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Abstract
Land-surface phenology is a widely used indicator of how terrestrial ecosystems respond to
environmental change. The spatial variability of this plant functional trait has also been advocated as
an indicator of the functional composition of ecosystems.However, a global-scale assessment of
spatial patterns in the spatial heterogeneity of forest phenology is currently lacking. To address this
knowledge gap, we developed an index based on satellite retrievals and used it to quantify phenological
diversity across global forest biomes.We show that there is considerable variation in phenological
diversity among biomes, with the highest overall levels occurring in arid and temperate regions. An
analysis of the drivers of the spatial patterns revealed that temperature-related factors primarily
determine the variation in phenological diversity. Notably, temperature seasonality andmean annual
temperature emerged as themost significant variables in explaining this global-scale variability.
Furthermore, an assessment of temporal changes over an 18-year period revealed strong climate-
driven shifts of phenological diversity in boreal and arid regions, suggesting that theremay be an
ongoingwidespread homogenisation of land surface phenologywithin forest ecosystems. Our
findings ultimately contribute to the development of a novel Essential Biodiversity Variable, which
may enable scientists and practitioners to quantify the functional composition of ecosystems at
unprecedented spatial and temporal scales.

Introduction

Forest ecosystems provide a range of functions, which are vital for supporting the provision of goods and
services uponwhich human societies depend. To understand how theymay respond to future environmental
change, it is of utmost importance to quantify the spatial and temporal distribution of their functional structure.
To date, functional biogeography (Reichstein et al 2014, Violle et al 2014) has focused on awide range of issues,
including the analysis of temporal changes in a number of functional properties (Musavi et al 2017, Soranno
et al 2019, Vaglio Laurin et al 2020). However, the study of spatial heterogeneity in functional properties as a
means of understanding their functional composition has receivedmuch less attention (Jetz et al 2016).
Quantifying spatial heterogeneity in functional properties has the potential to further improve our
understanding of the role of ecosystem functional composition inmodulating responses to environmental
change. Additionally, itmay shed light on themechanisms driving ecosystemperformance and resilience across
large geographical gradients. (Walter et al 2017,Dronova andTaddeo 2022).

Phenology is a key plant trait and a functional property of terrestrial ecosystems, which can be used to
describe the seasonal dynamics of vegetated land.While phenology is generallymeasurable at individual and
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species-level, it can also bemeasured as an aggregate property for ecosystems. Land surface phenology is typically
estimated fromdata acquired using space-borne optical sensors (Helman 2018). This offers a complementary
metric, compared to that provided using ground-based data, and is capable of capturingmultiple phenological
trajectories for a given area or different vegetation types. Land surface phenology is a key indicator of global
change that both responds to and influencesweather and climate (Richardson et al 2013) and has been
extensively used to study long-term vegetation dynamics at a variety of spatial and temporal scales (Buitenwerf
et al 2015, Forkel et al 2015, Garonna et al 2016).

This has been largely achieved through the analysis of time series of vegetation indices, which can be used to
quantify inter-annual changes in the timing and intensity of vegetation activity, and fromwhich a variety of
phenologicalmetrics can be derived (Helman 2018). However,more recently, the use of phenological traits has
been advocated as a promising tool for quantifying plant diversity at large spatial scales (Viña et al 2016, Dronova
andTaddeo 2022). Furthermore, phenological traits have been proposed as an important class of Essential
Biodiversity Variables (EBV). However, an assessment of the spatial and temporal variability phenological
diversity across broad ecological gradients is currently lacking. Phenological diversity, quantified using land
surface phenology data,may reflect functional aspects of ecological communities related to resource utilisation
and niche differentiation in time (Dronova andTaddeo 2022). Indices describing spatial heterogeneity in land
surface phenology have therefore the potential to be informative about the functional composition of
ecosystems and their changes. Satellite-based phenodiversitymetricsmay thus be complementary to existing
heterogeneitymetrics based on snapshot observations from spectral indices or raw reflectance data from
spaceborne passive sensors (Maeda et al 2014,Dronova andTaddeo 2022, Fassnacht et al 2022).

In this study, we quantify global patterns in forest phenological diversity across space and time using long-
term satellite remote sensing data. To do so, we develop a novel index that quantifies the spatial variability in
Land Surface Phenology for global forested areas, based on cumulatedNormalizedDifference Vegetation Index
(NDVI) time-series data. Specifically, phenological diversity is computed as the spatial variance of the phenology
of individual phenological trajectories for a given area (seeMethods). Our index is designed tominimise the
impact of noise in the observation records due to the uncertainty of satellite retrievals (i.e. generated by aerosol
load, cloud cover, and co-registration errors). The information produced is temporally explicit, enabling us to
draw a comprehensive picture of interannual changes and trends in phenological diversity. The specific
objectives of this study are twofold: (i) to quantify the primary drivers of spatial patterns in global forest
phenological diversity and (ii) to quantify changes in phenological diversity that have occurred during the period
2003–2020while also quantifying their sensitivity to two key climatic drivers.

Methods

Remote sensing data
The remote sensing data used in this study consists ofMODISmulti-day composites surface reflectance data
with a spatial resolution of 500m and a temporal resolution of 8 days (Justice et al 2002).We decided to use
MODIS data because of the consistency of data derived froma single sensor, ensuring uniformity and reliability
in our time-series analysis. This consistency is essential for accurately detecting and interpreting ecological
changes over time,minimizing the variations and uncertainties often associatedwith data frommultiple sensors.
While the 18-year span of our datasetmay seem relatively short, it aligns well with similar studies in thefield and
is sufficiently long to capture significant ecological changes, particularly in the context of recent accelerated
climate trends (Moon et al 2021, Gao et al 2023). The reflectance dataset needs to be combinedwith the quality
stateflags available at~1 km to remove undesired pixels. The corresponding flags are used to remove pixels that
are suspected to contain clouds and cloud shadows, or if the pixels are adjacent to suspected clouds. Pixels
located in oceans beyond ocean coastlines or shallow oceans are also removed. This was achieved by using the
StateQAband from theMODIS dataset tofilter out pixels affected by clouds, cloud shadows, adjacency to
clouds, as well as those located in oceans beyond coastlines or in shallow ocean areas. Additionally, the filtering
process used internalflags from the StateQA to exclude pixels containingfire and snow/ice. The inputNDVI
datawas calculated using bands 2 (near-infrared) and 1 (red). Because gaps within the time seriesmay have a
strong impact the estimation of phenology, we used a gap-filling procedure. In brief, gaps at the 8-day level were
filled bymeans of linear interpolation, using awindowof 8 observations. Remaining gaps due to persistent
cloudswere gap-filled using the 5 -yearmean values of theNDVI (figure S1, figure S6).

Phenological diversitymetric
Prior to the calculationsof ourphenological diversitymetric,wemaskedoutnon-forested areas andareas of forest that
had changed intoother landcover typesover theperiodof 2000–2018.Thismaskwas createdusing theESA landcover
cci product (http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf see alsofigure S1)
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using annual landcoverdata, ranging from2000–2018.Wechose theESACCI landcoverproduct to identify areas
where forests hadbeen stable through timeoverother landcoverproducts becauseof its usefulness in climate change
studies. TheESACCI landcoverdataset, producedaspart of theESAClimateChange Initiative, focuses ongenerating
consistent global landcovermaps.The land coverproduct offers a stable and reliable dataset,which is crucial for
identifying areaswhere forests remain stable over time.

Phenology is typically characterised by a series ofmetrics that describe specific features of the phenological
cycle, such as the start of the season, end of the season, and growing season length.However, the use of these
classicalmetrics to define a global phenological diversity index is limited by several factors including (1) their
limited applicability to areas withmultiple growing seasons (e.g.,meadows or semi-arid regions) or continuous
growth (e.g., humid tropical forests or boreal forests) (2) the subjectivity involved in combining variousmetrics
into a single index (3) significant uncertainty in computing themetrics in regionswith persistent cloud cover
during phenological transitions, requiring the need for temporal interpolation of time series (e.g., using spline or
double logistic functions) and (4) the high noise-to signal ratio in heterogeneous areas, where satellite retrievals
are affected by a higher random error due to spatial sampling of the surface (e.g., particularly relevant formulti-
angular sensors with varying footprints likeMODIS).

To overcome the limitations of classical phenologicalmetrics, for an assessment of phenological diversity,
we developed and applied a novelmetric based on the following key features: (1)The phenology of each pixel is
characterised by the shape of the cumulative time series ofNDVI. The trajectory of the cumulativeNDVI has the
advantage to (a) reduce the importance of the random error on themetrics extraction due to the retrieval
algorithm, the atmospheric conditions and the spatial heterogeneity, (b) to condensate in one single dimension
all themultiple potential phenologicalmetrics that characterise the annual phenological cycle, and (c) it is a
applicable to any biome and phenology strategy (e.g.multiple growing seasons). (2)Normalisation of
cumulativeNDVI by dividing each element of the time series by the cumulative value at the end of the time
series. This normalisation procedure ensures that the cumulativeNDVI curves and the derived index only reflect
the signal of vegetation phenology of individual pixels and not the spatial variation inNDVI and productivity.

(3)Assessment of the spatial variability of the normalised cumulativeNDVI. Once the cumulated and
normalisedNDVI curves are computed for eachMODIS pixel at the resolution of 500 m, the spatial diversity of
phenology is assessedwithin a spatial windowwith a resolution of~5 km, equal to 100 pixels. For each time step
within a given year (46 time steps, figure 1), the diversity is computed as the deviations of themean values of the
phenological trajectories for all the 500m× 500mpixels containedwithin the 5 km× 5 km spatial window. A
graphical description of the algorithm is shown infigure 1.

Belowwe provide a detailed technical description of the steps involved in the computation of the index:

1. Cumulative sum of theNDVI
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where CS ji [ ] represents the j-th element of the i-th cumulative sumvector CSi andV jk [ ] represent the j-th
element of the k-th vector containingNDVI values for a given year.

2. Normalisation of the cumulativeNDVI values
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where CS jk [ ] represents the normalised value of the j-th element of the k-th cumulative sumvector CSk and

kw represents the last value of the cumulative sum vector CSk
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where ts represents the standard deviation at the t-th time step, dkt represents the deviation of the k-th
normalised vector at time step t, tm represents themean deviation at time step t calculated across the normalised
vectors andN represents the total number of normalised vectors. The values obtained from step 3 are then
averaged across all the time steps.

Our approach provides a quantitative description of the spatial variability of phenological trajectories for a
given area that (1) summarises the diversity of the entire annual phenological cycle in a singlemetric, (2)works
in cloud-persistent areas and (3) is applicable to any ecosystem and phenological strategy. The algorithmwas
used to produce yearlymaps of phenological diversity. All the calculations were performed usingGoogle Earth
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Engine, amulti-petabyte analysis-ready data catalogue co-locatedwith a high-performance, intrinsically parallel
computation service (Gorelick et al 2017). For subsequent analyses, we further filtered the results and retained
only~5kmpixels that had a forest cover� 0.85. This ensured that only purest forest pixels would be used, while
making sure that subsequent analyses would be computationally tractable.

Analysis of spatial drivers of phenological diversity
Wefirst conducted a variance components analysis to explore wheremost variation in phenological diversity is
found. This was achieved by using a linearmixed effectmodel (LME)with random effect terms for biomes and
plant functional type, using the REML (restrictedmaximum likelihood) criterion . The variance components
represent the variance of random terms and the random error of themodel. The contribution of each source of
variation can quantified via themixed effectmodel.

To quantify the drivers of spatial variation in phenological diversity we created amulti-annual average of the
yearly global dataset.We analysed the relations between phenological diversity and ten predictors, including
variables related to climate, topography and the human pressure on the environment (see table S1).We used
long-term average data for five climatic variables from theCHELSA dataset (https://chelsa-climate.org/),
including cumulative precipitation, average annual temperature, temperature seasonality (i.e. standard
deviationmonthly temperatures), precipitation seasonality (i.e. Standard deviationmonthly cumulative
precipitation.), and aridity. The spatial average and standard deviation (indicating spatial heterogeneity)were
calculated frompixel values within each~5kmwindowpreviously used for the calculation of phenological
diversity. A detailed list of the climatic variables used is available in table S1.We also used ameasure of
topographic complexity, derived fromhttps://earthenv.org/topography. Thismeasure is calculated using the
Shannon Indexwith a dataset describing themost common geomorphological forms. Additionally, we obtained
ameasure of human impact from theHuman Footprint dataset (https://earthenv.org). This index is a
compositemetric quantifying human pressure on the environment and is derived from spatially-explicit data for
eight human pressures.We used amachine-learningmethod, Random forests (Breiman 2001), to quantify the
relations between the aforementioned predictors (climate, human impact and topography) and phenological

Figure 1.Phenological diversitymetric algorithmworkflow (seemethods for a detailed description of each step).
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diversity (used as dependent variable).We choose theRandomForests algorithmbecause of its ability to handle
non-linear relationships withmultidimensional data, as well as its capacity to handlemulticollinearity among
predictors. RandomForest’s ability to handlemulticollinearity lies in the random selection of predictor variables
at each split in the decision trees. This process is very effective as it crucially allows variables thatmight otherwise
be overshadowed bymore dominant, correlated predictors in traditionalmodels to contribute to the ensemble
(Cutler et al 2007, Genuer et al 2010). The optimization of the RandomForestsmodel involves tuning a number
of hyperparameters. These include the size of the forest (i.e. the number of regression or classification trees) and
the randomness ormtry parameter (i.e. the number of variables considered as candidate for growing an
individual tree).We specified afixed number of trees at 500. This decisionwasmade tomaximise computational
efficiency, as increasing the number of trees beyond a certain threshold typically results inmarginal gains in
performance at the cost of higher computational demands. The choice of 500 trees balancesmodel accuracy and
computational efficiency, ensuring robustness in capturing complex data patterns. To identify the bestmtry
value, we employed a grid search approach. Thismethod involves systematically testing a range ofmtry values
and evaluating themodel’s performance for each. Themtry parameter is crucial in determining the subset of
features considered at each split in the trees and therefore significantly influences the diversity and independence
of the trees in the forest. By performing a grid search, we aimed tofind anmtry value that optimizesmodel
accuracywhile preventing overfitting. The optimalmtry value is typically dataset-specific, so this process ensures
that ourmodel isfinely tuned to the peculiarities of our data.

A 10- fold block cross-validation (Valavi et al 2019) approachwas employed to quantify themodel’s ability to
predict phenological diversity. In brief, the dataset was divided in spatially independent blocks, in such away
that all the blocks constituting a foldwould be spatially independent. Independent blocks were created using a
pre-specified distance. The distance over which observations are independent was determined by constructing
the empirical variogramof the residuals of amodel initially fitted using the 10 predictors. To evaluate the
influence of each predictor in our RandomForestsmodel, we implemented a permutation importance
procedure (REF). Thismethod, known for its robustness in feature selection, systematically alters the order of
each predictor variable andmeasures the resulting variation in themodel’sMean Squared Error (MSE).
Specifically, the permutation process involves randomly shuffling the values of each predictor variable across the
dataset while keeping the values of all other variables constant. A significant decrease in R2 upon permutation
indicates a high importance of the variable. Thismethod effectively isolates the impact of each predictor on the
model’s performance, offering a clear quantification of its relative importance. The process is repeatedmultiple
times for each predictor to ensure statistical robustness. The average decrease inmodel accuracy across these
repetitions was calculated to derive the final importance score for each variable. The response functions of the
fitted random forestmodel was examined using partial dependence plots (PDPs) (Friedman 2001). Two-
dimensional partial dependence plots were used to identify which predictor-interactionsmay have an effect on
phenological diversity.

To examine local responses of phenological diversity to the predictors we used the LIME (Local agnostic
model explanations)methodology (Ribeiro et al 2016). The aimof LIME is to explain how the fitted complex
model creates a prediction for a given instance (i.e. a grid cell or other local neighborhood). To this end, for each
instance, LIME fits a ‘local surrogate’model (a simplemodel) that approximates the behavior of the complex
model for a limited area of the n-dimensional space defined by the predictor variables.We use a ridge regression
model for creating LIME surfaces of local coefficients.

Temporal changes in phenological diversity
To analyse changes in phenological diversity we carried out a pixel-based analysis using a linearmodelling
framework (Faraway 2014). In the first instance, we used linearmodelling framework to quantify changes in
phenological diversity between the two periods, 2003–2010 and 2011–2020. Themodel takes the form:

Y X i0 1b b e= + +( )

where:
X i1b ( ) is a two-level categorical variable representing the two periods (2003–2010 and 2011–2020)

and:

N 0, 2e s~ ( )

We further quantified sensitivity of changes in phenology diversity to two key climatic drivers, temperature and
cumulated precipitation. Time series data were derived from the Terraclimate dataset (Abatzoglou et al 2018).
Themodel takes the form:

Y X0 1b b e= + +

where:
X1b is a vector temperature or precipitation data
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and:

N 0, 2e s~ ( )

Wefiltered out non-statistically significant results and retained thosewhere the P value for the parameter
estimates (P< 0.05).

Results

Drivers of spatial patterns in phenological diversity
Spatial patterns in phenological diversity show significant differences among biomes, with temperate and arid
regions displaying the highest levels of phenological diversity (figure 2). On the contrary, the boreal and tropical
biomes show the lowest levels of phenological diversity. A variance component analysis of the spatial patterns of
variability (seeMethods) among biomes and plant functional types, revealed that among-biome variability
contributed to 18.76%of the total variation in phenological diversity. The component of variation uniquely
attributable to plant functional types is small, at only 1.83%. The largest variance component is the residual error
(or the population-level variance), at 79.41%of the total variance.

The RandomForests analysis revealed that climatic variables had a greater influence than topographic or the
human footprint variables. Specifically, temperature seasonality andmean annual temperature were of greatest
importance in explaining phenological diversity (figure 3(A)). The influence of other variables ranged from
moderate to low (figure 3(A)). These included spatial heterogeneity inmean annual temperature and aridity,
whichweremoderately influential in themodel (ranked 4th and 5th, respectively, see figure 3(A)). However,
their importance was onlymarginally higher compared to other variables, i.e. precipitation seasonality, standard
deviation (hereafter sd) in temperature seasonality, and annual precipitation (sd Temperature Seasonality and sd
Precipitation, see figure 3(A)). . Overall, the ten predictors explained 43%of the spatial variability in
phenological diversity, as obtained from the cross-validation procedure (figure S2).

An inspection of the functional formof the fitted relationships, between phenological diversity and
individual predictors (figure S3), revealed that responses were generally non-linear. These included a broadly
positive effect of variables related to spatial heterogeneity in climate (sd Annual Precipitation, sd Temperature
seasonality, sd Annualmean temperature). Other variables, such as aridity andmean annual temperature,
showed amore complex response. This complexity was further confirmed by a detailed analysis of the local
effects of the predictors, which highlightedmarked differences in responses across biomes (figure S4 andfigure
S5). Notably, in the boreal biome, responses tomean annual temperature and temperature seasonality were
primarily negative. On the contrary, in other biomes, these variables had an overwhelmingly positive effect.
Among thewater-related variables, aridity had a predominantly negative effect across the boreal, temperate, and
arid biomes.

Bivariate partial dependence plots, depicting the effects of interactions between predictors, were also
important in assessing the drivers of phenological diversity (figures 3(B)–(F)). Complex interactionswere

Figure 2.Global patterns of forest phenological diversity. The histogramon the bottom-left corner shows the proportion of the pixels
that fall within each of the discrete colour classes. The left-panel shows biome-level summaries in the variation of phenological
diversity. Percentiles (25th, 50th, 75th) are shown as vertical bars within the empirical distributions. The 50th percentile i.e. the
median is shown in red.
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detected for variables describing climate seasonality (Temperature seasonality and Precipitation seasonality
figure 3(B)) and long-term annual averages (Annualmean temperature andAridity figure 3(B)). Specifically, a
combination of annualmean temperatures above∼0 °C andhigh levels of aridity, had a generally positive effect
on phenological diversity (figure 3(C)). Conversely,mean annual temperatures below∼0 °Chad a negative
impact on phenological diversity, regardless of aridity levels. Seasonality variables showed a positive interactive
effect when temperature seasonality was below∼ 8 °C.On the contrary, temperature seasonality values above
this threshold showed a negative interactionwith precipitation seasonality (figure 3(C)). Less complex
interactionswere detected for other variables, describing spatial heterogeneity in climate, topography and the
human footprint index, suggesting that additive or linear effects are likelymore important for these variables
(figures 3(D)–(F)).

Temporal changes in phenological diversity
The availability of a 20-year long data series from theMODIS sensor, combinedwith the high temporal
consistency of retrievals derived from this platform, supports the assessment of the emerging recent trends in
phenological diversity. Linear regressionmodels revealed that phenological diversity had changed (P< 0.05)
over 21%of the analysed area, when comparing the two periods 2003–2011 and 2012–2020. A summary of the
model coefficients indicates that, on average, the strongest reduction in phenological diversity occurredwithin
the boreal biome (figure 4(A)). The temperate biome also showed a reduction in phenological diversity, albeit
moremodest. On the contrary, arid and tropical biomes showed, on average, an increase in phenological
diversity (figure 4(A)).

Figure 3.Relative importance of the predictor variables for the random forest regressionmodel (panel A). Colours distinguish the
different categories of environmental predictors (climate, topography and human impact). Two-dimensional partial dependence
plots showing the interactions between predictors and their effects on phenological diversity (panels B-F). All variables except those
graphed are held at theirmeans.
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A summary of the statistically significant results of the linearmodels (P< 0.05), aimed at quantifying the
sensitivity of phenological diversity to temperature and precipitation, revealed that 12% and 11%of the
coefficients were statistically significant, respectively. In general, we diagnose that warming has led primarily to a
negative effect on phenological diversity within the boreal and temperate biomes (figure 4(B)). However, the
opposite was true for the arid and tropical biomes, where increasing temperature positively affected
phenological diversity (figure 4(B)).Models including precipitation as a predictor showed that, on average,
precipitation had a negative effect on phenological diversity in temperate and arid biomes (figure 4(C)). In
contrast, the effect of precipitation hadmostly a positive effect in the boreal and tropical biomes (figure 4(C)).

Discussion

Phenology is a key plant functional trait that can be effectively retrieved fromEarthObservation data.
Quantifying spatial patterns of heterogeneity in phenological strategies can thus offer significant promise for
advancing under-explored areas of plant functional ecology, beyond vegetation-climate relationships alone
(Viña et al 2012, 2016, Dronova andTaddeo 2022).

Phenological diversity is not only thought to reflect the functional composition of ecosystems, but also their
resilience, because of its ability to informon the level of synchronicity in the ecosystemdemand for
environmental resources (Lasky et al 2016, Valencia et al 2020).

Our results showed important differences in phenological diversity patterns among biomes, whichmay
depend on the (co-)occurrence of different phenological strategies (Harrison et al 2010).The low levels of
phenological diversity observed in boreal and humid tropical forests is likely due to the abundance of evergreen
tree species with a homogeneous phenological strategy, including evergreen broadleaf species in humid tropical
forests, and evergreen needle-leaf species in boreal areas. On the contrary, temperate and arid biomes, which
show the highest levels of phenological diversity, host a number of co-occurring tree species, with different
phenological strategies. These include species inmixed deciduous /evergreen and deciduous stands in
temperate areas, and evergreen and deciduous species in arid areas. The high levels of phenological diversity
within these biomes could be due to a number of non-mutually exclusive factors. For instance, in sparse forests
the signal could be affected by understory species with different phenological strategies, which are likely to have
an impact on the emergent phenological diversity.

In arid biomes, the presence of species with alternative photosynthetic pathways, combinedwith different
strategies for the use of water resources,may result in a high level of phenological diversity (Biederman et al 2017,
Smith et al 2019, Kato et al 2021). It is also possible that, in some cases,mixed pixels with a gradient of forest to
grass cover could be influencing the observed patterns of phenological diversity. Ultimately, the presence of
hotspots of phenological diversity within the temperate and arid biomes, could be due to a number of

Figure 4.Biome-level changes in phenological diversity between two periods 2011–2020 and 2003–2010 (A), sensitivity to
temperature (B) and precipitation (C). Changes and sensitivity in phenological diversity are quantified by summarizing the pixel-level
effects estimated via linearmodelling. Coloured circles indicate themedian response and triangles show the 25th and 75th percentile
for each biome. Distance from zero of the distribution is showed by an horizontal bar. The red line shows the global average.
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ecophysiological constraints, including a co-limitation of primary productivity, driven by different factors
includingwater availability and temperature (Harrison et al 2010,Huang et al 2017, Peaucelle et al 2019). These
factors can lead to higher spatial variability in environmental conditions, which in turn translates into higher
phenological diversity.

Our RandomForests analysis showed that therewas a strong climatic control on phenological diversity. The
role of climate as a driver of phenology is well documented (Richardson et al 2013, Forkel et al 2015), but this had
not been tested for the spatial heterogeneity of this functional property. This finding further reinforces the
usefulness of phenology as an indicator of forest ecosystem responses to environmental change.

Temperature-related variables appear to be primary predictors of phenological diversity. However, three of
thewater-related variables contributed to over 29%of the explained variance, suggesting a joint role of
temperature and precipitation in shaping phenological diversity patterns.

We note that the phenological diversity of boreal and temperate regions tends to bemore related to
temperature-related variables (Supplementary figure 4 andfigure 5). On the contrary, in arid and tropical
regions, phenological diversity ismore controlled bywater-related variables. These nonstationary, i.e. spatially-
varying, effects suggest that different factorsmay drive phenological diversity at regional scales.We interpret
these different responses to climatic drivers at regional scales as a reflection of the response to the local limiting
factors of the dominant tree species, which in turnmay exert a strong influence on ecosystem functional
properties, via themass-ratio effect (Grime 1998).

The analysis of the annual time series data provided two key insights into spatio-temporal patterns of change
in phenological diversity. First, our results show that the boreal, temperate and arid biomes are areas of rapid
ecological change, withmarked variations in phenological diversity. Interestingly, biomes in the northern and
southern hemispheres show a contrasting direction of change, with the boreal and temperate biomes displaying
primarily a decline in phenological diversity and the tropical and arid biomes showing an increase in
phenological diversity. Thesefindings suggest that a certain degree of reshuffling in phenological strategies
might be occurring, as part of a generalised trend in the changes in the seasonal profile of plant vegetation growth
across these biomes (Buitenwerf et al 2015, Forkel et al 2015, Garonna et al 2016,Huang et al 2017).

Second, changes in phenological diversity exhibit biome-specific sensitivity tofluctuations in temperature
and precipitation regimes.We tentatively attribute these differences in sensitivities to factors controlling
seasonal plant growth. For instance, warming in the boreal zonemay lead to an enhancement/anticipation of
phenology. On the contrary, arid regions show the opposite effect with a decrease in phenological diversity,
whenwarming occurs. These sensitivities to temperature and precipitationmight be furthermodulated by
differences in the distribution of tree phenological strategies (e.g. evergreen versus deciduous) across biomes.

Monitoring changes in the functional composition of forest ecosystems requires robustmetrics that can be
compared across large areas. Themetric developed here has the advantage ofminimizing the temporal white
noise of satellite retrievals by deriving phenological information from the cumulated sumof a spectral index.
Furthermore, ourmetric is based on the variation of phenological trajectories around the average phenology for
a given area, thusmaking it insensitive tomean local phenological patterns, and enabling a comparison of
phenological diversity across biomes.

Importantly, ourmetric can be applied at a global scale using data fromdifferent satellite platforms.We
envisage that the use of data with a higher spatial resolution, such as those generated by the ESA Sentinel 2
satellites (Berger et al 2012,Malenovský et al 2012) of theCopernicus programme, will significantly improve our
understanding of the relationship between phenological diversity and the functional structure of tree
communities through thefine-scalemapping capabilities of novel sensors.

While land-surface phenology has primarily been advocated as ametric formonitoring ecosystem responses
to environmental change, we show that it has also the potential to be used as an indicator of the functional
composition of ecosystems.

As a trait that scales up across different levels of biological organisation, phenology can also be interpreted in
the light of processes operating at specific scales. As recently discussed byDronova andTaddeo (2022),
phenological diversitymetrics computed from land surface phenology have the potential to provide key insights
into ecological processes occurring at the level of tree communities. Indicators of phenological diversitymay
thus be ideal candidates for Essential Biodiversity Variables, potentially adding a new group ofmetrics to the
current portfolio of proposed ecosystem-level Essential Biodiversity Variables (Skidmore et al 2021).

There is an increasing need formonitoring plant functional traits to assess land-climate interactions and the
impacts of climate change on ecosystems (Violle et al 2014). To this end, global information at high spatial
resolution is required to drive climate adaptation policies (Commission 2020b, 2020a). Ourwork ultimately
contributes to the development an operational framework for quantifying spatio-temporal changes in
ecosystem functional composition by emphasising the complex interactions between background climate
conditions, climate change and phenological diversity of the terrestrial biosphere.
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