes[11a] can alter the 
packing and the electronic structure of the perovskites and thus 
the bonding patterns.[9] In particular, the balance between ionic 
and covalent bonding can change. These different bulk bonding 
patterns consequently translate into different surface reactivity. 
The relevance of TR, reflects the redox activity of the B species, 
as the B element acts as a redox-active element in oxidation 
reactions catalyzed by perovskites. Finally, the relevance of RS( 
and RS, reflects the electronic properties of the catalyst, which 
modulates, for instance, the strength of adsorption of surface 
reactive species such as CO. The atomic fractions of A, B, and 
oxygen species in the bulk and on the surface were also offered 
as primary features, but they were not selected by SISSO as 
important parameters. This may imply that the density of surface 
redox-active sites is less important than their chemical nature for 
the considered materials set. Overall, the identified key 
parameters suggest that crystallographic distortions combined 
with the electronic properties of the catalyst encoded in the 
chemical nature of A and B elements are key for CO oxidation on 
the perovskites. The insights provided by our AI analysis reconcile 
the various, sometimes contradictory conclusions of previous 
studies[8c, 8g, 8k, 8l] and they stress that linear correlations are often 
not enough to describe heterogeneous catalysis. Moreover, Eq. 3 
highlights that parameters characterizing atom packing and 
crystallographic distortions such as 5′ are required, in addition to 
physicochemical parameters associated to A and B, to correctly 
describe CO oxidation activity across a wide range of ABO3 
perovskite compositions. The crucial impact of the mentioned 
distortions has been overlooked by previous works, but it was 
identified here via a systematic consideration of A and B elements, 
rigorous experiments, and AI.  
In order to assess the generalizability of the descriptor identified 
by SISSO, we verified the predictions of ?@A given by Eq. 3 for 19 
additional materials that were not used for training the model: 3 
ABO3 perovskites (SmMnO3, NdCoO3, and SmCoO3), 12 AMn(1-

x)CuxO3 (A = La, Pr) perovskites, and 4 AMn0.7B’0.3O3 (A = Pr, Nd; 
B’ = Fe, Co Ni, Zn) perovskites. The AMn(1-x)B’xO3 perovskites 
present B and B’ elements at the B sites, where Mn is substituted 
by B’ at different proportions	7 in the range [0.0,0.4]. While Mn+3 
or Mn+4 cations can be stabilized in perovskites, the stabilization 
of certain oxidation states of B’ species such as Cu+3 is 
challenging. This motivated us to consider the substituted Mn-
based perovskites AMn(1-x)CuxO3. We note that no substituted 
perovskite was considered in the training set. Besides, the 
elements Cu, Ni, and Zn were not present in any material of the 
training set. These additional materials were synthesized by 

solution combustion synthesis[11b, 17] and they were subjected to 
the same characterization methods and catalytic experiment as 
those used for the 13 ABO3 training set materials. Experimental 
details are provided in ESI. The values of the primary features for 
these 19 materials are provided in the dataset.xls supplementary 
file. In order to evaluate the model of Eq. 3 for AMn(1-x)B’xO3 
materials, we took RS,  and TR,  as the composition average of 
the elemental properties of Mn and B’ elements following 
 

 RS, = 1 − 7 RSJK + 7RSOo (Eq. 4) and 
 

	TR, = 1 − 7 TRJK + 7TROo. (Eq. 5) 
 
This is a reasonable approximation given that the temperature at 
which the materials were calcined is relatively low and thus the B 
and B’ species are expected to be randomly distributed across the 
material. The ?@A  for the 19 additional materials are shown in 
Figure 1 as circles. The 3 ABO3, 12 AMn(1-x)CuxO3, and 4 
AMn0.7B’0.3O3 perovskites are displayed in red, blue, and green, 
respectively. The activity of these materials is not well captured 
by 7,<9=> or RS, (Figure 1A and 1B). Indeed, the ?@A values for the 
substituted AMn(1-x)B’xO3 materials do not follow the ?@A vs. RS, 
trend that was apparent from the analysis of ABO3 materials 
(Figure 1B, blue and green circles). However, the SISSO 
descriptor of Eq. 3 does capture the ?@A values of the additional 
19 perovskites with overall good accuracy (circles in Figure 1C). 
Interestingly, the high activity of SmCoO3 and NdCoO3 
perovskites, which display ?@A values lower than any material of 
the training set (105 and 113°C, respectively), is well captured by 
Eq. 3. The absolute prediction errors for SmCoO3 and NdCoO3 
are 19 and 2 °C, respectively. These results show that the 
descriptor identified based on the 13 ABO3 materials is valid 
beyond the materials space used for training and it can correctly 
describe highly active materials. 
We analyzed the prediction errors (Table S2) to understand when 
the SISSO model might fail. The mean absolute prediction error 
evaluated on the 19 materials is 45 °C. However, the absolute 
prediction errors for PrMn0.7Zn0.3O3 and LaMn0.6Cu0.4O3 are 165 
and 102 °C, respectively. These materials contain the elements 
Zn and Cu, which were not present in any material of the training 
set. Thus, the relatively high errors could be associated to the 
significantly different physical properties of these two elements 
compared to the elements constituting the materials of the training 
set. For instance, Zn displays the highest Ts values among all 
elements considered in this work (Table S3). This results in a 
descriptor value that is higher than the descriptor values of the 
training set (Figure 1C). Additionally, the underlying processes 
governing the reactivity of these two materials could be different 
compared to processes dictating the activity in the training set due 
to the limited tendency of Cu and Zn to change the oxidation state 
and the resulting deviating redox properties. Indeed, Eq. 3 is 
expected to be valid for new materials as long as the reactivity of 
the examined compounds is governed by the same processes 
controlling the catalytic performance of the perovskites in the 
training set. In order to improve the domain of applicability of the 
SISSO model and cover larger portions of the materials space 
with high accuracy, the SISSO modelling can be combined with 
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systematic data acquisition in a sequential-learning setting. A 
SISSO-based sequential-learning approach will be discussed in 
an upcoming study. 
Finally, we note that the parameters used as primary features in 
this work can be measured by relatively simple, widely accessible 
characterization techniques such as XRD or XPS. However, 
these parameters only reflect the thermodynamic properties of the 
materials in their precursor state (ex situ). Our target ?@A, in turn, 
is obtained from a kinetic measurement. While our 
thermodynamic parameters are able to correctly describe ?@A 
under fixed reaction conditions, e.g., feed composition, in this 
study, the inclusion of primary features that capture the interaction 
of the material with the reaction environment, e.g., by using in situ 
spectroscopy, might be crucial for the description of the reactivity 
in other systems or for systems that operate under significantly 
different environments, e.g., chemical potentials of the reaction 
mixture.[15a, 15b, 22] 

Conclusion 

We synthesized, characterized, and tested in CO oxidation 13 
ABO3 perovskites obtained by a systematic variation of A and B 
elements (A = La, Pr, Nd, Sm; B = Cr, Mn, Fe, Co) according to 
rigorous experimental procedures. The activity of these 
perovskites towards the catalytic CO oxidation cannot be easily 
correlated with the bulk or surface composition or with elemental 
properties of A or B, but it is well captured by AI. By applying a 
SISSO analysis, we identified a descriptor for the temperature 
necessary to achieve 10% conversion (?@A)  as an analytical 
expression. This descriptor contains the key parameters 
normalized unit-cell volume determined by XRD, the Pauling 
electronegativity of the A and B elements, and the ionization 
energy of the B element. The descriptor is of more general validity 
than the quantities previously proposed as descriptors for activity. 
It can predict ?@A  of 3 additional ABO3 materials and 16 
substituted perovskites with the general formula AMn(1-x)(Cu, Fe, 
Co, Ni, Zn)xO3 (A = La, Pr, Nd) with overall good accuracy. 
Crucially, this descriptor highlights the so far overlooked role of 
crystallographic strain, as the normalized unit cell volume is 
determined by the size of A and B cations as well as by the 
distortions of the octahedra within the perovskite structure. This 
work clearly shows that the relationships between the physical 
properties of perovskites and catalysis are nonlinear and they 
involve more than one parameter. The approach described in this 
paper accelerates the development of improved perovskite 
materials for catalysis by providing insights into the key materials’ 
properties controlling catalysis and thus proposing approaches to 
the inorganic chemist or materials scientist that are not readily 
apparent. 

Supporting Information 

The Electronic Supporting Information (ESI) contains details on 
materials synthesis, characterization, and testing in the catalytic 
CO oxidation. Additionally, details on the SISSO analysis, as well 

as supplementary Tables S1, S2, and S3 and supplementary 
Figures S1 and S2 are provided in ESI. Additional references are 
cited within the ESI. [11b, 15a, 17-18, 20c, 21a, 23] The values of ?@A and 
the values of the primary features for all materials discussed in 
this work are provided in the dataset.xls supplementary file.  
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