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Abstract

Trial-averaged metrics, e.g. tuning curves or population response vectors, are a ubiquitous
way of characterizing neuronal activity. But how relevant are such trial-averaged responses
to neuronal computation itself? Here we present a simple test to estimate whether average
responses reflect aspects of neuronal activity that contribute to neuronal processing. The
test probes two assumptions implicitly made whenever average metrics are treated as
meaningful representations of neuronal activity:

1. Reliability: Neuronal responses repeat consistently enough across trials that they convey
a recognizable reflection of the average response to downstream regions.

2. Behavioural relevance: If a single-trial response is more similar to the average template,
itis more likely to evoke correct behavioural responses.

We apply this test to two data sets: (1) Two-photon recordings in primary somatosensory
cortices (S1 and S2) of mice trained to detect optogenetic stimulation in S1; and (2)
Electrophysiological recordings from 71 brain areas in mice performing a contrast discrimi-
nation task. Under the highly controlled settings of Data set 1, both assumptions were
largely fulfilled. In contrast, the less restrictive paradigm of Data set 2 met neither assump-
tion. Simulations predict that the larger diversity of neuronal response preferences, rather
than higher cross-trial reliability, drives the better performance of Data set 1. We conclude
that when behaviour is less tightly restricted, average responses do not seem particularly
relevant to neuronal computation, potentially because information is encoded more dynami-
cally. Most importantly, we encourage researchers to apply this simple test of computational
relevance whenever using trial-averaged neuronal metrics, in order to gauge how represen-
tative cross-trial averages are in a given context.
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Author summary

Neuronal activity is highly dynamic—our brain never responds to the same situation in
exactly the same way. How do we extract information from such dynamic signals? The
classical answer is: averaging neuronal activity across repetitions of the same stimulus to
detect its consistent aspects. This logic is widespread—it is hard to find a neuroscience
study that does not contain averages.

But how well do averages represent the computations that happen in the brain moment
by moment? We developed a simple test that probes two assumptions implicit in averag-
ing: Reliability: Neuronal responses repeat consistently enough across stimulus repetitions
that the average remains recognizable. Behavioural relevance: Neuronal responses that are
more similar to the average, are more likely to evoke correct behaviour.

We apply this test to two example data sets featuring population recordings in mice
performing perceptual tasks. We show that both assumptions were largely fulfilled in the
first data set, but not in the second; suggesting that the relevance of averaging varies across
contexts, e.g. due to experimental control levels and neuronal diversity. Most importantly,
we encourage neuroscientists to use our test to gauge whether averages reflect informative
aspects of neuronal activity in their data.

Introduction

Brain dynamics are commonly studied by recording neuronal activity over many stimulus rep-
etitions (trials) and subsequently averaging them across time. Trial-averaging has been applied
to single neurons, describing their average response preferences [1-6], and, more recently, to
neural populations [7-9]. Implicit in the practice of trial averaging is the notion that deviations
from the average response represent ‘noise’ of one form or another. The exact interpretation of
such neuronal noise has been debated [10], ranging from truly random and meaningless activ-
ity [11-14], to neuronal processes that are meaningful but irrelevant for the neuronal compu-
tation at hand [15-17], to an intrinsic ingredient of efficient neuronal coding [18-20].
Nevertheless, in all of these cases a clear distinction is being made between neuronal activity
that is directly related to the cognitive process under study (e.g. perceiving a specific stimulus)
—which is approximated by a trial-averaged neuronal response—and ‘the rest’.

While this framework has undoubtedly been useful for characterizing the general response
dynamics of neuronal networks, there is a sizable explanatory gap between the general neuro-
nal response preferences reflected in trial-averaged metrics, and the way in which neurons
transmit information moment by moment. As such, using trial-averaged data as a proxy to
infer principles of one-shot, moment-by-moment neuronal processing is potentially problem-
atic—an issue that has repeatedly been discussed in the field (see for instance [21-24]). How-
ever, neuroscience as a field has so far been reluctant to draw practical consequences. A vast
majority of neuroscience studies present trial-averaged metrics like receptive fields, response
preferences or peri-stimulus time histograms. These metrics rely on the implicit assumption
that trial-averaged neuronal activity is fundamentally meaningful to our understanding of neu-
ronal processing. For instance, upon finding that with repeated stimulus exposure, trial-aver-
aged population responses become more sensitive to behaviourally relevant stimuli (e.g. [3,
4]), it is implicitly assumed that this average neuronal shift will improve an animal’s ability to
perceive these stimuli correctly. In other words, neuroscience as a field seems to suffer from a
disconnect between the limitations of cross-trial averaging that we acknowledge explicitly, and
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the implicit assumptions that we allow ourselves to make when we use cross-trial averages in
our work.

One potential reason that this disconnect has not been tackled more actively is that the evi-
dence regarding the functional relevance of trial-averaged responses is quite split. On the one
hand, studies highlighting the large inter-trial variability of neuronal responses [16, 17, 25-27]
suggest that average responses fail to accurately capture ongoing neuronal dynamics. Then
there is the simple fact that outside the lab, stimuli generally do not repeat, which renders
pooled responses across stimulus repetitions a poor basis for neuronal coding. On the other
hand, the fact that perceptual decisions can be altered by shifting neuronal activity away from
the average response [28-31] indicates that at least in typical lab experiments [32], average
population responses do matter [33]. Such widely diverging evidence suggests that cross-trial
averages may be more relevant to neuronal computation in some contexts (and brain areas)
than in others. This calls for a way to move the debate on their computational relevance
beyond the realm of opinion and theory, and instead test this question concretely and practi-
cally across different experimental contexts.

In the present study, we provide a simple and widely applicable statistical test to explicitly
determine whether cross-trial averages computed in a specific experiment are likely to be
meaningful to neuronal information processing, or whether they are more likely to arise as an
epiphenomenon with no clear computational function. To this end, our approach formalizes
two implicit assumptions inherent in the computation of average neuronal responses, and
tests directly whether they hold in a given experimental context (Fig 1). Importantly, these two
testable assumptions are not based on our own or other researchers’ views of how neuronal
processing might actually work. Rather, they summarize how neuronal activity would need to
behave if cross-trial averages reflect information that down-stream brain areas rely on to pro-
cess information.

1. Reliability: The responses of task-relevant neuronal populations repeat consistently enough
to recognizably reflect the average response. The rationale for this assumption is that if neu-
ronal responses varied so widely that the trial-averaged response was in no way recogniz-
able from single-trial responses, then that would render the trial-averaged response
uninformative to downstream neuronal processing.

2. Behavioural relevance: If a single-trial response better matches the average response, it is
more successful in evoking correct behavioural responses. If cross-trial averages represent
the ‘true signal’ of a neuronal population, which is obscured by single-trial noise, then the
more similar a single-trial response is to the average, the higher its signal-to-noise ratio;
therefore, the easier the information readout for downstream areas; therefore, the better the
chances of a successful behavioural response.

To quantify to what extent a given data set adheres to each of these assumptions, we devel-
oped two simple statistical metrics, and tested them on two complementary data sets featuring
neuronal recordings in behaving mice.

Results

We started by examining our two assumptions in a data set that was acquired under tightly
controlled experimental settings. Data set 1 consists of two-photon calcium imaging record-
ings in primary and secondary somatosensory cortex (S1 and S2) as mice detected a low inten-
sity optogenetic stimulus in S1 [34] (Fig 2A). Mice were trained to lick for reward in response
to the optogenetic activation of 5 to 150 randomly selected S1 neurons (‘stimulus present’
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Fig 1. Two assumptions underlying the computation of average population responses. A) Reliability: single-trial responses correlate better with the

trial-averaged response to the same stimulus, than with the trial-averaged response to a different stimulus. B) Behavioural relevance: better matched
single-trial responses lead to more efficient behaviour.

https://doi.org/10.1371/journal.pcbi.1012000.9001
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condition). On 33% of trials, there was a sham stimulus during which no optogenetic stimula-
tion was given (‘stimulus absent’ condition). Simultaneously, using gCAMP6s, 250-631 neu-
rons were imaged in S1 and 45-288 in S2. Notably, in S1, the stimulus directly drives the
neuronal response, skipping upstream neuronal relays.
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Fig 2. Single-trial responses are stimulus-specific for Data set 1. A) Animals report whether they perceived the optogenetic stimulation of somatosensory neurons
(S1) through licking to receive reward. This panel was originally published in [34], under an open-access CC-BY license by the copyright holder. B) Trial-average
population responses (‘templates’) for S1 (orange) and S2 (brown), under optogenetic stimulation (top) or no stimulation (bottom) conditions. Neurons are sorted the
same under both conditions. C) Distribution of the correlations between single-trial responses and the matching (left) and non-matching (middle) trial-averaged
response templates. Box: 25" and 75" percentile. Center line: median. Whiskers: 10" and 90 percentile. Dotted lines: median of surrogate data, which were generated
by randomly sampling based on neurons’ trial-averaged response probabilities for the correct template. The difference between the correlations to the matching and
non-matching templates gives the Specificity Index (right).

https://doi.org/10.1371/journal.pcbi.1012000.g002
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To probe the computational role of averages within this tightly controlled setting, we first
computed average population responses for the two experimental conditions. Since individual
stimulation intensities were often only presented in a small number of trials, we pooled all
stimulation intensities into the ‘stimulus present’ condition (the high correlations between the
average responses to different stimulation intensities are shown in S2 Fig).

Average response templates were computed as the mean fluorescence (AF/F) of each neuron
in a time window of 0.5 s following the stimulation offset (Fig 2B). We next quantified how
well single-trial responses matched the corresponding average template (stimulation present
or absent) (Fig 2C, left; see also [35]). To this end, we computed linear correlations between
the single-trial and trial-averaged population responses. While in principle, single-trial
responses could reflect the corresponding average template in a multitude of ways, including
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multi-dimensional and/or non-linear relations, linear correlations are the correct way to cap-
ture their match if one accepts the assumptions underlying cross-trial averaging. Averages are
based on linear computations (sums and rescaling), which implicitly assumes that the single-

trial responses subsumed in the average differ from each other linearly and along one dimen-

sion—otherwise, pooling them in a linear average would not be a suitable approach.

Single-trial correlations were mostly positive in both S1 and S2 (Fig 2C) (n = 1795 trials;

p < 0.001), suggesting that single-trial responses represented the average template quite faith-
fully. To assess if single-trial responses can be regarded as ‘noisy’ versions of the average tem-
plate, we computed bootstrapped surrogate responses for each trial based on the neurons’
average response preferences. Specifically, we created surrogate data for each trial by drawing
a fluorescence value per neuron from its overall distribution of fluorescence values across all
trials of one stimulus condition (for details, see S4 Fig and section Surrogate Models in Meth-
ods). The shuffled surrogate data correlated equally well to the template as the original data in
both S1 and S2 (Fig 2C, left), suggesting that in Data set 1, single-trial responses can be inter-
preted as mostly faithful random samples of the respective average template.

Correlations between single-trial responses and the population template may partially stem
from neurons’ basic firing properties, which would not be task-related. To estimate the stimu-
lus specificity of the correlations we observed, we also computed single-trial correlations to the
incorrect template (e.g. ‘stimulus absent’ for a trial featuring optogenetic stimulation). Correla-
tions to the incorrect template were significantly lower than to the correct one (Fig 2C, middle,
Mann-Whitney U-test, p = 5.98 - 107'%%, p = 4.86 - 10~>" for S1 and S2, respectively). To quan-
tify this difference directly, we defined the Specificity Index, which measures, on a single-trial
basis, the excess correlation to the correct template compared to the incorrect template. Thus,
the Specificity Index quantifies to what extent neuronal activity in an individual trial relates to
the average response of the relevant experimental condition, compared to the average
responses for other experimental conditions. Since it subtracts two correlation coefficients
from each other, it is bounded between -2 and 2.

Note that while single-trial correlations to the average template scale directly with the
amount of inter-trial variability in a data set as well as the baseline firing rate in an individual
trial, the Specificity Index is largely independent of these variables, because it reflects the differ-
ential match of single-trial responses to the correct versus incorrect template (see S6 Fig). This
also means that the Specificity Index can be applied to trials that may not correlate well to
cross-trial averages simply due to low spike counts. Since the correlations to two different
cross-trial averages are compared to each other, higher or lower baseline correlations should
not contribute to this metric.

For Data set 1, the Specificity Indices of single-trial responses indicate clear stimulus-speci-
ficity (Fig 2C, right). In addition, the observed Specificity Indices are highly similar to those
reached by the corresponding surrogate data. This suggests that in Data set 1, single-trial
responses can be seen as a somewhat noisy representation of the respective cross-trial average.
Together, these results indicate that single-trial responses in Data set 1 were strongly and selec-
tively correlated to the corresponding average template, largely fulfilling Assumption 1.

Next, we set out to test if the correlation between single-trial responses and average templates
predicted the animal’s licking behaviour (see Fig 3A, left, for an example session). To this end,
we separately examined the single-trial correlations in trials that resulted in hits, misses, correct
rejections (CRs) and false positives (FPs) (Fig 3A, right). For the trials where optogenetic stimu-
lation was present, single-trial correlations in S1 were significantly higher in hit trials than in
miss trials, suggesting that a better match to the average template did indeed produce hit trials
more often (Fig 3B, Mann-Whitney U-test, p = 4.96e — 68). Similarly, while single-trial correla-
tions were overall lower in the absence of optogenetic stimulation, correct rejections
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Fig 3. Better template-matching predicts better behaviour. A) Licking times for an example session (left) and for all sessions
(right). The stimulation window is shown in blue, the analysis window in pink. This panel was originally published in [34],
under an open-access CC-BY license by the copyright holder. B) Reliability of single-trial responses, as quantified by the
Specificity Index, split out by hits, misses, correct rejections and false positives. C) Behavioural Relevance indices for these
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https://doi.org/10.1371/journal.pchi.1012000.g003
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nevertheless featured significantly higher correlations than false positives (Fig 3B, Mann-Whit-
ney U-test, p = 2.82e — 17). The same pattern held true for S2, though overall correlations were
marginally smaller and the difference between correct and incorrect trials was somewhat less
pronounced (Fig 3B; p = [2.02e — 50, 1.37¢ — 11] for hit/miss and CR/FP comparisons, respec-
tively). To quantify directly to what extent single-trial correlations predicted behaviour, we
computed the Behavioural Relevance Index (Q) as Q = max(A, 1 — A), where A is the Vargha-
Delaney’s effect size [36] (see the section on Specificity and Behavioural Relevance Index in
Methods). The Behavioural Relevance Index quantifies whether successful behavioural
responses occur preferentially in trials with a higher Specificity Index. The Behavioural Rele-
vance Index is bounded between 0.5 and 1, with 0.5 indicating complete overlap between the
distributions of Specificity Indices for correct and incorrect trials, and 1 meaning no overlap at
all. For both the trials with stimulation (hits and misses) and without stimulation (CRs and FPs)
Q exceeded 0.5 in S1 and S2 (Fig 3C). This suggests that in both areas, single-trial responses
that were better matched to the corresponding cross-trial average resulted in more successful
behaviour, fulfilling Assumption 2. Together, these results indicate that in Data set 1, cross-trial
averages are both reliable and behaviourally relevant enough be computationally meaningful.

Building on these results, we set out to determine how computationally meaningful cross-
trial averages might be within the less restrictive experimental paradigm of Data set 2. Data set
2 contains high-density electrophysiological (Neuropixel) recordings across 71 brain regions
(Fig 4A, right) in mice performing a two-choice contrast discrimination task [31]. Mice were
presented with two gratings of varying contrast (0, 25, 50 or 100%) appearing in their left and
right hemifield. To receive reward, animals turned a small steering wheel to bring the higher-
contrast grating into the center, or refrained from moving the wheel if no grating appeared on
either side (Fig 4A, left). When both stimulus contrasts were equal, animals were randomly
rewarded for turning right or left. Those trials were discarded in our analysis since there is no
‘correct’ behavioural response.

Since this data set contains neuronal recordings from 71 brain areas, not all of which may
be directly involved in the perceptual task at hand, we used a data-driven approach to identify
to what extent neuronal population activity predicted the presented stimulus and/or the ani-
mal’s target choice. We trained a decoder (Multinomial GLM, see section Decoders in Meth-
ods) based on single-trial population vectors, to identify either target choice (left/right/no
turn) or stimulus condition (higher contrast on left/right, zero contrast on both). For the neu-
ronal response vectors, we considered neuronal activity 0 — 200ms post-stimulus onset (S5
Fig). We then computed the mutual information between the decoder predictions and the real
outcomes (Fig 4B; see section Decoders in Methods).

Many brain areas appeared to contain little task-relevant information (shown in black in
Fig 4B). We therefore used a standard elbow criterion (see section Decoders in Methods) to
determine a threshold for selecting brain areas that provided the highest information on either
stimulus (I = 0.242 bits; blue areas), choice (I". = 0.248 bits; red areas), or both (i.e. both
thresholds exceeded; purple areas). These areas seem largely congruent with the literature. For
instance, primary visual cortex (VISp) is expected to reflect the visual stimulus, while choice
information is conveyed e.g. by the ventral anterior-lateral complex of the thalamus (VAL)—
known to be a central integrative center for motor control [37]. As an example of a both
choice- and stimulus-informative area, we see caudoputamen (CP)—involved in goal-directed
behaviours [38], spatial learning [39], and orienting saccadic eye movements based on reward
expectancy [40].

In principle, the selection of relevant brain areas might be dependent e.g. on the specific
cut-off thresholds introduced by the elbow criterion we applied. To test the validity of this
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Fig 4. Single-trial responses are hardly stimulus-specific for Data set 2. A) Graphic representation of paradigm used in
Data set 2. Animals move a steering wheel to move the higher-contrast grating of two alternative grating stimuli towards the
centre (left), while being recorded from 71 brain areas (right). Note that grating depicted here does not accurately represent
the grating stimuli used. B) Stimulus and target choice information decoded by a multinomial GLM decoder (Methods) from
the neuronal activity in all recorded brain areas. Each point represents the median (dot location) and standard deviation
across sessions (dot size) of one brain area (see in-figure labels). Colours (blue, red, purple) represent those areas where
(stimulus, choice, both) information was above an elbow criterion. C) We repeated the decoding with other models (see
labels) and then performed a hierarchical clustering of the total mutual information of the ranked brain areas (rows). The 14
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areas we found with the GLM (see B) are consistently found with other decoders. D) Specificity Index of the selected areas,
defined as the difference in the correlations between single-trial responses and the matching (cartoon, left) and non-matching
(cartoon, right) trial-averaged response templates. Box: 25" and 75" percentile. Center line: median. Whiskers: 10" and 90"
percentile. Shaded areas: 5" and 95" percentiles of bootstrapped data. Dotted lines: median Specificity Index for the
bootstrapped surrogate data, which were generated for each recorded area using Poissonian sampling of the trial-averaged
response templates.

https://doi.org/10.1371/journal.pcbi.1012000.9004

selection process, we repeated the analysis with five other decoders (Fig 4C). We then ranked
the total amount of Mutual Information per area (stimulus + choice information) for each of
these models. Finally, we performed a hierarchical clustering to determine areas that were con-
sistently classed as highly informative across decoders. Interestingly, the brain areas identified
via the elbow criterion in Fig 4B coincided exactly with the top performing cluster in our
multi-decoder analysis (Fig 4C). As such, both analyses converged on a group of 14 brain areas
that conveyed significant task information regardless of decoder approach.

Having identified task-relevant brain areas, we used neuronal recordings from those infor-
mative areas to test the two assumptions set out in the Introduction. First, we computed the
average population response templates for different experimental conditions. To avoid work-
ing with trial numbers as low as n = 2 for specific contrast combinations, we pooled several
contrast levels requiring the same behavioural response (e.g. 50% right—0% left and 100%
right—50% left) into two conditions: Target stimulus on the left or on the right. Average
responses to the individual contrast levels were very comparable (S2 Fig).

To test the first assumption, as we did for Data set 1, we quantified how well single-trial
responses correlated with the average template for a given stimulus (S3 Fig (A); see also [35]).
Median correlations ranged from r = 0.56 to 0.89 across all brain areas (n = 89 to 3560 trials
per brain area; all p < 0.001), suggesting that single-trial responses clearly resembled the aver-
age template. As a control, we computed 100 bootstrapped response vectors for each trial. Spe-
cifically, for each trial we generated the same number of spikes as recorded in the original trial,
and randomly assigned these spikes to the various neurons in the population based on the
probabilities given by their average firing rates (S3(B) Fig; see section Surrogate Models in
Methods). Surrogate data created in this way should converge towards the original data if trial-
averaged firing rates represent the true response, which is sampled discretely via a Poisson pro-
cess in individual trials. These Poissonian surrogate data uniformly correlated better to the
template than the original data (S3(A) Fig). In other words, single-trial responses in Data set 2
exhibited more variation than explained simply by (Poissonian) down-sampling of the firing
preferences represented by the average template into a specific number of discrete spikes in an
individual trial. As in Data set 1, single-trial correlations scaled with the amount of inter-trial
variability, reflected for instance by the Fano Factor (S6 Fig). Note that the Fano Factors for all
analysed brain areas in Data set 2 fell within the range of previously reported results [41, 42]
(S6(B) Fig), suggesting that Data set 2 provides a representative example for neuronal activity
in these brain areas.

Next, we estimated the stimulus specificity of the observed correlations by computing sin-
gle-trial correlations to the incorrect template (e.g. ‘target right’ for the left target; see Fig 4D,
top). These were broadly distributed, but on average marginally lower than the single-trial cor-
relations to the correct template (S3(B) Fig). Consequently, Specificity Indices across all 14
brain areas were mostly positive but rarely exceeded 0.1 (Fig 4D, bottom; note that the Speci-
ficity Index is bounded by -2 and 2). In other words, correlations between single-trial
responses and template were largely stimulus-independent. This lack of response specificity
was not directly predicted by the amount of inter-trial variability, because the Specificity Index
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reflects the differential link to correct versus incorrect template rather than the overall repro-
ducibility of neuronal responses (see S5(B) Fig).

These results tally with recent work demonstrating how strongly non-task-related factors
drive neuronal responses even in primary sensory areas like visual cortex [16, 17, 43-47].
However, despite these factors, the animal still needs to arrive at a coherent perceptual choice
(e.g. steering right or left, see Fig 5A)—and indeed succeeds in doing so in most trials. To test
if trial-averaged templates are relevant to this perceptual decision, we compared single-trial
correlations for hit trials (correct target choice) and miss trials (incorrect target or no
response). Single-trial correlations were marginally lower in miss trials than in hit trials across
most brain areas (Fig 5B). However, their difference was small, leading to Behavioural Rele-
vance Indices between 0.51 and 0.66 (where the Behavioural Relevance Index is bounded
between 0.5 and 1). According to the Vargha & Delaney’s effect size, such values would be con-
sidered largely negligible, indicating that single-trial correlations are not a reliable way to pre-
dict subsequent behaviour in Data set 2 (Fig 5C; see also [36]).

Together, these results suggest that in Data set 2, the relation between single-trial responses
and trial-averaged firing rate templates was only marginally stimulus-specific, and did not
appear to substantially inform subsequent behavioural choices. However, this estimate may
present a lower bound for several reasons. First, while the task information conveyed by cross-
trial averages seemed to be limited in the recorded population of neurons, it might be sufficient
to generate accurate behaviour when scaled up to a larger population. To explore this possibil-
ity, we sub-sampled the population of recorded neurons in each brain area from N/10 to N.
We then extrapolated how Specificity and Behavioural Relevance would evolve with a growing
number of neurons. These extrapolations indicated that taking into account larger neuronal
populations seemed to be at least somewhat beneficial for the Specificity and Behavioural Rele-
vance of cross-trial averages in Data set 2, though improvements were rather moderate (Fig
6A, right). This did not seem to be an inherent feature of our extrapolation approach: for Data
set 1, the Specificity Index appeared to remain largely stable with growing #, but Q rose steeply,
indicating that with more neurons, single-trial correlations to the average template would
more robustly predict behaviour (Fig 6A, left).

Alternatively, at least in the brain areas most involved in task processing, there might be a
group of ‘super-coder’ neurons that reflect relevant task variables more consistently [48, 49].
To test this possibility, we implemented a jackknife procedure, removing one neuron at a time
from the data and recomputing all metrics based on the remaining population. This approach
generally did not reveal neurons that particularly boosted single-trial correlations or Specificity
(S9 Fig). Rather, the contribution of different neurons to the population response’s Specificity
was distributed largely symmetrically around zero (as measured by y; S9 Fig lower panels).
However, a few brain regions in Data set 2 did feature a somewhat right-skewed distribution
of jackknifed Specificity Indices (S9 Fig, indicating that for these areas, at least some neurons
contributed substantially to single-trial correlations. Intriguingly, such super-coder neurons
contributed more heavily to the Specificity Index in hit than in miss trials. This suggests that
when super-coder responses were more specific, animals tended to act more successfully. The
areas highlighted by this analysis are consistent with the notion that ‘super-coder’ neurons
might appear in brain areas most directly involved in task processing. Specifically, the analysis
identified six brain areas: The red nucleus (RN, a subcortical hub for motor coordination), the
subparafascicular thalamic nucleus (SPF, auditory processing), the primary visual cortex
(VISp, visual processing), reticular substantia nigra (SNr, reward and motor planning) and
midbrain reticular nucleus (MRN, arousal and conscious state).

In contrast, in Data set 1, we found no evidence of super-coder neurons altogether, i.e. y ~
0. This may reflect the fact that task information is distributed evenly throughout the neuronal
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https://doi.org/10.1371/journal.pcbi.1012000.9005
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https://doi.org/10.1371/journal.pchi.1012000.g006

population, or that Data set 1 did not contain recordings from brain areas that might contain
‘super-coder neurons’. Together, these results imply that while there were some neurons
whose averaged responses reflected task-relevant information more robustly, these neurons
were rather rare, and far from perfectly reliable. In other words, in both data sets, any sub-set
of neurons could likely convey the average response template to approximately the same extent
under most circumstances.

Even if population responses generally did not feature a clearly distinct group of neurons
with particularly reliable responses, it is in principle possible that downstream areas only ‘listen
to’ the neurons at the most informative tail of the distribution, and ignore responses from less
informative neurons. To explore whether in this scenario, single-trial responses would clearly
reflect the relevant cross-trial averages, we sub-sampled of each neuronal population to include
only the 10 percent of neurons that had emerged as most and least stimulus-specific,
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respectively, based on the jackknifing procedure detailed above. As one would expect, the
Specificity Index derived from the most reliably stimulus-selective neurons was generally
higher than that of the least informative neurons, even though the difference was reasonably
small (ASpecificity Index < 0.2; see S10 Fig). In contrast, Behavioural Relevance (Q) decreased
in most regions when only a sub-group of neurons was considered—whether most or least
informative (S10 Fig). This suggests that cross-trial averages based only on the individually
most informative neurons failed to reflect behaviourally relevant information more success-
fully than those based on a wider range of neuronal responses.

In addition, by pooling stimulus pairs with large and small contrast differences into just
two stimulus categories—’target left’ and ‘target right —we may have caused the resulting aver-
age templates to appear less distinctive. Specifically, difficult stimulus pairs might ‘blur the
boundaries’ between average templates. To estimate the impact of stimulus similarity on the
Specificity Index and Behavioural Relevance, we computed them separately for difficult and
easy trials. Both Specificity and Relevance increased in a majority of brain areas when only tak-
ing into account stimulus pairs with large contrast differences, but plummeted for more subtle
contrast differences (see S8 Fig). This suggests that in Data set 2, single trial population firing
rates were both specific and behaviourally relevant when processing coarse stimulus informa-
tion, but only barely in finer contrast discrimination. In this context, it is important to note
that animals were also highly successful in discriminating difficult stimulus pairs. This suggests
that fine contrast discrimination relied on other coding modalities than average firing rates.

Another potential limiting factor of our analysis could be that template-matching may
occur in a way that cannot be captured by simple correlations. Even though linear correlations
are in principle the correct way to test the assumptions inherent in cross-trial averaging, it is
still possible that the linear operation of cross-trial averaging somehow reflects neuronal fea-
tures of single-trial responses that are better understood in a higher-dimensional space. To
explore this scenario, we repeated all previous analyses, but characterized population responses
using Principal Component Analysis (PCA) via Singular Value Decomposition (SVD), and
quantified their resemblance (normalized distance, see section PCA Analysis in Methods) to
the average template in this lower-dimensional space. In both data sets, stimulus specificity
increased marginally, but behavioural relevance decreased (S12 Fig and Fig 7). The decrease in
behavioural relevance was particularly steep in Data set 1, indicating that raw firing rates were
more instructive to the animals’ choices than lower-dimensional features of neuronal activity
(Fig 7; for details, see S12 Fig).

Finally, neuronal responses may reflect a multi-factorial conjunction of response prefer-
ences to a wide range of stimulus and behavioural variables. To test this hypothesis, we quanti-
fied whether single-trial correlations to the average would become more specific or
behaviourally relevant when additional variables were taken into account. As a first test, we
accounted for potential modulating variables in an agnostic way by clustering the neuronal
population responses from all trials according to similarity. Such clusters might reflect differ-
ent spontaneously occurring processing states that the animal enters into for reasons (e.g. loco-
motion, satiation, learning etc.) that may remain unknown to the experimenter. Based on the
Silhouette Index, which measures cluster compactness (S11 Fig), we decided to group trials
into two clusters. We repeated all analyses of Specificity and Behavioural Relevance within
each of these trial clusters. In Data set 1, the Specificity Index was largely unchanged (Fig 6B;
see Fig 7 for a summary). This aligns with the fact that clusters in Data set 1 were less compact
and thus trial-grouping did not significantly reduce response spread (S11(A) Fig). At the same
time, Behavioural Relevance decreased rather sharply (Fig 6B), indicating that differences
between the identified trial clusters were in fact behaviourally informative.
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In contrast, Specificity rose sharply in Data set 2 after trial clustering (Fig 6B; see Fig 7 for a
summary). This suggests a scenario in which the same stimulus can evoke multiple distinct,
but self-consistent, response patterns. These patterns are obscured when responses are aver-
aged across all trials indiscriminately, but emerge robustly when averages are computed sepa-
rately per trial cluster. However, the lack of improvement in Behavioural Relevance suggests
that single-trial correlations to the average did not consistently predict behaviour in either
response mode. The test presented here can help researchers to reveal and explicitly address
such unique neuronal response dynamics.

As a second test, we accounted for spontaneous fluctuations of attentional state as reflected
by pupil size [45, 50, 51]. To this end, we grouped trials by pupil size and computed cross-trial
averages for these trial groups. If population responses are modulated by attentional state,
examining only trials that occurred during similar attentional states should reduce unex-
plained variability. However, grouping trials by average pupil size only slightly improved Spec-
ificity, and did not improve Behavioural Relevance at all in Data set 2 (Fig 6C; Data set 1 did
not contain measurements of pupil size).

Together, these analyses suggest that the missing link between single-trial responses and
cross-trial averages in Data set 2 is not sufficiently explained by unmeasured confounding fac-
tors, non-linear interactions or lack of neurons. Rather, it appears to be an inherent feature of
the data set. Fig 7 summarizes the outcomes of different analysis approaches. Across analyses,
Data set 1 generally shows better Specificity and Behavioural Relevance than Data set 2. Inter-
estingly, the Specificity in Data set 1 did not increase further with procedures such as Z-scoring
neuronal responses over trials to remove baseline firing rates, applying PCAs to extract lower-
dimensional response features or clustering trials according to similarity—and Behavioural
Relevance was even reduced by these procedures. This suggests that in Data set 1, absolute
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firing rates were instructive of behaviour on a single-trial level, so that metrics obscuring abso-
lute firing rates (e.g. by dimensionality reduction) impaired their Behavioural Relevance. This
finding is particularly interesting given that in this paradigm animals had essentially been
trained to detect extra spikes in somatosensory cortex. As such, it seems plausible that the neu-
ronal representation of this task would feature absolute spike counts.

In contrast, in Data set 2, response specificity clearly benefited when baseline firing rates
were accounted for—either by z-scoring firing rates, applying PCA, or clustering trials accord-
ing to similarity. This suggests that here, absolute firing rate fluctuations were not tied to task
performance, so that removing such fluctuations helped to uncover task information available
at the single-trial level. However, this did not improve Behavioural Relevance. Thus, while
baseline firing rates might have obscured the reliability of single-trial responses, removing
them did not produce more behaviourally relevant cross-trial averages.

These results raise several questions. What features of Data set 1 make cross-trial averages
so much more representative of single-trial processing than in Data set 22 And how represen-
tative are those features compared to the range of data generated by neuroscience? To start
delineating answers to these questions, we created a simple model to simulate what the Speci-
ficity and Behavioural Relevance Index would be when our tests were applied to neuronal pop-
ulation responses with (1) different distributions of response preferences, (2) different degrees
of neuronal single-trial variability and (3) different degrees of variability in the translation
from neuronal responses to behavioural choice. Specifically, we simulated a neuronal popula-
tion of similar size as those recorded in both data sets (n = 200). For these 200 neurons, we
simulated a Beta(B, B) distribution, governed by a parameter f3, of average response preferences
regarding two hypothetical stimuli. When 8 = 1, response preferences were distributed
completely uniformly across the spectrum from Stimulus 1 to Stimulus 2. 8 < 1 indicated a
shift towards an increasingly segregated bimodal distribution, with neurons preferring either
Stimulus 1 or 2. 8> 1 indicated an increasingly tight unimodal Gaussian function (even
though the Beta distribution does not exactly equate the Gaussian distribution for any set of
parameters, in the case of lim,,_. ., f(a, o), the Beta function converges to the standard normal
distribution [52]), with all neurons responding in largely the same way regardless of the pres-
ence of Stimulus 1 or 2. Next, single-trial responses of each simulated neuron were the sum of
its ‘true’ response preference, and a varying level of ‘noise’. Based on these simulated single-
trial responses, we modelled a behavioural read-out that acted as a non-linearity, choosing the
correct or incorrect behavioural output depending on how similar a given neuronal single-
trial response was to the correct versus incorrect average template (see section on Simulations
in Methods). This non-linearity could either act in a noise-free manner, translating single-trial
responses directly to the most closely corresponding behavioural decision, or it could add
some ‘decision variability’ of its own (Fig 8A).

These simulations showed that the Specificity Index will rise steeply when the distribution
of neuronal response preferences is reasonably spread out (f <= 1). In contrast, the Specificity
Index will remain low as soon as neuronal response preferences are not particularly stimulus-
specific (8 > 1). Interestingly, this overall pattern was only marginally dependent on the
amount of single-trial ‘noise’ added to the simulated average response preferences (Fig 8B). In
other words, the diversity of neuronal response preferences was much more crucial to the
computational utility of cross-trial averages than low cross-trial variability. Comparing the
median Specificity Index of Data sets 1 and 2 to these simulations (Fig 8B) suggests that in
order to reach the Specificity values we observed empirically, neuronal responses in Data set 1
should be distributed at least somewhat bimodally between the two stimulus conditions, while
those in Data set 2 should be less distinguishable from each other. The real distributions of
neuronal response preferences in both data sets confirmed these predictions (S14 Fig). These
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https://doi.org/10.1371/journal.pchi.1012000.g008

simulations therefore suggest that the improved Specificity of cross-trial averages in Data set 1
compared to Data set 2 largely hinges on the broader distribution of neuronal response
preferences.

We next explored how the Behavioural Relevance Index reflected the interplay between the
distribution of neuronal response preferences, and the variability in the decision making pro-
cess itself. Like the Specificity Index, Behavioural Relevance increased with a broader distribu-
tion of response preferences, as well as (unsurprisingly), with smaller variability of decision
making (Fig 8C). Based on their median Behavioural Relevance Indices, our two example data
sets would appear to occupy distinct areas of the parameter landscape: Based on its measured
Behavioural Relevance, Data set 1 seems to operate in a regime with an at least somewhat
bimodal distribution of neuronal preferences and a moderate variability of behavioural deci-
sion making, meaning that single-trial correlations to the average template drive behavioural
decisions quite faithfully. In contrast, Data set 2 would be predicted to feature either a tight
unimodal distribution of neuronal response preferences, combined with similarly faithful deci-
sion making as Data set 1—or a more spread-out, uniform distribution of neuronal prefer-
ences, but with extremely noisy decision making. Given the response distributions shown in
(S14 Fig), we assume that both unspecific neuronal response preferences and genuine deci-
sion-making variability contribute to the low Behavioural Relevance observed in Data set 2.

Together, these simulations demonstrate three main outcomes. First, the Specificity and
Behavioural Relevance Index are able to correctly pick up the neuro-behavioural features they
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were designed to reflect—stimulus-specific neuronal response profiles in the case of the Speci-
ficity Index, and consistent decision criteria based on these neuronal response profiles in the
case of the Behavioural Relevance Index. Second, our two example data sets occupy distinct
and complementary spaces within the parameter landscape of neuronal and behavioural vari-
ability, with the lower effectiveness of cross-trial averages in Data set 2 being most likely due to
a tighter distribution of neuronal preferences and higher variability of decision making.
Finally, based on the Specificity and Behavioural Relevance computed in real data, simulations
like the one presented here can in fact be used to hypothesize about the neuronal and beha-
vioural mechanisms that boost or bust the computations relevance of cross-trial averages in a
specific experiment. For instance, our simulation highlighted the broad distribution of neuro-
nal response preferences, rather than the magnitude of single-trial variability, as the main fac-
tor that makes cross-trial averages more meaningful in Data set 1 than in Data set 2.

Discussion

The present study set out to formulate an explicit statistical test to determine how reflective
average population responses are of neuronal processing in different contexts. To this end, it
posits two testable assumptions that should hold if cross-trial averages are computationally rel-
evant: 1) single-trial responses should be sufficiently reliable to resemble the correct average
template, and 2) better-matching single-trial responses should evoke more efficient behaviour.

To directly quantify to what extent these two conditions are fulfilled for a given data set and
averaging approach, we introduced two simple metrics: (1) the Specificity Index, which cap-
tures whether a single-trial response is more related to the average response of the true experi-
mental condition than to the average responses of other experimental conditions; and (2) the
Behavioural Relevance Index, which reflects whether higher single-trial correlations to the cor-
rect average template result in more behaviourally successful trials.

With this test, we aim to bridge an in our view crucial gap in the way neuroscience is cur-
rently practiced: The disconnect between our explicit knowledge that neuronal population
activity typically evolves continuously according to non-linear dynamics, which are often
poorly captured by cross-trial averaging ([25, 53-56]), and the implicit assumptions we accept
when nevertheless treating cross-trial averages of neuronal activity as an informative summary
metric. Our two metrics are easy to compute and thereby allow researchers to explicitly deter-
mine whether their trial-average metrics are likely to be sufficiently reliable and behaviourally
relevant to play a functional role in a given experimental context.

To establish the general applicability of our metrics, we tested them on two complementary
data sets, featuring tight experimental control of neuronal stimulation and highly trained, sim-
ple behavioural responses in the first data set, and less tightly controlled visual stimulation
with a more variable and naturalistic behavioural output in the second data set. The two
assumptions of cross-trial averaging were largely fulfilled in only the first data set, which is sur-
prising because in this experiment, optogenetic stimulation targeted a somewhat overlapping
but randomly selected population of 5 to 150 neurons in each new trial. Thus, even though
optogenetic stimulation varied randomly, it seemingly managed to recruit a reproducible net-
work of neurons within the analysis time window of 500 ms post-stimulation. This suggests
that the population responses highlighted by our analyses of Data set 1 rely on ‘hub neurons’
that are activated by various different stimulation patterns. Moreover, this is in line with the
encoding of stimulus responses across trials by a consistently weighted set of neurons [34].

In contrast, in Data set 2, single-trial correlations were lower than expected from a Poisso-
nian spiking process, largely not stimulus-specific, and hardly increased an animal’s chance of
choosing the correct target. Further analyses indicated that these results could marginally
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improve by taking into account more neurons, but not by taking into account complementary
variables such as behavioural state (see Fig 6). This suggests that in Data set 2, average popula-
tion firing rates were not the central mechanism driving perceptual decision-making.

The disparity of outcomes between the two data sets examined here could be due to several
factors. In many ways, Data set 1 offers an ideal case for average population responses to play a
functional role: Stimulation is highly controlled, and takes place directly within the recorded
brain area rather than being relayed across several synapses; lick responses are short and ste-
reotyped, reducing movement-related neuronal dynamics; and animals are explicitly trained
to detect differences in the average amount of neuronal activity within S1. In other words,
even if sensory stimuli were typically not encoded in average S1 population firing rates, ani-
mals in Data set 1 may have essentially learned to ‘count S1 spikes for reward’.

By comparison, Data set 2 features less controlled visual stimulation since animals can look
at either of the two stimuli freely; modulation of the stimulus signal by several synaptic relays;
additional neuronal dynamics driven by increased and more complex spontaneous movement
in the form of wheel turning; and of course the fact that animals are free to process the differ-
ence in grating contrast in ways other than average population firing. Thus, while the two data
sets examined here are clearly not sufficient to draw general conclusions, our results may point
towards a scenario where cross-trial averages are more computationally relevant in settings
featuring strong stimulus control and over-trained behaviours, than under more naturalistic
conditions.

An alternative possibility is that we underestimated the computational relevance of cross-
trial averages in Data set 2 due to idiosyncrasies of the paradigm and of our analyses. First,
task-relevant stimulus information had to be computed by comparing visual inputs across
brain hemispheres, but we only had access to neuronal activity from one hemisphere. Thus,
recording from both hemispheres might have yielded more informative population templates.
However, this data set is arguably one of the most complete sets of neuronal recordings to date
regarding the number of recorded brain areas, and it therefore seems unlikely that not a single
recorded brain area consistently represents integrated stimulus information from both hemi-
fields.

A third option is that the brain areas in Data set 2 could be processing stimuli differently
than in Data set 1. A popular notion is that specific features of neuronal processing may be
encoded by ‘super-coder’ neurons that are dedicated most reliably to the feature in question.
While such a segregation of neuronal sub-populations has previously been successful [48], our
control analyses identified small populations of ‘super-coder’ neurons in only 6 out of 14
examined brain regions. Interestingly, five of those areas were sub-cortical. This might either
indicate that task performance was driven crucially by sub-cortical computations, or that these
sub-cortical areas are simply more likely to develop ‘stereotyped’ neuronal responses that
repeat more accurately across trials. Moreover, taking only super-coder neurons into account
actually impaired Behavioural Relevance of the resulting cross-trial averages (510 Fig). Consis-
tently with this, increasing the size of the overall neuronal population somewhat improved the
Behavioural Relevance of cross-trial averages in both example data sets (Fig 6). Together, these
findings suggest that at least in this context, cross-trial averages featuring a more eclectic mix
of neuronal responses were typically more predictive of behaviour than a smaller pool of highly
stable responses. This notion tallies with previous work demonstrating that large, diverse neu-
ronal populations often convey information more efficiently than smaller, highly selective
ones [24, 57, 58].

Finally, the stimulus-related response templates explored here may generally underestimate
the computational power of average responses by ignoring the many stimulus and behavioural
factors at play at any moment in time [5, 16, 17, 43, 45-47, 59], only some of which will be
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known or accessible to the experimenter. This can make neuronal responses appear highly
unpredictable, while they are actually shaped systematically and reliably by a set of unmea-
sured, or ‘latent’, variables.

We investigated this idea in two different ways. First, we grouped trials by pupil size, which
is known to reflect spontaneous fluctuations in attentional state that strongly shape neuronal
population activity [45, 50, 51]. Second, to account for modulating variables in a more agnostic
way, we searched for distinct trial clusters that featured similar neuronal population responses.
Such clusters might reflect different processing states (e.g. satiation or learning) that remain
unmeasured. If either of these variables formed part of a ‘multi-factorial average response
curve’ of the recorded neurons, then only considering trials recorded within the same atten-
tional state or trial cluster should increase Specificity and Behavioural Relevance. This was the
case in Data set 1 but not in Data set 2, suggesting that even when more latent variables are
accounted for, cross-trial averages may still not be the most accurate way to reflect information
processed by the brain. This does of course not preclude the possibility that test performance
might improve when trials are clustered according to other ways of classifying different neuro-
behavioural states. For instance, one promising approach might be to define states according
to overall response signatures shared by the entire neuronal population (e.g. pooled population
firing rate, response burstiness or synchronization). Finally, neuronal responses may not clus-
ter into distinct response states at all, but shift gradually over time, e.g. through learning and
plasticity, stimulus adaptation or representational drift [60]. Such gradual shifts could be
accounted for e.g. by including trial history as a (linear or non-linear) regressor when comput-
ing average responses.

Moreover, several recent papers have argued that factors such as stimulus properties, beha-
vioural choices, and retrieved memories are encoded along largely orthogonal dimensions in
neuronal response space [8, 61, 62]. If this is true, then extracting cross-trial averages via a
dimensionality-reduction technique like PCA should significantly improve their computa-
tional relevance even in the presence of other modulating factors. This scenario held to some
extent for Data set 2, where response vectors extracted by PCA became more specific though
not behaviourally relevant, but not for Data set 1. It is possible that these outcomes depend on
the choice of dimensionality-reduction technique. We chose PCA due to its simplicity and
ubiquitous use, but other approaches like non-Negative Matrix Factorization [63] might yield
different results [64]. If they were to prove more successful, this would argue in favour of anal-
yses characterizing average neuronal response preferences simultaneously for multiple, poten-
tially non-linearly interacting factors [65]. In this case, we would suggest that the neuroscience
community abandons single-feature response averages in favour of average multi-feature
response ‘landscapes’. This would involve finding routine metrics to track ubiquitous latent
variables like behavioural state [45, 47, 66-68] throughout a wide range of experiments.

Our results suggest that the utility of trial-averaged responses can vary dramatically across
different contexts. The relevance of trial-averaging is likely to shift depending on behavioural
context, stimuli, species—as well as the aspect of neuronal activity that is averaged, such as
neuronal firing rates, firing phase, coherence etc. Such divergent outcomes likely hinge on the
structure of cross-trial neuronal variance in a given data set. Most crucially, computationally
relevant cross-trial averages can best be extracted if cross-trial variability and stimulus-driven
activity operate independently of each other. However, at least in some contexts and brain
areas, stimulus responses and spontaneous fluctuations of activity seem to be co-aligned [11,
43, 69-71], rendering cross-trial averages an inherently sub-optimal representation of neuro-
nal activity in these cases. As a general recommendation, we therefore encourage researchers
to study and report the variability structure of a data set (as found in its covariance matrix), as
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a complementary source of information that allows to gauge the relevance of cross-trial
averages.

The notion that the utility of cross-trial averages as a descriptor of neuronal activity can
vary widely depending on the structure of neuronal dynamics (i.e. cross-trial variance) in a
given data set was further explored in our simulations. Specifically, we modelled how Specific-
ity and Behavioural Relevance might behave across data that contained different amounts of
neuronal and behavioural variability, as well as different distributions of underlying neuronal
response preferences. One should note that this model by no means aims to reflect the com-
plexity of real neuronal activity. Instead, in the spirit of simplicity that fundamentally informs
this paper, we constructed a bare-bones model that could give us an intuition of how different
types of neuronal dynamics might impact our two test metrics. This allowed us to start from
the test metrics observed in our example data sets, and ‘backwards-induce” which sources of
cross-trial variability could likely produce the observed test metrics. Somewhat surprisingly,
the simulations predict that not response ‘noise’ but response homogeneity is the bane of com-
putationally relevant cross-trial averages. In other words, rather than neuronal or even beha-
vioural reliability, the diversity of neuronal response preferences is most crucial in rendering
cross-trial averages relevant to neuronal computation in a given context. In line with this pre-
diction, response preferences in Data set 1 were indeed clustered bimodally towards either one
of the two stimulus conditions, while in Data set 2, responses resembled each other more
uniformly.

Most importantly, we encourage researchers to compute simple ‘rule-of-thumb’ metrics
such as the Specificity Index and Behavioural Relevance Index in order to estimate what
computational role cross-trial averages play in the experimental paradigms, neuronal compu-
tations and neuronal response metrics that they study. Over time, we hope that this practice
will generate a ‘map’ of contexts in which cross-trial averages are computationally meaningful
—and motivate the field to restrict the computation of cross-trial averages to cases when they
are in fact relevant to the brain.

If classical trial-averaged population responses appear largely irrelevant to ongoing neuro-
nal computations at least in some contexts, how then could stimulus and target choice infor-
mation be encoded in such cases? First, information may be encoded mostly in joint neuronal
dynamics that are not captured by static (single- or multi-feature) response preferences. Analy-
ses that take into account such dynamics, e.g. by tracking and/or tolerating ongoing rotations
and translations in neuronal space [58, 68, 72, 73] or by explicitly including shared variability
in their readout [74, 75], often provide vastly more informative and stable neuronal represen-
tations [58, 72]. Consistent with this, the decoder analyses (Fig 4) extracted information more
successfully—most likely because decoders rely on co-variability and co-dependencies between
input data and the class labels, which are smoothed over by trial-averaging.

Second, while here we have tested cross-trial averages of population firing rates as an exam-
ple of basic analysis practices in neuroscience, other aspects of neuronal activity might be
more informative—and as a result also potentially lead to more informative cross-trial aver-
ages. For instance, transiently emerging functional assemblies [76-78], phase relationships
between neuronal sub-populations [79-81] or the relative timing of action potentials [54, 82,
83] may provide an avenue of information transmission that is entirely complementary to pop-
ulation firing rates.

Finally, by tracking more stimulus and behavioural variables at the same time, we can fur-
ther explore how they dynamically influence overlapping and separate aspects of neuronal
activity [9, 66, 67, 84-87]. Over time, we hope that this will shape our understanding of neuro-
nal activity as an ongoing interaction rather than a static snapshot. No matter which of these
approaches turns out to be most successful, it is important to recognize that time-averaged
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population responses may, at least in some contexts, not be a fitting way to describe how the
brain represents information. By providing a simple way to identify such contexts, the test pre-
sented here can help researchers ensure that their chosen analysis approach does the neuronal
activity under investigation justice in the best possible way.

Methods

The Methods section is divided into three subsections: Specificity and Behavioural Relevance
Index, Surrogate Models and Simulations. In S1 Supplementary Methods, we expand on fur-
ther subsections: Decoders, PCA analysis, Data clustering.

We have released all the scripts and data files to reproduce these analyses, they can be found
at the following URL: https://github.com/atlaie/BrainAveraging. They are written in Python 3
and rely on several specialized libraries.

Specificity Index

With the intent of characterizing whether the neural response is more similar to the appropri-
ate template (i.e., the one corresponding to the stimulus that was actually presented in that
trial) or the other one, we introduced a simple quantity we termed specificity index. It is
defined as:

p; = cor()\, r;) — cor(h r,) (1)

correct? " i wrong? i

where cor is the Pearson correlation coefficient, A denotes a given neural template and r; is the
population vector of the i trial. Thus, the specificity index captures the differential similarity
of a given neural response to each of the templates. It is key to note that, given that the Pearson
correlation is bounded between —1 and 1, the specificity index can attain values between —2
and 2 and, as we were just interested in its sign and global tendencies, we did not introduce
any normalization factor.

Behavioural Relevance Index

As a way to quantify the overlap between the hit and miss distributions we used an adapted
version of Vargha-Delaney’s A effect size [36] (also known as measure of stochastic superior-
ity). This is an effect size derived from the Mann-Whitney U-test —a non-parametric statistical
test that is particularly useful when distributions are not Gaussian [88]. Furthermore, A is
especially interpretable. As it is related to the U statistic, it can be thought of [89] as the proba-
bility of a randomly selected point from one distribution (X) being higher than another ran-
domly selected point from the other distribution (Y). Before computing the U-statistic, we
have to:

1. Pool all data points into one group and sort them from low to high values.

2. Assign ranks to each sorted data point. If there is a tie (i.e., two repeated values),
their rank is taken to be the average of the ranks for the entire pooled group.

3. Compute Ry and Ry as the sum of the ranks of each of the groups.
Finally, the U-statistic will be given by:
U = min(U,, U,), @)

with Uy = ny(n, + ") — Ry, where ny and ny are the number of elements in each distribu-

tion (in our case, the number of hit and miss trials, respectively), and equivalently if we flip the
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X and Y labels. Having computed the U-statistic, our measure of Behavioural Relevance () is
given by
Uy _ mxfl
Q = max(A,1—A), with A= XniQ (3)
Y

Thus, Q is bounded between 0.5 and 1. If there is no overlap, Q = 1. In this extreme case,
one distribution would have complete stochastic dominance over the other. If X and Y are
totally overlapping, Q = 0.5 and, thus, the more its value deviates from 0.5, the less overlapping
the distributions are. Note that we dropped the subscripts for ; this is due to its definition
being symmetrical for X and Y, because of the max(-) operation. This can be easily shown, as:

Ay =1—-4,, = (4)

= Omegay, =max(Ay,,1—A,,)
= max(Ayy, Ay )
=max(l — Ay, Ayyx)
=Qyy

Thus, the definition of the Behavioural Relevance index is independent of the order in
which we take the statistical test.

Surrogate models

Calcium imaging data. For this data set, we pooled together those trials within the same
stimulus set: on the one hand, when stimulation was given; on the other hand, those trials
without any stimulus. For each of those trial groups, and for each neuron, we built a Gaussian
distribution with mean and variance given by the trial-average and trial-variance. We then
sampled 200 random values for each stimulus set and correlated each of them with the
template.

Spike data. We were interested in comparing the experimental neuronal population
response with a downsampled version of the trial-averaged template. To do that, we built our
surrogate models by constructing N(= 100) random vector with the following constraints:

1. Its size is equal to the number of neurons comprising the neural population for that
area and that session.
2. The probability that at n spikes are allocated at a particular location m (i.e., that neu-

)"m

mem

ron m has spiked ntimes) is givenby P, , = ( )", where A, is the m™ element of

the template vector.

3. The total number of spikes is constant and equal to the total recorded number of
spikes for that area and that session.

By imposing these constraints, we are testing the alternative hypothesis that neurons are
independent from each other (uncorrelated) and it is therefore equivalent to keeping the sin-
gle-trial population statistical response, while scrambling across trials. This is also the same as
drawing single-neuron responses from the underlying template distribution following a Pois-
son process. Thus, the bootstrapped responses contain the same number of spikes as the origi-
nal trial, but the neurons that produced these spikes are randomly chosen according to their
probability of occurrence in the average template.
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Yule-Kendall index. In order to assess how symmetrical the jackknifed distributions
shown in S6 Fig are, we relied on the Yule-Kendall index, which is computed as:

Q(3/4) +Q(1/4) — 2Q(1/2)
B Q(3/4) — Q(1/4) ’

(6)

where Q is the quantile function. We chose this measure because it works for non-normal dis-
tributions and because it is non-dimensional (thus allowing direct comparison between data
sets).

Simulations. In order to systematically explore the two assumptions that we tested in
both experimental data sets, we implemented a simple model. We begin by generating two sti-
muli, denoted as S; and S,. We assumed, for simplicity, that they can only attain two possible
values (0 and 1). For each of the stimuli, a series of trials are generated. Each trial is an inde-
pendent and identically distributed draw from the Bernoulli distribution. Thus, for each stim-
ulus S with parameter p, the probability mass function is:

P(S=k =p(1-p)" ke{0,1} (7)

Where: P(S = k) is the probability that S takes the value k, p is the probability of drawing
that value and (1 — p) is the probability of drawing the other one.

In this simulation, we chose p; = p, = 0.5, resulting in two possible equally likely stimuli.

Then, we simulated the activity of a population of neurons in response to different stimuli.
We assumed that each neuron j has a certain baseline firing rate () and a certain stimulus
gain (g;), both of them sampled from the normal distribution. Both distributions, are given by

N (5,1). Moreover, each neuron has an intrinsic selectivity value (&;), which determines how
the neuron’s firing rate changes depending on the difference between the two stimuli. The
selectivity values were generated from a Beta distribution, controlled by the parameter S.

Specifically, let £ denote the vector of selectivities all neurons, with &; indicating the selectiv-
ity of neuron i. Then, each ; is generated as follows:

&; ~ Beta(f, ) (8)

The selectivity values are then shifted and scaled to lie within [-1, 1].

For each trial, the firing rate of each neuron depends on its selectivity and the difference
between the stimuli. The difference between the stimuli (AS), is computed for each trial, result-
ing in a sequence of stimulus differences.

The firing rate for each neuron j on trial i is then calculated as follows:

= ReLU(1 + - & - AS) + [N(0,1)] 9)

where 7/, ¢’ and §; are the baseline firing rate and stimulus gain the selectivity for neuron j; AS;

is the stimulus difference in trial i. Then, we pass the computed firing rate through a ReLU in
order to add a simple non-linearity and to ensure positivity.

Finally, the firing rates are used to generate spikes following a Poisson distribution. For
each neuron j on a trial 7, the number of spikes, denoted as s; j, is generated as:

Sij ™~ Poz'sson(ri_j) (10)

After we had the population response to the presented stimulus, we proceeded as before: we
computed a “left” and “right” template (i.e., AS = 1 or AS = —1); then, for a single-trial, we com-
puted the similarity of the population vector in that trial with each of the templates (“correct”
and “wrong”). The difference in between these is the Specificity Index.
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In order to model the decision-making process, we assumed that the relevant quantity to
make a decision was the Specificity Index, as it follows from the template-matching procedure.
We assumed there was a noisy process on top of the template-matching. Then, for a given
trial, the noisy Specificity Index (y/) is simply:

lp, = (pcarrect - pwmng) + N(O’ qz) (11)

Then, and the corresponding outcome is given by:

0 if p<0.5
outcome = p
1 ifp>05

1
= 12
L+e? (12)
Thus, if the probability value is greater than 0.5, that trial is considered a hit (1); otherwise,
it is a miss (0).
Crucially, we added an stochastic component into the decision-making, which means that
even for trials with the same Specificity Index, different decisions can be made.

Supporting information

S1 Supplementary Methods. These Supplementary Methods are divided into three subsec-
tions: I) Decoders; IT) PCA analysis; and III) Data Clustering. We detail all the relevant
parameters and tools we made use of.

(PDF)

S1 Fig. Example of neuronal responses for both Data sets. A) For Data set 1, we show a ses-
sion, for all neurons over time, aligning the responses to stimulus onset (pink). Traces of indi-
vidual cells are depicted in light gray, their trial-average in black. In cyan, we show the analysis
window (500ms), within which we take the time-average (colored dots; blue for S1, orange for
S2) that we use to construct the population vectors we used for the analyses. B) Spike traces for
different representative areas in Data set 2 (a stimulus informative one [blue, primary visual
cortex, VISpm], a choice-informative one [red, ventral anterior-lateral complex of the thala-
mus, VAL] and a both-informative one [purple, anterior cingulate area, ACA]). Each one
comes from a different session and has a different number of neurons. As before, in pink we
show the stimulus presentation and in cyan the analysis window (200ms) that we used to con-
struct the population vectors in the analyses.

(EPS)

S2 Fig. Correlations between response templates for different stimulus constellations. A)
For Data set 1, we pool together those trials with a low number of stimulated neurons (n € [5,
20]) and compare the trial-averaged response with those trials with a higher number of stimu-
lated neurons (n € [30, 50]). Their correlation generally exceed 0.6, suggesting that one tem-
plate should be sufficient to represent different contrast constellations. B) For Data set 2, we
compute the similarity between templates (for each contrast level: 0.25, 0.5, 1, referred to as
low, mid and high, respectively) for each screen (left, right). Their correlation is generally

above 0.8, so grouping them together should provide a coherent representation.
(EPS)

S3 Fig. Single-trial responses are not stimulus-specific for Data set 2. A) Distribution of the
correlations between single-trial responses and the matching trial-averaged response tem-
plates. The top diagram shows the criterion to “match” single-trial responses with the trial-
average. Box: 25" and 75™ percentile. Center line: median. Whiskers: 10™ and 90™ percentile.
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Dotted lines: median of bootstrapped data. B) Same as A) but for the non-matching combina-
tions. C) Distribution of the correlations between single-trial responses and the matching trial-
averaged response templates, split by behavioural outcome. It can be seen that these distribu-
tions are practically identical for all regions.

(EPS)

S4 Fig. Representation of the bootstrapping procedures. A) In the first data set, we created
the templates based on the time-average for each neuron, for each trial. We then constructed a
Gaussian distribution centered around the trial-average and with a spread equal to the trial-
variance. We repeated this for each neuron and then sample 200 times for each stimulus set. B)
For data set 2, we fixed the number of spikes on each trial, but randomly assigned to a neuron
with a probability according to how often it spiked in the average template. We repeated this
procedure 100 times.

(EPS)

S5 Fig. Reaction time distribution. General distribution for reaction times, over all sessions,
split by hits and misses. Consistent with the literature, misses significantly (Mann-Whitney’s
U-test, p = 1.88 * 107'7%, A = 0.68) imply longer reaction times. The vertical line indicates the
width of the time window in which we have performed all of our analyses (200ms). We have
selected our analysis window of because of its likely relevance to stimulus processing and beha-
vioural decision making.

(EPS)

S6 Fig. Population variability is not predictive of stimulus-specificity. A) Scatter of the
Specificity Index for different population variances. There is virtually no correlation for both
regions. B) Fano factor distribution over all recorded regions. As for Data set 1, variability is
uncorrelated with the Specificity Index and it is, thus, not capturing the same effect.

(EPS)

S7 Fig. Specificity Index and Behavioural Relevance for all areas. Same as Fig 5B and 5E,
but without pre-selecting informative areas. Results are preserved in general: across areas, sin-
gle-trial responses are barely stimulus-specific (Specificity Indices are tightly clustered around
0, with a median value of 0.019) and not very behaviourally relevant (median value of Q =
0.57).

(EPS)

S8 Fig. Easy trials are more stimulus-specific and behaviourally relevant than difficult tri-
als for Data set 2. A) Task structure and behavioural proficiency; easy trials are taken to be the
extreme cases: low contrast shown on one screen and a high one in the other. B) Distribution
of the Specificity Index for easy and difficult trials, over the selected areas. In color, significant
comparisons. Box: 25" and 75" percentile. Center line: median. Whiskers: 10" and 90" per-
centile. Dotted lines: median of bootstrapped data. C) Behavioural relevance (Q) for easy and
difficult trials, over all selected areas. D) Same as B) but for all recorded areas. E) Same as C),
but for all recorded areas. Average responses are more behaviourally relevant for easy than for
difficult trials (right).

(EPS)

S9 Fig. Jackknife analyses. We remove one neuron at a time and compute the impact in the
Specificity Index, calculated as Specldx’* = n - Specldx — (n — 1) - Specldx™, for neuron i. We
show the symmetry (y) of each distribution around 0 using Yule’s coefficient (Methods). This
measure is bounded between —1 and 1, with each of them meaning completely skewed towards
negative or positive values, respectively. A) For both areas in Data set 1, change in single-trial
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Specificity Index when one individual neuron was removed. Data points: Trials. Colors: see
inset legend. B) Same for Data set 2.
(EPS)

S10 Fig. Extremely selective neurons. We select the top (bottom) 10% most informative neu-
rons (as given by their Jackknifed Specificity Index). We then plot how the Specificity Index
and Behavioural Relevance look like (compared to selecting the entire population, taken as
baseline) when only including these most (least) informative neurons. A) Perhaps unsurpris-
ingly, the Specificity Index increases markedly (decreases slightly) when selecting the most
(least) informative neurons only. B) There is no consistent improvement of the Behavioural
Relevance when we just select one group or the other. Data points: Trials. Colours: more satu-
rated indicates “most informative neurons”; less saturated, “least informative neurons”. B)
Same for Behavioural Relevance.

(EPS)

S11 Fig. Unsupervised trial-clustering for both data sets. Silhouette Index (SI) for both Data
sets. This quantity measures cluster compactness (see Methods), with 0 indicating complete
overlap between spread clusters and 1 meaning perfectly separated ones. Different colors rep-
resent a different number of clusters, from k = 2 to k = 5. A) SI for Data set 1. In this case, clus-
ters are not compact and they are better distinguishable (for both brain areas) when k = 2. B)
SI for Data set 2. Clusters are more compact than in the previous case, with k = 2 also being the
best option. Thus, for analyses in the main text, we decided to group trials into two clusters.
(EPS)

$12 Fig. PCA is not helpful in making single-trial responses more stimulus-specific or
behaviorally relevant for Data set 2. A) Distribution of single-trial normalized distances in
PCA space (Methods) between response vectors and the trial-averaged response template for
the correct (top) and wrong (bottom) stimulus constellation. B) Same as B, but the Specificity
index of single-trial responses across brain areas, defined as the difference between the nor-
malized distance to the wrong and correct template. Solid gray line highlights the Specificity
Index of 0.0, which translates to exactly equal correlation to correct and wrong template. Dot-
ted lines represent the specificity index of the medians of the bootstrapped values for each
recorded area. C) Same as A (top), split by hits and misses. These distributions almost
completely overlap, for all brain areas. D) Same as B, split by hits and misses. As in the previous
panel, these distributions are practically coincident. E) Behavioural Relevance Index for all
brain areas. They range from 0.50 to 0.62, with Q = 0.5 meaning perfect overlap.

(EPS)

$13 Fig. PCA is helpful in making single-trial responses more stimulus-specific but heavily
reduces behaviourally relevant for Data set 1. A) Same as Fig 2 B) Same as Fig 3C. In this
case, the Specificity Index increased modestly (from 0.13 to 0.21) at the expense of severely
hindering behavioural relevance (from 0.83 to 0.52).

(EPS)

S14 Fig. Selectivity distributions for both Data sets. Data set 1 (shown in A) shows generally
higher, and more uniform distributions of, neural selectivity than Data set 2 (shown in B). In
Data set 2, the majority of neurons are barely selective, and the distribution is similar to a nor-
mal distribution (8 >> 1). Only some neurons are extremely selective, which is in line with
the previous discussion of S10(A) Fig. It is also worth noting that in Data set 1, the distribution
for S1 is visibly more skewed than S2; this suggests that already a few synapses away from the
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stimulation site, selectivity decreases markedly.
(EPS)
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