Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

CO Oxidation Catalyzed by Perovskites: The Role of Crystallographic Distortions Highlighted by Systematic Experiments and Artificial Intelligence

MPG-Autoren
/persons/resource/persons213523

Bellini,  Giulia
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons249470

Koch,  Gregor
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21557

Girgsdies,  Frank       
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons251783

Dong,  Jinhu
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons227633

Carey,  Spencer       
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22174

Timpe,  Olaf
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22064

Scheffler,  Matthias       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22071

Schlögl,  Robert
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons251787

Foppa,  Lucas       
NOMAD, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22181

Trunschke,  Annette       
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bellini, G., Koch, G., Girgsdies, F., Dong, J., Carey, S., Timpe, O., et al. (2025). CO Oxidation Catalyzed by Perovskites: The Role of Crystallographic Distortions Highlighted by Systematic Experiments and Artificial Intelligence. Angewandte Chemie International Edition, 64(6): e202417812. doi:10.26434/chemrxiv-2024-8xkh5.


Zitierlink: https://hdl.handle.net/21.11116/0000-000F-3E2D-B
Zusammenfassung
The identification of key parameters that correlate with catalytic performance through a combination of experiments and model calculations can accelerate the development of improved catalysts and reveal the relevant underlying processes. However, the analysis of correlations in heterogeneous catalysis is often hindered by inconsistent data. Besides, nontrivial, yet unknown relationships may be important, and the intricacy of the various processes may be significant. Here, we address these challenges for perovskite-catalyzed CO oxidation by linking systematic experiments and artificial intelligence (AI). For this purpose, 14 AMn(1-x)CuxO3 phase-pure perovskites with A = Pr, La were synthesized, characterized, and tested according to rigorous experiments. To the so-generated consistent dataset, we applied the symbolic-regression SISSO approach and identified a descriptor for CO consumption rates as an analytical expression containing the bulk and surface A content, the copper surface content, and the deviation (D) of the normalized lattice constants from the cubic root of the normalized cell volume. Crucially, D reflects a crystallographic distortion that depends on the element at the A site. Thus, in addition to the relative abundance of redox-active species on the surface, the species at the A-sites also influence the performance by modulating the properties of the material and the surface.