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Bennet Windt ,1,2,* Miguel Bello ,1,2 Eugene Demler,3 and J. Ignacio Cirac 1,2

1Max Planck Institute of Quantum Optics, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
2Munich Center for Quantum Science and Technology, Schellingstraße 4, 80799 Munich, Germany

3Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland

(Received 31 July 2023; revised 14 December 2023; accepted 4 January 2024; published 5 February 2024)

Motivated by recent cold-atom realizations of matter-wave waveguide QED, we study simple fermionic
impurity models and discuss fermionic analogs of several paradigmatic phenomena in quantum optics, including
formation of nontrivial bound states, (matter-wave) emission dynamics, and collective dissipation. For a single
impurity, we highlight interesting ground-state features, focusing in particular on real-space signatures of an
emergent length scale associated with an impurity screening cloud. We also present non-Markovian many-body
effects in the quench dynamics of single- and multiple-impurity systems, including fractional decay around the
Fermi level and multiexcitation population trapping due to bound states in the continuum.
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I. INTRODUCTION

The quintessential quantum optical system comprises one
or multiple few-level quantum systems (e.g., atoms) coupled
to a dissipative environment (e.g., the electromagnetic field).
In the context of modern quantum technologies, there has
been a particular surge of interest in systems of quantum
emitters in structured baths, i.e., environments with nontrivial
spectral properties such as band gaps [1], Van Hove singu-
larities [2–5], or Dirac cones [6–8], and even topological
features [9–13]. Such systems display a host of intriguing
physical phenomena. For instance, coupling a single excited
emitter to a bath with a gapped band structure can lead to
fractional decay due to population trapping in an emitter-
bath bound state [1,14,15], as observed in recent experiments
[16–18]. Moreover, such bound states can mediate purely
coherent long-range interactions between multiple emitters,
enabling the simulation of diverse quantum many-body mod-
els [19–24]. Structured baths also give rise to a variety of
novel dissipative phenomena, including nonexponential decay
and chiral emission dynamics [2–8,25], as well as collective
effects, such as sub- and superradiance [26–29].

Crucially, the study of quantum emitters in structured baths
has been largely restricted to single-particle physics, with
only a few attempts to move to the multiexcitation regime
[30–32]. Consequently, very little is known about the many-
body physics of such models. In particular, the role of particle
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statistics (i.e., the difference between fermionic and bosonic
particles) has, to our knowledge, not been thoroughly ex-
amined. In the field of condensed matter physics, fermionic
impurity models are well established and play a significant
role in a wide variety of systems. For instance, individual
localized fermionic impurity levels can affect transport prop-
erties of mesoscopic systems [33–36], and their presence
in superconductors can lead to the emergence of localized
quasiparticle states [37] or Majorana modes [38]. Fermionic
impurity models have also served in the description of the
orthogonality catastrophe in x-ray spectroscopy [39] as well
as the Kondo effect [40].

By contrast, such models have not received much atten-
tion from the quantum optics community, perhaps due to
a perceived lack of applicability. However, recent proposals
[3,41,42] and subsequent realizations [18,43] of cold-atom
matter-wave analogs to traditional waveguide QED setups
provide a quite natural pathway to exploring these models
from a quantum optics perspective: by trading in the bosonic
atoms used in these setups for fermionic ones, such experi-
ments could unlock a new scenario of “fermionic matter-wave
quantum optics.”

In this work we explore this bridge between the fields of
quantum optics and condensed matter physics in the context of
a system of fermionic impurities coupled to a structured bath.
Specifically, we model the bath as a lattice of noninteracting
spinless fermions and the impurities as additional fermionic
modes coupled by local hopping to different sites of the lat-
tice. We analyze separately the case of a single impurity and
the case of multiple impurities. In either case, we consider
both one-dimensional (1D) and two-dimensional (2D) lattices,
and we analyze in detail the thermodynamic limit, in which
the lattice becomes infinite.

The single-impurity version of our model, known as the
Resonant Level Model (RLM) [44], has been extensively stud-
ied in one dimension but remains largely unexplored in two
dimensions beyond the effectively 1D description obtained
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by assuming that the impurity level couples only to l = 0
bath modes. We explore the ground-state features of this
model, incorporating both the effects of a finite bandwidth
in the bath and a 2D lattice without full rotational symmetry,
and present signatures of a screening cloud in the scaling of
impurity-bath correlations as a function of distance r from
the impurity. Specifically, in one dimension we observe a
cross-over from logarithmic scaling to the characteristic r−1

scaling of correlations in a bath without an impurity, con-
sistent with previous findings [45,46]. However, we show
that this scaling is universal over a much wider range of
parameter values than previously believed. In two dimensions
we show that the long-range scaling of the correlations is
also the same as that found in a bath without an impurity,
of the form r−3/2, contrary to the behavior predicted in the
literature [45,46].

We also study the quench dynamics of an initial state in
which the impurity modes are occupied and the bath is in its
Fermi sea ground state. We use a master equation to describe
the dynamics in the Markovian regime [47]. To describe non-
Markovian effects, we adapt the single-excitation resolvent
formalism from quantum optics to the multiexcitation sector
of our model. We then discuss the circumstances under which
the system relaxes to the ground state, and clarify the role
of the single-particle bound states of the system alluded to
above in this many-body setting. In particular, for a single
impurity, we show that fractional decay occurs not only at
the band edges, but also around the Fermi level, and how
the emission dynamics differs depending on the value of the
Fermi level relative to the impurity on-site potential. In the
multiple-impurity case, we show that the dynamics generally
follow a multiexponential decay, which is fractional in certain
impurity configurations supporting bound states in the contin-
uum (BICs), and we generalize the theory of BICs in 2D baths
presented in Refs. [2,4].

Finally, we discuss the feasibility of observing some of
these effects in state-of-the-art cold-atom experiments. In
particular, we show that the signatures of the ground-state
screening cloud can be detected in finite systems, with sizes
that are readily achievable in experiments, and we suggest
how to prepare the many-body ground state, using an adiabatic
or a dynamical protocol. We also discuss the effects of finite
temperature on the observation of non-Markovian dynamical
phenomena.

The paper is structured as follows: In Sec. II we introduce
our model and develop the theoretical tools used throughout.
We then discuss the physics of a single impurity (Sec. III) and
multiple impurities (Sec. IV), before addressing experimental
factors in Sec. V.

II. THEORETICAL FRAMEWORK

In this section we introduce our model and the notation
and conventions employed throughout this work. We briefly
review the theory of free-fermion models and fermionic Gaus-
sian states and introduce both a perturbative and an exact
method for studying the dynamics of our model, based on
a Markovian master equation and an extension the resolvent
formalism, respectively.

A. Fermionic impurity models

We consider N spinless fermionic impurities, described by
creation and annihilation operators {c†

n, cn}N
n=1, coupled via

local tunneling to a d-dimensional spinless fermionic bath of
Ld sites. The bath modes are likewise described by operators
{b†

j, b j}Ld

j=1, and we denote the site to which the nth impurity
is coupled by jn. We restrict our attention to the 1D (d = 1)
and 2D (d = 2) cases. The Hamiltonian for this system can be
written as H = HS + HB + V , with (h̄ = 1)

HS = �
∑

n

c†
ncn, (1a)

HB = 2d J
∑

j

b†
jb j − J

∑
〈 j, j′〉

(b†
jb j′ + H.c.), (1b)

V = g
∑

n

(c†
nb jn + H.c.). (1c)

Since the bath is translation-invariant, and it has a single site
per unit cell, it can be diagonalized by a Fourier transform.
Defining modes bk = ∑

j e−ik·r j b j/
√

Ld , where r j denotes the
position of the jth bath site, and the quasimomentum k takes
values in the first Brillouin zone (BZ), k ∈ (2π/L)Zd

L, we can
express

HB =
∑

k

ωkb†
kbk, (2a)

V = g√
Ld

∑
n, k

(eik·rn c†
nbk + H.c.), (2b)

where (with slight abuse of notation) we denote rn ≡ r jn . The
dispersion relation in the bath takes the form ωk = 2J (1 −
cos k) or ωk = 2J (2 − cos kx − cos ky) for d = 1 or d = 2,
respectively. Its spectrum therefore consists of a single band
ωk ∈ [0, 2d+1J], and the on-site potential � constitutes a de-
tuning relative to the lower band edge.

The Hamiltonian H conserves the number of particles.
Hence, when studying the dynamics it produces for a given
initial state with a well-defined number of particles, we can
restrict the Hilbert space to the subspace of states with that
same number of particles. In the thermodynamic limit, we
instead consider the filling fraction or, equivalently, the Fermi
level EF , which is defined in terms of the ground state of HB

(which also conserves the number of particles) as the highest
energy of the occupied bath eigenmodes. This ground state is

|FS〉 =
( ∏

ωk<EF

b†
k

)
|vac〉, (3)

where “FS” stands for “Fermi sea,” and |vac〉 denotes the
vacuum state. A Fermi level EF � 0 corresponds to an empty
bath, whereas EF � 2d+1J corresponds to a fully occupied
bath.

The standard Hamiltonian employed in quantum optics to
describe quantum emitters coupled to structured (photonic)
environments is recovered from Eq. (1) by replacing the
impurity and bath modes with spin and boson operators, re-
spectively. This spin-boson model and our fermionic model
share the same single-particle physics; however, they dif-
fer in their many-body physics due to the different particle
statistics and the intrinsic nonlinearity introduced by spin
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impurities. We therefore want to move beyond the single-
excitation regime, and in the rest of this section we develop
a formalism that makes this possible.

B. Lattice Green’s function

Throughout this work, we will repeatedly refer to the lattice
Green’s function of the bath, which we also call the self-
energy function and which is defined in the thermodynamic
limit (L → ∞) as [48]

�(z, r) = g2
∫

BZ

dd k
(2π )d

eik·r

z − ωk
. (4)

For a 1D bath, an analytical expression can be obtained (see
Appendix A). However, in two dimensions there is no gen-
eral analytical expression, except for r = (n, n) (n ∈ Z), in
which case �(z, r) can be expressed in terms of hypergeomet-
ric functions [49]. The lattice Green’s function does satisfy
certain recursion relations that can in principle be used to
compute it for other values of r [50,51]. In practice, however,
we find it more convenient to reduce Eq. (4) to a 1D integral
which can then be computed numerically in a simple manner
(see Appendix A).

C. Markovian master equation

Under a Born-Markov approximation [47,52], the bath
modes can be traced out (see Appendix B) to obtain a master
equation for the impurity density matrix ρ,

ρ̇ = −i[H̃S, ρ] + D>ρ + D<ρ, (5)

where we have defined H̃S = HS + ∑
m,n Jmnc†

mcn and

D>ρ =
∑
m, n

�>
mn

(
cnρc†

m − 1

2
{c†

mcn, ρ}
)

, (6a)

D<ρ =
∑
m, n

�<
mn

(
c†

mρcn − 1

2
{cnc†

m, ρ}
)

. (6b)

Physically, H̃S captures the coherent dynamics, including co-
herent interactions mediated by the bath, while D> and D<

describe incoherent processes of fermion emission from the
impurities into the bath and fermion absorption from the bath
into the impurities, respectively.

The coherent couplings Jmn and collective absorption and
emission rates �

≶
mn are related to the self-energy function (4)

by �(�±, rnm) = Jmn ∓ i�mn/2 and

�≶
mn =

{
�mn, � ≶ EF

0, otherwise , (7)

where x± ≡ x ± i0+ and rnm ≡ rm − rn. Note how Eq. (7) im-
plies that only one of the two dissipators, D< or D>, is present
for any given values of � and EF . Qualitatively, the master
equation dynamics are very intuitive: if � lies inside the
band but above the Fermi level, there will be unoccupied bath
modes available at the impurity energy, allowing occupied
impurities to emit a fermion at that energy. Conversely, below
the Fermi level, occupied bath modes resonant with the im-
purities will populate vacant impurities. If � lies outside the
band, �mn vanishes (essentially as a consequence of Fermi’s
Golden Rule) and the dynamics are purely coherent. Notably,

the associated interaction strengths Jmn are identical to those
of conventional two-level systems coupled to a bosonic bath.
This reflects the fact that the interactions are mediated by
certain localized single-particle eigenstates [53], which are
insensitive to the particle statistics.

The Markovian approximation underlying Eq. (5) amounts
to the assumption of a memoryless bath which remains
approximately in thermal equilibrium throughout the dy-
namics (see Appendix B). This assumption is valid only
when ρ(ω) f (ω) ≈ ρ(�) f (�) for ω varied across an in-
terval of width ∼g2/J around � [47]. Here ρ(ω) =
−Im�(ω+, 0)/(πg2) is the density of states in the bath
and f (ω) is the Fermi-Dirac distribution characterizing the
equilibrium state of the bath, which we assume to be the
zero-temperature Fermi sea state (3), f (ω) = �(EF − ω).
This implies that Eq. (5) will fail to accurately describe the
dynamics when � lies close to EF [where f (ω) changes
abruptly] or whenever ρ(ω) varies significantly around �. In
these regimes, we observe non-Markovian effects. To describe
them, we develop an exact description of the system in the
next two subsections.

D. Free-fermion formalism

The Hamiltonian (1) is quadratic in the fermionic opera-
tors, reflecting the fact that the fermions are noninteracting.
Below we note some of the key properties of such free-
fermion systems.

1. Fermionic Fock states

Consider a set of M independent fermionic creation and
annihilation operators {ψ†

l , ψl}M
l=1. We assume the set to be

complete in the sense that the states {|ψl〉 ≡ ψ
†
l |vac〉}M

l=1 form
an orthonormal basis of the single-particle Hilbert space. A
basis of the whole many-body Hilbert space is then given by
the Fock states

|n〉 ≡ (ψ†
1 )n1 · · · (ψ†

M )nM |vac〉, (8)

where n ∈ {0, 1}M , such that its lth entry nl represents the
occupation of the lth mode in the state. It is straightforward
to show that for an arbitrary quadratic (or one-body) operator
[54] O = ∑

l,m Olmψ
†
l ψm,

〈n′|O|n〉 =
∑
l, m

Olmn′
l nmδn′−el ,n−em (−1)

∑
j<l n′

j+
∑

j<m n j , (9)

where el is the unit vector with zeros everywhere except
for the lth component. Note that Olm = 〈ψl |O|ψm〉, and
〈n′|O|n〉 
= 0 only if |n〉 and |n′〉 have the same number of
particles and differ at most by one pair of occupation numbers.
In particular,

〈n|O|n〉 =
∑

l

nl Oll . (10)

One natural choice of operator basis are the single-particle
eigenmodes {φ†

l , φl}M
l=1, which diagonalize the Hamiltonian

as H = ∑
l εlφ

†
l φl . The many-body eigenstates of H are then

given by Fock states of the form (8) in the basis formed by
these eigenmodes. In particular, the ground state for a given
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Fermi level (filling) is

|GS〉 =
( ∏

εl <EF

φ
†
l

)
|vac〉. (11)

According to Eq. (10), ground-state expectation values of
arbitrary one-body operators therefore simply read

〈O〉GS =
∑

εl <EF

〈φl |O|φl〉. (12)

2. Time-evolved expectation values

The basis of single-particle eigenmodes {φ†
l , φl}M

l=1 also
lends itself to describing time evolution: the expectation value
of a generic quadratic operator O at time t is

〈O〉t =
∑
l, m

Olmei(εl −εm )t 〈φ†
l φm〉0, (13)

where 〈 · 〉0 denotes an expectation value in the initial state.
In studying the dynamics of our system, we will repeatedly
consider the long-term average (LTA),

〈O〉 ≡ lim
T →∞

∫ T

0
dt

〈O〉t

T
. (14)

It follows from Eq. (13) that for a quadratic operator,

〈O〉 =
∑
l, m

Olmδεl ,εm〈φ†
l φm〉0; (15)

i.e., it is determined entirely by the correlations between
eigenmodes in the initial state. When 〈O〉t converges to a
specific value as t → ∞, this limit coincides with 〈O〉.

3. Gaussian state formalism

The theory of quadratic Hamiltonians is inextricably linked
with the theory of Gaussian states, since Gaussianity is
preserved under evolution with a quadratic Hamiltonian. A
remarkable property of Gaussian states is the fact that any
even-order correlations can be expressed entirely in terms of
two-point correlations according to Wick’s Theorem. Thus,
Gaussian states are characterized fully by their covariance
matrix [55–58]. This property has been exploited to develop a
number of methods for studying fermionic condensed matter
models, such as a time-dependent formalism for calculating
spectral functions [59] and the Functional Determinant ap-
proach to electron transport and dynamics [60–64].

If the total number of particles in the system is well defined
and preserved during evolution, as is the case for the Hamil-
tonian (1), it is sufficient to consider the correlation matrix
C(t ) (or equivalently the one-particle reduced density matrix)
whose elements are Clm(t ) = 〈ψ†

l ψm〉t . It evolves as [55,56]

C(t ) = U†(t )C(0)U (t ), (16)

where Ulm(t ) = 〈ψl |e−iHT t |ψm〉. If the system is time-reversal
invariant, as in our case, then H is real and HT = H , so
that U (t ) is simply the matrix representation of the single-
particle time-evolution operator. Crucially, the correlation
matrix formalism not only provides us with an economical
way of computing real-time dynamics of large systems, but
also allows us to extend some of the analytical tools typically

associated with the single-excitation regime to the many-body
regime, as we discuss in the next section.

E. Resolvent formalism

The resolvent formalism allows the exact calculation of the
transition amplitudes between eigenstates of a Hamiltonian H0

induced by an interaction V [65]. In the context of quantum
emitters coupled to reservoirs, it has proven powerful for
understanding the non-Markovian features of the dynamics in
the single-excitation sector. We now discuss how this formal-
ism can be extended to account for our model’s many-body
dynamics.

1. Basic formalism

In our case, H0 = HS + HB with single-particle eigenstates
|en〉 ≡ c†

n|vac〉 and |k〉 ≡ b†
k|vac〉. For now, we will focus on

the case of a single impurity and relabel |e1〉 ≡ |e〉, although
the formalism can also be applied to configurations with
multiple impurities [2]. The transition amplitudes Ae(t ) ≡
〈e|e−iHt |e〉, Ak(t ) ≡ 〈k|e−iHt |e〉, and Aqk(t ) ≡ 〈q|e−iHt |k〉
can be computed as

Aα (t ) = i

2π

∫ ∞

−∞
dE Gα (E+)e−iEt , (17)

with the propagators defined [with �e(z) ≡ �(z, 0)] as

Ge(z) = 1

z − � − �e(z)
, (18a)

Gk(z) = g√
Ld

Ge(z)

(z − ωk)
, (18b)

Gqk(z) = 1

z − ωk

[
δqk + g√

Ld
Gq(z)

]
. (18c)

Formally, these are the matrix elements of the resolvent of the
Hamiltonian between single-particle eigenstates of H0 [53].
The origin of non-Markovian dynamical features then lies in
the analytic properties of the Gα (z) [2,65].

2. Multiexcitation quench dynamics

We now show how the dynamics of a multiexcitation state
can be expressed in terms the amplitudes Aα (t ), thus effec-
tively reducing the many-body problem to a (well-studied)
single-particle problem. Since we are working in the Gaussian
regime, we can characterize the state of the system completely
by its two-point correlations 〈c†

ncm〉, 〈c†
nbk〉, and 〈b†

kbq〉.
Consider the initial state |ψ0〉 = c†|FS〉, which will be rel-

evant for the following discussion. For this state,

〈c†c〉t = 〈e|eiHt |e〉︸ ︷︷ ︸
A∗

e (t )

〈e|e−iHt |e〉︸ ︷︷ ︸
Ae(t )

+
∑

ωk<EF

〈k|eiHt |e〉︸ ︷︷ ︸
A∗

k (t )

〈e|e−iHt |k〉︸ ︷︷ ︸
Ak (t )

,

(19)

where we have first rewritten the correlator as 〈c†c〉t =
〈ψ0|eiHt c†c e−iHt |ψ0〉 and then applied Eq. (10) to this expec-
tation value, using the fact that |ψ0〉 is a fermionic Fock state
of the form (8), and H conserves the total number of particles.
We have also used the fact that Aα (−t ) = Aα (t ) for a time-
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reversal invariant model. The other two-point correlators can
be obtained analogously as

〈c†bk〉t = A∗
e (t )Ak(t ) +

∑
ωq<EF

Aq(t )A∗
qk(t ), (20a)

〈b†
kbq〉t = A∗

k(t )Aq(t ) +
∑

ωp<EF

Apk(t )A∗
pq(t ). (20b)

Together with Eq. (17), this gives us a way to calculate the
exact dynamics (semi-)analytically. More generally, the am-
plitudes computed via Eq. (17) provide an expression for U (t )
in a particular basis, which can then be used to compute the
time dependence of the correlations for any initial state via
Eq. (16).

These formulas also provide a basis for developing var-
ious approximations. For example, one can generalize the
single-pole or Wigner-Weisskopf approximation [2,65] to the
many-body regime, replacing �e(z) by �e(�+) in the dif-
ferent propagators, but still using Eqs. (19) and (20) to
compute the time dependence of the two-point correlations.
This generally leads to a different dynamics than that pre-
dicted by the master equation, in contrast to what happens
in the single-particle case, where both approaches lead to the
same dynamics. This is because the conditions for the Wigner-
Weisskopf and master equation descriptions to be accurate,
i.e., essentially ρ(ω) ≈ ρ(�) and ρ(ω) f (ω) ≈ ρ(�) f (�),
respectively, are not equivalent for a nontrivial bath particle
distribution f (ω).

3. Long-term averages

We can also compute LTA expectation values easily from
the integral expressions for the transition amplitudes. By
Eq. (14), only the real poles of the propagators Gα (z), which
contribute terms to the Aα (t ) that do not decacy in time, will
contribute to the LTA of the correlation matrix elements. From
Eqs. (18), we see that Ge(z) has two real poles, z = ω±, which
are solutions to

z − � − �e(z) = 0, (21)

while Gk(z) shares the real poles of Ge(z) and has the ad-
ditional real pole ωk. Similarly, Gqk(z) shares all poles of
Gk(z) and has the additional pole ωq. Thus, the LTA impurity
occupation, for instance, can be computed as

〈c†c〉 =
∑
z=ω±

Re(z)2

[
1 +

∫
ωk<EF

dd k
(2π )d

g2

(z − ωk)2

]

+ g2
∫

ωk<EF

dd k
(2π )d

|Ge(ω+
k )|2, (22)

where the first and second terms are due to the real poles ω±
of Ge(z) and the additional pole ωk of Gk(z), respectively, and
Re(z) = [z − ∂z�e(z)]−1 is the residue associated with simple
poles of Ge(z).

F. Fermions vs bosons

Before proceeding, it is worth noting that the theory we
have developed is also largely applicable to the bosonic coun-
terpart of our model, where the impurity and bath modes

describe noninteracting bosons (in which case the Hamilto-
nian is again quadratic).

First, Eq. (10) is formally identical in the bosonic case.
In fact, since the single-particle eigenspectrum of quadratic
models is not sensitive to particle statistics, the dynamics
generated by our Hamiltonian according to Eq. (16) are also
identical. From the perspective of Gaussian states, this is due
to the fact that the Hamiltonian preserves occupation number
and thus generates only the subset of Gaussian transforma-
tions common to both the fermionic and bosonic Gaussian
state families [57,58].

The crucial difference between fermions and bosons lies in
the possible initial states. It is the choice of a Fermi sea state in
the bath—which is not exclusively fermionic per se, but which
of course does not describe the ground state of a bosonic
bath—which leads to the explicit form of Eqs. (5), (12), (19)
and (20). Indeed, general bosonic Fock states are not Gaus-
sian, and therefore, while Eq. (16) still captures the evolution
of the bosonic two-point correlations for the initial states we
consider in this work, these do not in general characterize
the full state. The transition amplitudes Aα (t ) themselves are
once again independent of particle statistics, and so the notion
of describing the many-body physics of the model in terms of
its single-particle properties translates straightforwardly to the
bosonic regime. Indeed, there also exists a bosonic version of
Functional Determinant formalism mentioned above [66,67].

III. SINGLE IMPURITY

Having developed an extensive theoretical toolbox to study
the Hamiltonian (1), we now apply it first to the case of a
single impurity. Without loss of generality, we assume that
the impurity is coupled to the bath at r1 ≡ 0, so that the
Hamiltonian becomes

H = �c†c +
∑

k

ωkb†
kbk + g√

Ld

∑
k

(c†bk + H.c.). (23)

From a condensed-matter point of view, this Hamiltonian
constitutes a minimal model for certain mesoscopic sys-
tems (semiconductor structures, e.g., quantum dots) [44].
Moreover, it represents a limiting case of more complicated
impurity models which include spin degrees of freedom
and/or interactions between fermions: the Interacting Reso-
nant Level Model [68], the Single-Impurity Anderson Model
[69], and the Kondo Model [70,71]. As noted above, from
the perspective of quantum optics, it shares the same single-
particle physics as the spin-boson models that have been
studied recently (see, e.g., Ref. [2]). However, the fermionic
character of the excitations leads to decidedly different many-
body physics, as we demonstrate in this section.

The simplicity of our model allows us to exploit tech-
niques from quantum optics, namely, the extended resolvent
formalism developed in the previous section, to describe the
system in an unprecedented level of detail. Contrary to pre-
vious approaches, which linearize around the Fermi level and
are therefore restricted to the weak coupling regime (g � J)
[45,75], our formalism lets us account for the full structure of
the (finite) band of bath modes. Thereby, we are able to derive
formally exact expressions for the ground-state correlations in
1D and 2D systems for arbitrary values of the detuning, Fermi
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level, and coupling strength, and to analyze the dynamics
following a quench of the impurity-bath interaction with the
same degree of accuracy and generality.

A. Ground-state features

1. Single-particle eigenstates

The single-particle spectrum of H comprises two distinct
types of eigenstates: a continuum of scattering eigenstates
|φk〉, parametrized by quasimomenta k ∈ BZ, with energies
ωk [53,72],

|φk〉 = |Ge(ω+
k )|√

Ld

⎧⎨⎩g|e〉 +
∑

j

[
eik·r j

Ge(ω+
k )

+ �(ω+
k , r j )

]
| j〉

⎫⎬⎭,

(24)

where | j〉 ≡ b†
j |vac〉, and two bound states (BSs) |φ±〉, with

energies ω± given by the real solutions to the pole Eq. (21),
satisfying ω+ > 2d+1J and ω− < 0 [30],

|φ±〉 =
√

Re(ω±)

⎡⎣|e〉 + 1

g

∑
j

�(ω±, r j )| j〉
⎤⎦. (25)

The presence of two BSs is due to the divergent Lamb shift
(with opposite sign) at the two band edges [30,32] and is
therefore a consequence of the finite bandwidth of the bath.
In fact, for a finite but sufficiently large bath, coupling to
the impurity mode results in two localized modes and L − 1
scattering eigenstates in the band range.

The many-body ground state is a product state of the form
shown in Eq. (11), in which these single-particle eigenstates
of energies up to EF are occupied. In the following, we focus
on the case where the Fermi level lies within the band, 0 �
EF � 2d+1J , such that only the lower bound state (LBS) and
the scattering eigenstates of energies ωk < EF are occupied in
the ground state.

2. Impurity occupation

Using the single-particle eigenstate formulas above, the
ground-state impurity occupation in the thermodynamic limit
takes the form

〈c†c〉GS = Re(ω−) + g2
∫

ωk<EF

dd k
(2π )d

|Ge(ω+
k )|2. (26)

If the coupling is small enough and the detuning is deep
enough in the band, we can neglect the first term, which is the
contribution from the LBS [2], since Re(ω−) = 〈φ−|c†c|φ−〉
is small. Then, when � ≈ EF , we can approximate �e(ω+) ≈
�e(E+

F ) = δωF − i�F /2, so that

〈c†c〉GS ≈ �F

2π

∫ EF

0

dω

(ω − � − δωF )2 + (�F /2)2
. (27)

If we additionally extend the lower integration limit to −∞
under an infinite-band approximation [73],

〈c†c〉GS ≈ 1

2
+ 1

π
tan−1

[
2

�F
(EF − � − δωF )

]
. (28)

Thus, the impurity is either occupied or empty for � � EF

or � � EF , respectively. The transition point occurs in a

range of energies of width ∼�F around EF − δωF . Clearly,
this reasoning breaks down in the 2D bath at the Van Hove
singularity (EF ≈ 4J), where �F diverges [48]. In this case a
simplified integral expression for 〈c†c〉GS can be obtained by
substituting an asymptotic expression for �e(ω+) as ω → 4J .
However, this does not lead to a qualitative change in the
dependence of 〈c†c〉GS on �.

3. Impurity screening cloud

A more salient ground-state property of the single-impurity
model is an emergent length scale associated with an impu-
rity screening cloud, which constitutes a hallmark feature of
generic impurity models [40]. It is reflected, for example, in
the spatial dependence of the envelope of 〈c†b j〉GS [45,74,75],
which we denote here by F (r j ). Using the expressions for the
single-particle eigenstates and Eq. (12), in the thermodynamic
limit,

〈c†b j〉GS = Re(ω−)

g
�(ω−, r j )

+g
∫

ωk<EF

dd k
(2π )d

[Ge(ω−
k )eik·r j +|Ge(ω+

k )|2�(ω+
k , r j )].

(29)

The first term, coming from the LBS, decays exponen-
tially or faster as the distance |r j | increases, in the form
∼|r j |−(d−1)/2e−|r j |/ξ [76], and, as noted above, its prefactor
Re(ω−) is very small if � lies sufficiently deep inside the
band. The second term gives the contribution of the scattering
eigenstates, and it decays algebraically, as ∼|r j |−α , so it dom-
inates at large distances. Previous works seem to suggest a
constant exponent α = 1 for 1 � d � 3 [45]. However, as we
show in Appendix C, this algebraic decay is the same as the
one of the bath-bath correlations 〈b†

0b j〉FS in an impurity-free
bath with the same Fermi level, and is ultimately determined
by the dimensionality, and the smoothness of the Fermi sur-
face. For a smooth Fermi surface (i.e., with with a continuous
second-order derivative), α = (d + 1)/2 [77]. Note that this
algebraic dependence is expected for critical (gapless) phases.

In one dimension, if, in addition, the Fermi level is deep
inside the band, we can make a wide-band approximation (see
Appendix C) and neglect the LBS contribution to obtain

〈c†b j〉GS ≈ g

πvF
Re

[
eikF |r j | f

( |r j |
ξ1D

)]
, (30)

with f (x) = −eixE1(ix), where E1 is the exponential integral
function, vF = 2g2/�F is the group velocity at the Fermi
level, and

ξ1D =
[(

� − EF

vF

)2

+
(

g

vF

)4
]−1/2

. (31)

We plot the envelope F (r j ) of the approximate correlations
in Fig. 1(a), together with a numerical evaluation of the exact
formula (29). Remarkably, good agreement between the two is
still observed when � lies close to the band edge. The short-
and long-range scaling of the correlations, also indicated in
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FIG. 1. Single-impurity ground-state correlations. (a) Scaling of
the 1D ground-state impurity-bath correlation envelope at fixed EF =
2J and g = 0.2J for varied �, computed using the wide-band for-
mula (30) (black solid line) and by numerical integration of Eq. (29)
(colored markers). The short- and long-range scalings (32) are also
shown (red dashed lines). (b) 2D ground-state impurity-bath corre-
lation for two different � = EF and g = 0.2J , computed along two
different directions as described in Appendix C. For reference, two
directions are indicated in the left pane of (c). We also highlight the
algebraic scaling of correlations. (c) Deformation of the ground-state
bath-bath correlations as given by Eq. (34), for g = 0.2J and various
EF = �.

Fig. 1(a), are dictated by

f (x � 1) ∼ −γ − log(x) − iπ/2, (32)

f (x � 1) ∼ −1/x. (33)

This generalizes what was already observed in Ref. [45] for
the special case � = EF : there is a transition from logarithmic
to algebraic decay of the ground-state impurity-bath correlator

at |r j | ≈ ξ1D. In this sense, ξ1D can be interpreted as the size
of the screening cloud.

Owing to the lack of an analytical expression for �(ωk, r j ),
we cannot obtain a “universal” formula, as Eq. (30), for the
correlations in the 2D case. Nonetheless, we compute them
using an efficient numerical method (detailed in Appendix C)
that allows us to reach very large system sizes, and thus to
observe the onset of their algebraic decay and determine the
screening length for different directions; see Fig. 1(b). In this
way, we can map out the shape of the screening cloud in two
dimensions. One might expect a certain degree of anisotropy,
especially if the Fermi surface is highly anisotropic, for ex-
ample, when the Fermi level is tuned close to the Van Hove
singularity. However, for the cases considered, the screening
length seems to have a rather small angular dependence, irre-
spective of the value of the Fermi level. If we instead look at
the actual values of the correlations along different directions,
we do find larger differences the more anisotropic the Fermi
surface is.

A similar angular dependence can be observed in the
ground-state bath-bath correlator 〈b†

0b j〉GS, which in the ther-
modynamic limit reads, neglecting an exponentially decaying
contribution from the LBS,

〈b†
0b j〉GS ≈ 〈b†

0b j〉FS +
∫

ωk<EF

d2k
(2π )2

|Ge(ω+
k )|2

×
[
�e(ω−

k )

Ge(ω+
k )

eik·r j + (ωk − �)�(ω+
k , r j )

]
. (34)

Here we have defined 〈 · 〉FS = 〈FS| · |FS〉, i.e., the first term
captures the ground-state correlations in a bath without an im-
purity, while the second term represents a local deformation of
the correlations due to the impurity. We plot this deformation
Fig. 1(c).

B. Quench dynamics

We now consider the dynamics of the initial state |ψ0〉 =
c†|FS〉. This amounts to initializing the bath in its ground state
at the desired filling, populating the impurity, and turning on
a coupling g > 0 instantaneously at time t = 0. Below we
describe the transient dynamics of both the impurity and the
bath, as well as the steady state after the quench.

1. Impurity occupation

The dynamics of an initially empty bath and an excited im-
purity mode have been studied extensively in the spin-boson
setting [2], and the results can be directly extrapolated to our
model. In this regime, for � sufficiently deep in the band
of the bath, the impurity occupation displays approximately
exponential decay at rate �0 = −2Im�e(�+); however, when
� lies close to the band edges, we observe fractional decay
due to trapping of the excitation in the bound states [2,14,15].
Additionally, in the 2D bath, when � = 4J (i.e., tuned to the
Van Hove singularity) we observe algebraic decay [2,4].

For a nonzero filling, EF > 0, the dynamics depend pri-
marily on the value of the detuning relative to the Fermi
level. The master Eq. (5) predicts 〈c†c〉t = e−�0t , when � >

EF , and 〈c†c〉t = 1, otherwise. However, the exact dynamics
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FIG. 2. Single-impurity quench dynamics. (a) Impurity occupa-
tion dynamics for a 1D bath with � = 2J and g = 0.4J for various
EF (solid) and corresponding LTA population (22) (dashed gray).
(b) Same as (a), for a 2D bath at � = 4J and g = 0.2J . (c) 1D LTA
impurity occupation at g = 0.4J and EF = 1.5J as a function of �.
We plot the exact result (35) (black) and the master equation pre-
diction (blue), as well as the ground-state impurity occupation (26)
(purple). Dashed lines indicate contributions from the lower (LBS)
and upper (UBS) bound states and the scattering states (FS). Gray-
shaded areas indicate the regions 0 < � < EF (light) and EF < � <

4J (dark).

reveal some non-Markovian features. In addition to the effect
of the bound states, we can observe fractional decay when
� ≈ EF ; see Fig. 2(a). In two dimensions, when � = 4J
we find that already at a very low value of EF , the nonzero

steady-state population induced by the Fermi level over-
whelms the algebraic decay [see Fig. 2(b)].

If the coupling g is sufficiently small, the impurity occu-
pation converges to a specific value as time increases, which
is given by its LTA 〈c†c〉, Eq. (22). This quantity is shown
as a function of the detuning in Fig. 2(c). Notably, the profile
of the LTA impurity occupancy is “smeared out” with respect
to the master equation prediction around the band edges and
the Fermi level, reflecting the non-Markovian possibility of
decay or absence of decay even where Fermi’s Golden Rule
would prohibit it. Essentially, the observation of fractional
decay around the Fermi level can therefore be viewed as a
non-Markovian version of Pauli-inhibited spontaneous decay
[78]. In fact, comparing the expression for 〈c†c〉, Eq. (22), and
the impurity occupation in the ground state 〈c†c〉GS, Eq. (26),
one realizes that both are the same, except for contributions
attributed to the bound states. As we show in the next sec-
tion, this kind of relationship between the long-term average
(steady state) expectation value and the ground-state expecta-
tion value actually holds for arbitrary one-body operators.

Before proceeding, it is worth noting that, for detunings
deep in the band (where Re(ω±) is negligible) and in the
weak coupling regime, the fractional decay around the Fermi
level is described by Eq. (28). Notably, this formula has been
previously obtained in the 1D case as the steady-state popula-
tion for the Resonant Level Model in the Keldysh formalism
[73,79]. Of course, the result we have obtained in Eq. (22)
is more general, since it does not rely on a weak-coupling
approximation and incorporates the effects of the band edges.

2. Relaxation to the ground state

Having established the relation between the steady-state
and ground-state impurity occupation above, we now discuss
this relation for a general on-body operator O. According to
Eq. (15), the LTA expectation value of any such operator after
the quench is given by

〈O〉 =
∑
ν=±

〈φ†
νφν〉0〈φν |O|φν〉 +

∑
k,q

δωkωq〈φk|O
∣∣φq

〉〈φ†
kφq〉0.

(35)

However, as we show in Appendix D, in the thermodynamic
limit we find that for an initial state of the form |ψ0〉 =
(c†)ne |FS〉, with ne ∈ {0, 1}, correlations between degenerate
scattering eigenmodes are the same in the Fermi sea and in
the ground state of the impurity model,

〈φ†
kφq〉0 = δqk�(EF − ωk) = 〈φ†

kφq〉GS, (36)

if ωk = ωq. This result is physically intuitive: for a free bath
mode, the impurities constitute a potential with a finite range,
whose only effect is to induce a phase shift as the particle
is scattered [80]. In terms of the LTA impurity occupation,
Eq. (36) implies that, in the thermodynamic limit,

〈O〉 = 〈O〉GS + 〈φ−|O|φ−〉(〈φ†
−φ−〉0 − 1)

+ 〈φ+|O|φ+〉〈φ†
+φ+〉0. (37)
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FIG. 3. Propagation of excitations in a 1D bath. Evolution of the excitation probability 〈b†
jb j〉t (arb. units) during the decay of a single

impurity at fixed k� = π/4 and g/J = 0.4 for an initially empty bath (left) and for kF = π/10 (middle) and kF = 9π/10 (right), corresponding
with � > EF and � < EF , respectively.

For example, using Eq. (10), we have, for |ψ0〉 = c†|FS〉,

〈φ†
±φ±〉0 = Re(ω±)

[
1 +

∫
ωk<EF

dd k
(2π )d

g2

(ω± − ωk)2

]
, (38)

and noting that 〈φ±|c†c|φ±〉 = Re(ω±) we can check that
Eq. (22) is consistent with Eq. (37). In essence, Eq. (37)
formalizes the idea that the initial state |ψ0〉 = c†|FS〉 indeed

relaxes to the ground state, except for a contribution from the
BSs, which constitutes the effect of the finite bandwidth.

3. Bath excitation dynamics

Another interesting feature of the quench dynamics is the
propagation of excitations through the bath following the de-
cay of the impurity. This is captured by the time-dependent
expectation value 〈b†

jb j〉t . From Eqs. (20),

〈b†
jb j〉t =

∣∣∣∣∣ 1√
Ld

∑
k

Ak(t ) eik·r j

∣∣∣∣∣
2

+
∑

ωq<EF

∣∣∣∣∣ 1√
Ld

∑
k

Aqk(t ) eik·r j

∣∣∣∣∣
2

. (39)

We focus on the case where � lies in the band, in which case we observe an emission of matter waves into the bath. We also
restrict our attention to the case of a 1D bath, which allows us to obtain some analytical results. In particular, we can consider
the limit t → ∞ and x/t → κ . Under a stationary phase approximation [81],

〈b†
jb j〉t � 〈b†

jb j〉GS + 1

2πtωκ

[
�(kκ − kF )

C−
κ

+ �(π − kκ − kF )

C+
κ

]2

, (40)

whereC±
κ =

√
(2J ± ωκ−�)2 + (g2/κ )2, ωκ =

√
(2J )2 − κ2,

and kκ = arcsin[κ/(2J )]. From this expression, we can
distinguish three distinct regimes (see Fig. 3): for EF = 0,
a wavefront forms and propagates at velocity ∼v� (i.e.,
the group velocity at the detuning) due to the fact that the
momenta of the emitted matter waves are strongly peaked
around the detuning momentum k� = arccos(1 − �/(2J ))
(with ωk�

= �) [82]. For 0 < EF < �, the dynamics
display qualitatively similar features to the case EF = 0;
however, now there is a significant occupation probability
for sites around the impurity site, given by the ground-state
occupations. For EF > �, the emitter matter waves are now
predominantly confined to a new light cone, defined not by
v� but rather by the Fermi velocity vF , because modes with
|k| < kF are no longer available for propagation.

IV. MULTIPLE IMPURITIES

We now turn to the problem of N � 2 impurities. We will
focus our attention on the collective decay of a “fully inverted”
state, i.e., the dynamics of the total impurity occupation Ne =

∑
n c†

ncn starting from the initial state |ψ0〉 = (
∏

n c†
n )|FS〉. In

the case of two-level impurities decaying collectively into an
empty bath, this setting gives rise to a characteristic delayed
superradiant burst of emission, due to a build-up of coherence
between the impurities [29]. While this setting of collective
dynamics of multiple impurities coupled to a common bath is
natural from the perspective of (matter-wave) quantum optics,
it has, to our knowledge, not been studied in the context of
condensed matter physics. In this section we therefore discuss
both the Markovian description of the dynamics as well as
non-Markovian effects. We find that much of the conceptual
discussion of the single-impurity dynamics can be intuitively
extended to this more general case. In particular, we can again
relate the steady state of the system to its ground-state and
single-particle bound states in the spectrum of our model.

A. General description

In the Markovian regime, the collective decay is described
by the master Eq. (5). The impurity correlations Cmn(t ) ≡
〈c†

mcn〉t thus evolve in the same way as for any quadratic
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model, as shown in Eq. (16), but with a non-Hermitian ef-
fective Hamiltonian, which in the case � > EF is given by
Heff = ∑

m,n �mn(�+) c†
mcn, where we have defined the self-

energy matrix �(z) as the matrix with elements �mn(z) ≡
�(z, rmn). Thus, for a fully inverted state, C(0) = IN×N , the
total impurity occupation 〈Ne〉t = trC(t ) evolves as

〈Ne〉t = ‖e−i�(�+ )t‖2
HS, (41)

where ‖ · ‖HS denotes the Hilbert-Schmidt norm. With ref-
erence to the discussion in Sec. II F, it is worth noting that
Eq. (41) also holds for the bosonic counterpart of our model,
in the case where the bath is assumed to remain approximately
in its ground state, i.e., the vacuum state [56].

The exact dynamics feature a number of non-Markovian
effects not captured by the master equation. For instance, the
master equation neglects retardation effects in the bath. In re-
ality, we have already shown that emitted fermions propagate
though the bath at a finite velocity dictated by � or EF (see
Fig. 3). Accordingly, any collective dissipative effects will be
delayed by the time taken for fermions emitted at one impurity
site to propagate to the next. Moreover, even after this delay,
the exact dynamics will agree with the master equation only
for sufficiently small impurity separations.

The collective dynamics can also show fractional decay
similar to the single-impurity case. This can again be captured
in terms of the LTA occupation, 〈Ne〉. As we show in Ap-
pendix D, we can generalize Eq. (37) for initial product states
of the form |ψ0〉 = |ψe〉 ⊗ |FS〉, where |ψe〉 is an arbitrary
impurity state with a well-defined number of particles, as

〈O〉=〈O〉GS+
∑
α, β

δωα,ωβ
〈φα|O∣∣φβ

〉〈φ†
αφβ〉0−

∑
ωα<EF

〈φα|O|φα〉.

(42)

Here the sums run through all single-particle bound eigen-
states of H . In the multiple-impurity case, this includes not
only BS with energies outside the band, but may also include
localized dressed states emerging at the impurity energy �,
where � lies in the band. In recent work [53,83], a general
framework has been developed for such states, which are
known as bound states in the continuum (BIC) but have also
been coined vacancy-like dressed states (VDS), since it can
be shown that such states have zero amplitude on the sites to
which emitters are coupled. This leads to a simple prescription
for computing the wave function of these states, which we
recall in Appendix E. Whether a BIC exists in the first place
can be determined from the condition [53]

det �(�+) = 0, (43)

which is a generalization of the pole Eq. (21) to the multiple-
impurity case, for eigenstates at energy �.

B. 1D bath

As shown in Appendix A, in one dimension the coherent
and dissipative couplings in Eq. (5) read

Jmn = �0

2
sin(k�|rmn|), (44a)

�mn = �0 cos(k�|rmn|), (44b)

FIG. 4. Collective decay. (a) Collective decay of N = 5 equidis-
tant impurities into an initially empty 1D bath at � = J and g = 0.2J
for varied d associated with the same value of cos(k�d ). For refer-
ence, we also plot the master equation dynamics (black solid) and the
independent decay of N = 5 impurities (gray solid). (b) Fractional
decay of N = 5 impurities at different Fermi levels, for � = J ,
g = 0.4J , and d = 5, and independent decay of N = 5 impurities
at same values of EF (gray solid). The LTA occupation, given by
Eq. (42), is also shown (gray dashed).

where �0 is the single-impurity decay rate. For simplicity,
we can consider configurations with the emitters equidis-
tantly placed at a separation d , such that rmn = (n − m)d . In
Fig. 4(a) we show the collective decay of the fully inverted
state into an initially empty bath for such a configuration.
While the master equation predicts the same multiexponen-
tial decay dynamics for different values of d yielding the
same couplings Jmn and �mn, the exact dynamics display the
retardation effect discussed above, and the time taken for the
onset of cooperative decay intuitively increases with d . Note
also that, as expected, the agreement between the exact and
Markovian dynamics at later times is better for smaller values
of d . For EF > 0, we also observe the anticipated fractional
decay around the Fermi level [see Fig. 4(b)]: 〈Ne〉t relaxes to
the nonzero value (42), computed numerically.

A particularly interesting 1D emitter configuration is the
one where the emitter separation obeys cos(k�d ) = ±1. In
this case, Eqs. (44) imply Jmn = 0 and �mn = (±1)|m−n|�0,
whereby the master Eq. (5) takes the form of the Dicke mas-
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ter equation [84]; therefore we refer to this situation as the
Dicke regime. In the case of atoms (two-level systems), the
permutation invariance of the Dicke equation together with
the spin statistics leads to the characteristic scaling of the peak
emission rate of the superradiant burst as ∼N2 [84]. However,
in our case, fermionic statistics have essentially the opposite
effect: In this regime the self-energy matrix �(�+) can be
diagonalized by a unitary transformation, whereby 〈Ne〉t =∑

n e2Imλnt , with {λn}N
n=1 denoting the eigenvalues of �(�+),

all of which have a nonpositive imaginary part. In the Dicke
regime, there is actually only a single nonzero eigenvalue,
such that

〈Ne〉t = N − (1 − e−N�0t ), (45)

implying limt→∞〈Ne〉t = N − 1. In other words, the dynam-
ics involve only the emission of a single particle because the
(in this case unique) bright mode can be initially occupied by
at most one fermion. Again, it is worth noting that Eq. (45),
like the more general Eq. (41), still holds in the case where
the cn are bosonic operators [42,85]. However, in this case the
initial state is no longer Gaussian, and therefore Eq. (45) does
not capture the full evolution of the bosonic state, which in
principle includes also nontrivial higher-order correlations.

The Markovian prediction 〈Ne〉 = N − 1 from Eq. (45) can
be reframed in terms of population trapping in BICs. In one
dimension, Eq. (43) takes the form

det�(�) =
N−1∏
n=1

(1 − e2ik�|rn−rn+1|) = 0, (46)

which implies that a BIC exists whenever two neighboring
emitters are separated by a distance d ∈ (π/k�)Z. In the va-
cancy picture, such a pair of emitters “cuts out” a finite chain
of d − 1 sites, which then supports a eigenstate at energy �

localized between the two impurity sites (see Appendix E).
This implies in particular that N − 1 such BICs emerge in
the Dicke regime. For an empty bath (EF = 0), neglecting the
effects of bound states outside the continuum, Eq. (42) then
predicts a nonzero LTA occupation due to trapping in these
BICs given by (see Appendix E)

〈Ne〉 = R2
N−1∑
n=1

⎡⎢⎣ 1 + cos
(nπ

N

)
1 + R cos

(nπ

N

)
⎤⎥⎦

2

, (47)

where we have defined

R =
(

1 + �0d

2v�

)−1

. (48)

A formally exact expression for the case EF > 0 can also
be obtained but is too lengthy to reproduce here. It is worth
noting, however, that for N = 2, this more general version of
Eq. (47) agrees with the value of 〈Ne〉 that can be obtained
using an extension of the resolvent formalism for the two-
impurity case (see Appendix E).

We show the agreement of Eq. (47) with the dynamics
in Fig. 5(a). The deviation of R from unity quantifies the
retardation in the bath by the ratio between the timescale of
the decay (∼1/�0) and the time taken for excitations to prop-
agate between neighboring emitters (∼d/2v�) [2]. For larger

FIG. 5. BIC population trapping. (a) Collective decay of N = 5
impurities in the Dicke regime at � = J , EF = 0, and g = 0.2J for
various d . For reference, we also plot the master equation dynamics
(black solid) and the independent decay 〈Ne〉 = Ne−�0t of N im-
purities (gray solid), as well as the LTA value (47) (gray dashed).
(b) Collective decay at � = 4J and g = 0.2J for the impurity config-
urations shown in the insets, where black dots indicate a site to which
an impurity is coupled and gray-shaded areas indicate the localized
wave functions of the BICs, labeled by |φn〉. We also plot the LTA
occupations calculated in Appendix E (gray dashed).

d , the population trapped in the BICs therefore decreases
(see Fig. 5). Conversely, if we neglect the retardation effects
and assume R ≈ 1, Eq. (47) reproduces the Markovian result
〈Ne〉 = N − 1.

C. 2D bath

In the 2D case, it is possible to find impurity configurations
which “cut out” a full sub-lattice surrounded by vacancy-like
sites in the same manner as in the 1D case. However, in
two dimensions we also find a second, qualitatively distinct
class of BIC, the first example of which was reported in
Refs. [2,4]. The first distinguishing feature of these states is
that they emerge only when the impurity energy is tuned to
the Van Hove singularity, i.e., � = 4J , where some matrix
elements of �(�+) diverge. The second one is the fact that
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the corresponding impurity arrangement does not enclose a
full section of the lattice. Instead, impurities must be placed
at the vertices of a rectangle, whose sides are rotated 45◦ with
respect to the lattice axes. This kind of BIC has nonzero am-
plitude only in the interior of the rectangle (see Appendix E).
We demonstrate the population trapping in two such configu-
rations in Fig. 5.

V. EXPERIMENTAL CONSIDERATIONS

A. Cold-atom impurity models

Our proposed matter-wave waveguide QED setup has
been discussed in several previous works [3,18,41–43,86,87],
therefore we will not review it in detail here. We simply recall
that in these works it was shown that by driving transitions
between two atomic states which are strongly localized in
isolated deep traps and delocalized across a more shallow
lattice, respectively, a Hamiltonian of the form (1) can be
realized.

Alkaline-earth-metal atoms (AEMAs) like ytterbium and
strontium have emerged as arguably the most suitable for
state-dependent optical lattice experiments of the kind that
we envision [88]. In fact, the setup required to model our
Hamiltonian, with one state localized and one delocalized,
has been identified as a formidable platform for simulating
complex condensed matter models [89–91] and has already
been succesfully implemented in a number of experiments,
using both bosonic [92] and fermionic [93,94] atoms.

Contrary to our model, it is important to note that such
AEMA setups typically feature a (nonperturbative) on-site
interaction between atoms in different internal states [89,95],
which breaks the assumption of noninteracting particles
which underlies all of our results. However, these interactions
can be tuned [96,97], for instance, through Feschbach reso-
nances [98,99] or by slightly displacing the traps for the two
internal states from each other [99]. Accordingly, we are con-
fident that our proposed free-fermion matter-wave waveguide
QED system is realizable in state-of-the-art experiments. We
now want to establish in detail how we believe the main results
that we have reported above can be observed in experiment.

B. Quench dynamics

Population trapping in bound states is arguably the sim-
plest phenomenon to observe in cold-atom experiments, as it
requires initializing only a few atoms in the deeply trapped
internal state at selected positions in the optical lattice. Indeed,
at the single-excitation level, experimental confirmation of the
effect of a bound state on the single-impurity matter-wave
dynamics has already been reported [18]. It should therefore
be possible to observe the population trapping of multiple
excitations in the bound states (both outside and in the con-
tinuum) of multiple-impurity systems, as shown in Fig. 5.
It should also be possible to observe the collective decay
effects (multiexponential decay) and non-Markovian dynam-
ics (retardation) shown in Fig. 4 as the distance between the
impurities is increased.

To explore fractional decay around the Fermi level for
one or multiple impurities, we need to prepare the more
complex initial state |ψ0〉 = (

∏
n c†

n )|FS〉. Of course, the true

FIG. 6. Experimental considerations. (a) LTA impurity occupa-
tion for different initial bath states at temperature T , at EF = 1.5J
and g = 0.4J , as a function of �. For reference, we also reproduce
the T = 0 case from Fig. 2(c). As in Fig. 2(c), gray-shaded areas
indicate the regions 0 < � < EF (light) and EF < � < 4J (dark).
(b) Adiabatic ground-state preparation for a single-impurity 1D sys-
tem with � = EF = 2J and different system sizes, with the coupling
linearly turned on from g = 0 to g = 0.4J over a time τ . For these
parameters, ξ1D = 20 in the target ground state. We plot the infidelity
1 − F , where F denotes the overlap between the adiabatically varied
state and the target ground state, as a function of τ . We also plot
the impurity-bath correlations for a finite system (L = 200) after
200 tunneling times in the protocol, showing the cross-over from
logarithmic to algebraic decay (inset).

zero-temperature Fermi sea state cannot be realized in ex-
periment. Instead, the state |ψ0〉 would be characterized by
the Fermi-Dirac distribution, i.e., 〈b†

kbq〉0 = δkq f (ωk) with
f (ω) = (1 + e(ω−EF )/kBT )−1 at a temperature T . Such an ini-
tial state would no longer be a product state, and therefore
most of the discussion regarding dynamics in Sec. II would
no longer apply. However, we can estimate the effect of this
different initial state on our results by numerical evaluation
of Eq. (16). For instance, Fig. 6(a) shows the single-impurity
LTA occupation, complementary to Fig. 2(c), for such a
finite-temperature initial state. Clearly, for sufficiently low
temperatures, the LTA occupation still qualitatively resembles
the zero-temperature profile. In recent experiments, temper-
atures T/TF ∼ 0.2 (with TF = EF /kB) have already been
reported [100,101] and the phenomenon of fractional decay
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around the Fermi level should therefore certainly be observ-
able in experiment.

C. Ground-state correlations

1. Measurement schemes

Another relevant question is the feasibility of measuring
single-impurity ground-state correlations like the ones shown
in Fig. 1. In particular, we have discussed how the real-space
structure of the impurity screening cloud can be inferred
from the correlator 〈c†b j〉GS. The experimental challenge of
measuring this correlator directly can be circumvented by
exploiting the Gaussianity of our model: Wick’s Theorem
implies

|〈c†b j〉GS| =
√

〈c†c b†
jb j〉GS − 〈c†c〉GS〈b†

jb j〉GS, (49)

and both terms on the right-hand side of this expression can
be obtained through site-resolved density measurements of
the kind utilized in well-established cold-atom microscope
experiments [102–105]. While we find that the phase of
the correlations 〈c†b j〉 cannot be reconstructed even from
higher-order correlations, the magnitude |〈c†b j〉| is sufficient
to characterize the screening.

On the other hand, the full ground-state correlations, in-
cluding also their complex phase, could be measured using
an alternative approach similar to the photoemission spec-
troscopy scheme proposed in Ref. [106]: by introducing local
modulations of the bath lattice at the impurity site and another
site j, a small number of fermions (less than one) can be
resonantly excited into an auxiliary, detection lattice, which is
initially empty, and which is offset from the original lattice by
an on-site energy much larger than the interlattice tunnelling.
The collective momentum-space modes of this auxiliary lat-
tice right after the modulation (at t = 0) can then be expressed
in terms of the original bath operators as b̃k = b0 + eik·r j b j .
After a sufficiently long period of ballistic expansion in the
detection lattice, the occupation of these modes can be mea-
sured using a standard time-of-flight protocol [107]. Writing
〈b†

0b j〉t=0 = 〈b†
0b j〉GS = |〈b†

0b j〉GS|eiϕ j , the measured occupa-
tions then read

〈b̃†
kb̃k〉t=0 = 〈b†

0b0〉GS + 〈b†
jb j〉GS

+ 2|〈b†
0b j〉GS| cos(k · r j + ϕ j ), (50)

allowing us to infer both |〈b†
0b j〉GS| and ϕ j from the obtained

data for (many) different values of k. While the above discus-
sion focuses on bath-bath correlations, it stands to reason that
a similar method could also be used to measure the phase of
〈c†b j〉GS, by coupling only the impurity site (state) and not
the bath site to which it is coupled to the auxiliary detection
lattice.

2. Ground-state preparation

The more significant experimental challenge is the prepara-
tion of the many-body ground state itself. A well-established
approach in this context is to start from a different, simpler
many-body state and adiabatically tune the parameters of the
system to transform this state into the desired ground state
[97,108–110]. In our case this would involve preparing the

Fermi sea state and adiabatically turning on the coupling g.
Crucially, the preparation time depends on the size of the
energy gap between the ground state and the first excited state
during the protocol [108], which for our model is given by
∼πvF /Ld . For large systems, it therefore becomes unfeasible
to adiabatically prepare the ground state. This is exacerbated
by the fact that the overlap between any two ground states
of impurity models with different coupling strengths g decays
with the system size, a phenomenon known as the orthogo-
nality catastrophe [111,112]. However, the cross-over from
logarithmic to algebraic scaling of the correlations can already
be observed in comparatively small finite systems, which can
be adiabatically prepared in reasonable time compared to ex-
perimental timescales [see Fig. 6(b)].

An alternative way to observe the impurity screening cloud
is given by Eqs. (37) and (42): In a finite system with �

sufficiently deeply in the band, the initial state |ψ0〉 = c†|FS〉
relaxes to a state sufficiently resembling the ground state with
the same number of excitations which displays the desired
impurity screening effect.

VI. CONCLUSION

In this work we have studied the physics of a spinless
fermionic system consisting of one or more impurities cou-
pled to a single-band bath in one and two dimensions. By
extending some of the tools originally developed in quantum
optics to address the properties of quantum emitters coupled
to structured baths, we have been able to incorporate many
effects that have typically been neglected in condensed-matter
studies of such systems, for example, the effect of band edges
and impurity-bath bound states. Conversely, from the perspec-
tive of quantum optics, our work provides an insight into the
effect of many-body physics and fermionic particle statistics
on typical quantum-optical phenomena, such as particle emis-
sion, fractional decay, effective bath-mediated interactions,
and collective effects such as sub- and superradiance.

Specifically, for a single impurity, we presented exact ex-
pressions for the two-point correlation functions which fully
capture the ground state. This allowed us to characterize
in detail the real-space signatures of an impurity screening
cloud in our model. In one dimension we showed that the
impurity-bath correlations obey a universal scaling law over a
much larger parameter range than previously expected. More
generally, in arbitrary dimension d , we demonstrated that the
impurity-bath correlations have the same long-range algebraic
scaling as the bath-bath correlations in a bath without an
impurity, as ∼|r|−(d+1)/2 for |r| → ∞.

Furthermore, we studied the quench dynamics of an initial
state with the impurity populated and a Fermi sea state in the
bath. We unveiled qualitatively different emission of matter
waves from the impurity into the bath depending on the value
of the impurity energy relative to the Fermi level, and we
derived a formula capturing the steady state after emission,
which clarifies the effect of single-particle bound states on
the dynamics and characterizes when the system relaxes to
its ground state. For multiple impurities, we showed that the
quench dynamics of an analogous initial state, in which all
impurities are occupied and the bath is in a Fermi sea state,
typically display multiexponential decay of excitations into
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the bath. We also characterized the steady state of the system
and once again highlighted the role of single-particle bound
states, which, for certain impurity configurations, can also
emerge at energies in the continuum. In one dimension we re-
lated the fractional decay in the Dicke regime (i.e., the regime
with only a single collective “bright” mode) to the existence of
such BICs, which trap the excitations in the impurity modes.
In two dimensions we also discussed population trapping in
BICs, generalizing examples of BICs previously reported in
the literature.

Importantly, some of these effects, such as the signatures of
single-impurity screening cloud, fractional decay due to Fermi
statistics, and population trapping in BICs, could be observed
with state-of-the-art cold-atom experiments, which allow for
the exploration of regimes that are typically inaccessible in
more conventional solid-state setups.

Moreover, our proposed scenario of fermionic matter-wave
quantum optics opens the door to a number of interesting
avenues of further research. While we have focused so far
on spinless noninteracting models, we expect that including
spin and interactions will reveal even more intriguing phe-
nomena intrinsically linked to the fermionic character of the
excitations. In particular, the scenario of collective dissipative
dynamics of interacting fermionic impurities constitutes a po-
tentially interesting intersection between many-body physics
and quantum optics. In the superlative, it could prove fruitful
to study the quantum optics of Kondo-type impurities cou-
pled to structured reservoirs on the one hand, and emitters in
strongly correlated baths on the other hand. However, moving
beyond our simple models could certainly constitute a consid-
erable computational challenge requiring a more sophisticated
theoretical toolbox than we have presented here.

The computer codes used to obtain the results presented in
this work are publicly available at [113].
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APPENDIX A: SELF-ENERGY INTEGRALS

In this Appendix, we show how the evaluation of the self-
energy integral (4) can be approached analytically.

1. Analytical expression in one dimension

Defining β = eik , the 1D self-energy function can be re-
written as the contour integral

�(z, r) = g2

J

∮
|β|=1

dβ

2π i

β |r|

p(β; z)
, (A1)

where the denominator is the second-order (palindromic)
polynomial p(β; z) = β2 + (z/J − 2)β + 1, and the inte-
gration contour is the unit circumference traversed in a
counterclockwise manner. The polynomial can be factorized
as p(β; z) = [β − β+(z)][β − β−(z)] with

β±(z) ≡ 1 − z

2J
±

√(
z

2J
− 1

)2

− 1. (A2)

It is easy to see that the roots satisfy

β+(z)β−(z) = 1, (A3a)

−[β+(z) + β−(z)] = z/J − 2. (A3b)

From (A3a), we realize that the roots are inverses of each
other. Consequently, only one of them contributes to the in-
tegral, which we denote by βin, while we denote the other one
as βout. Hence,

�(z, r) = g2β
|r|
in (z)

J[βin(z) − βout (z)]
. (A4)

Furthermore, for 0 < � < 4J , it can be shown that
|βin(�+)| = 1. In that regime we can choose βin = eiφ

and βout = e−iφ . Now, Eq. (A3b) implies φ = arccos(1 −
�/(2J )) ≡ k�. Substituting back into Eq. (A4),

�(�+, r) = g2eik�|r|

2Ji sin(k�)
= −i

�0

2
eik�|r|. (A5)

As can be seen from the first equality, the single-emitter
self-energy �e(�+) ≡ �(�+, 0) is purely imaginary for val-
ues of � within the band range, so in the second equality
we express the general self-energy function in terms of the
single-impurity decay rate �0. This formula allows us to
evaluate the coherent couplings and collective decay rates
appearing in the master Eq. (5) in a straightforward manner,
leading to Eqs. (44).

2. Relation to 1D integral in two dimensions

In the 2D case, where r = (rx, ry), the self-energy integral
can be simplified by integrating over one momentum-space
component in the manner outlined above to obtain

�(z, r) = g2

J

∫ π

−π

dk

2π

eikry
β

|rx |
in (k, z)

βin(k, z) − βout (k, z)
, (A6)

where βin(k, z) and βout (k, z) denote the roots of the
polynomial p(β; k, z) = β2 + (z/J − 4 + 2 cos k)β + 1, with
|βin| < 1 and |βout| > 1. While the remaining integration can-
not in general be performed analytically, it does make the
evaluation of �(z, r) less numerically demanding than per-
forming the full 2D integral.

APPENDIX B: FERMIONIC MASTER EQUATION

Here we derive the fermionic master equation, Eq. (5), by
formally tracing out the bath modes. The starting point is the
time-local, Born-Markov master equation [52]

ρ̇I (t ) = −
∫ ∞

0
dt ′trB{[VI (t ), [VI (t − t ′), ρI (t ) ⊗ ρB]]},

(B1)
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expressed here in the interaction picture,

OI (t ) = ei(HS+HB )t Oe−i(HS+HB )t ,

and where we take ρB = |FS〉〈FS|. This equation can be
derived formally using projection operators [47]. Qualita-
tively, the underlying assumption is that the bath correlation
time is short compared to the characteristic timescale of the
impurity-bath interaction g, implying that the bath remains
approximately in thermal equilibrium despite its coupling to
the impurity [47,52]. Expanding the nested commutators we
can express

ρ̇I (t ) =
∫ ∞

0
dt ′[T1(t, t ′) − T2(t, t ′) + H.c.], (B2)

where we have defined

T1(t, t ′) = trB{VI (t − t ′)ρI (t ) ⊗ ρBVI (t )}, (B3)

T2(t, t ′) = trB{VI (t )VI (t − t ′)ρI (t ) ⊗ ρB}. (B4)

With the explicit form of HS, HB, and V given in Eqs. (1) and
(2), it is easy to see that

VI (t ) = g√
Ld

∑
n, k

[c†
nbk eik·rn ei(�−ωk )t + H.c.]. (B5)

Substituting this into T1(t, t ′) and T2(t, t ′), using the fact
that for the particular bath state considered trB(bkb†

qρB) =
δkq�(ωk − EF ) and trB(b†

kbqρB) = δkq�(EF − ωk), while
trB(b†

kb†
qρB) = trB(bkbqρB) = 0, we have

T1(t, t ′) = g2
∑
m, n

⎡⎢⎣c†
nρI (t )cm

∫
ωk<EF

dd k
(2π )d

e−ik·rmn e−i(�−ωk )t ′ + cnρI (t )c†
m

∫
ωk>EF

dd k
(2π )d

eik·rmn ei(�−ωk )t ′

⎤⎥⎦, (B6)

T2(t, t ′) = g2
∑
m, n

⎡⎢⎣c†
mcnρI (t )

∫
ωk<EF

dd k
(2π )d

e−ik·rmn e−i(�−ωk )t ′ + cmc†
nρI (t )

∫
ωk>EF

dd k
(2π )d

eik·rmn ei(�−ωk )t ′

⎤⎥⎦. (B7)

The integrals in time can be performed substituting � → � ±
iε, and then taking the limit ε → 0,

g2
∫ ∞

0
dt ′

∫
ωk>EF

dd k
(2π )d

eik·rmn ei(�+−ωk )t ′

= ig2
∫

ωk>EF

dd k
(2π )d

eik·rmn

�+ − ωk
= i

(
J>

mn − i
�>

mn

2

)
, (B8)

and similarly,

g2
∫ ∞

0
dt ′

∫
ωk<EF

dd k
(2π )d

e−ik·rmn e−i(�−−ωk )t ′

= −ig2
∫

ωk<EF

dd k
(2π )d

eik·rmn

�− − ωk
= −i

(
J<

mn + i
�<

mn

2

)
. (B9)

In the last step, we have used the Sokhotski-Plemelj theorem,
expressing the end result as the sum of two contributions:
one coming from the principal value of the integral, J≶

mn,
and another one stemming from the Dirac delta distribution,
�
≶
mn/2. The fact that the dispersion relation is symmetric under

the change k → −k guarantees that both J≶
mn and �

≶
mn are real

and symmetric, J≶
mn = J≶

nm and �
≶
mn = �

≶
nm. Also, comparing

Eqs. (B8) and (B9) with the definition of the self-energy
function, Eq. (4), it becomes clear that Eq. (7) holds. Putting
everything together,

ρ̇I =
∑
m, n

[(
−iJ<

mn + �<
mn

2

)
(c†

nρI cm − c†
mcnρI )

+
(

iJ>
mn + �>

mn

2

)
(cnρI c

†
m − cmc†

nρI ) + H.c.

]
. (B10)

Last, it is a matter of algebra to show that

ρ̇I = −i
∑
m, n

(J<
mn + J>

mn)[c†
mcn, ρI ] + D>ρI + D<ρI . (B11)

Going back to the Schrödinger picture, noting also that J<
mn +

J>
mn = Jmn, this then yields the result presented in the main

text.

APPENDIX C: GROUND-STATE CORRELATIONS

1. 1D bath

In the case d = 1, Eq. (29) can be simplified using
the expression for the self-energy function introduced in
Appendix A. It then reads, neglecting the bound state con-
tribution in anticipation of the wide-band approximation,

〈c†b j〉GS = g

π
Re

[∫ kF

0
dk Ge(ω+

k )eik|r j |
]
. (C1)

Under a wide-band approximation, we linearize the dispersion
relation around the Fermi level as ωk ≈ EF + vF (|k| − kF ),
where vF denotes the group velocity at the Fermi level. We
also assume �e(ω+

k ) ≈ �e(E+
F ) = −ig2/vF , so that, substitut-

ing z = k − kF ,

〈c†b j〉GS = g

πvF
Re

[
eikF |r j |

∫ 0

−kF

dz
eiz|r j |

z − z0

]
, (C2)

where z0 = (� − EF )/vF − i(g/vF )2. For large kF , the inte-
grand is highly oscillatory and hence we can extend the lower
limit of integration to −∞. This allows us to evaluate the
integral analytically as

〈c†b j〉GS = g

πvF
Re[eikF |r j | f (z0|r j |)], (C3)
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where

f (z) ≡ eiz

{
Ci(z) + i

[
π

2
− Si(z)

]}
; (C4)

Ci(z) and Si(z) are the cosine and sine integrals, respectively
[114]. In addition, we find that f (z0|r j |) is approximately in-
dependent of the argument of z0, so that we can replace z0|r j |
by |r j |/ξ1D with ξ1D = |z0|−1, as defined in Eq. (31). Noting
that Re[eikF |r j | f (|r j |/ξ1D)] � | f (|r j |/ξ1D)|, we can simply de-
fine the envelope of the correlations as F (|r j |) = | f (|r j |)|.

2. 2D bath

a. Efficient numerical computation

Neglecting the LBS contribution, Eq. (29) can be cast in
the form of a one-dimensional Fourier transform. To do so,
one has to perform a change of variables, expressing the
integral in terms of the momentum parallel and perpendicular
to r j . More concretely, in two dimensions, for r j = (m, n)r we
introduce k′ ≡ (k, k⊥) = T (kx, ky), where T is a conformal
linear transformation,(

k
k⊥

)
= 1

m2 + n2

(
m n
−n m

)(
kx

ky

)
. (C5)

Thus, the first term in Eq. (29) becomes∫
BZ

d2k
(2π )2

Ge(ω−
k )eik·r j �(EF − ωk) =

∫ 2π

0

dk

2π
eikr′

f1(k),

(C6)
where we have defined the one-dimensional integral

f1(k) =
∫ 2π

0

dk⊥
2π

Ge(�−
k′ )�(EF − �k′ ). (C7)

Here r′ ≡ (m2 + n2)r and �k′ ≡ ωT −1(k). Note that the orig-
inal integration region, BZ, is the square with vertices 2π ×
{(0, 0), (1, 0), (0, 1), (1, 1)}, whereas T (BZ) is a scaled and
rotated version of it. Since the integrand is periodic (invari-
ant under translations by reciprocal lattice vectors) we could
have considered instead a different integration region, BZ′,
the square with vertices 2π × {(0, 0), (m, n), (−n, m), (m −
n, m + n)}, which has an area (m2 + n2) times that of the orig-
inal BZ. The transformed integration region T (BZ′) coincides
with BZ.

Similarly, we can do the same change of variables to ex-
press the self-energy function as

�(z, r j ) = g2
∫ 2π

0

dk

2π
eikr′

∫ 2π

0

dk⊥
2π

1

z − �k′
. (C8)

Assuming m � n > 0, calling x = eik and y = eik⊥ , we can
integrate out k⊥ using the residue integration technique, ob-
taining

�(z, r j ) =
∫ 2π

0

dk

2π
eikr′

σ (z, k), (C9)

with σ (z, k) defined as

σ (z, k) = g2

J

∑
p(y j )=0,
s.t. |y j |<1

ym−1
j Res

[
1

p(y; z, x)
, y j

]
, (C10)

where p(y; z, x) is the 2m-order polynomial p(y; z, x) =
xny2m + x−mym+n + (z/J − 4)ym + xmym−n + x−n with roots
y = y j . Note that if y j is a simple root, the residue is sim-
ply given by Res(1/p(y; z, x), y j ) = 1/p′(y j ; z, x). Thus, the
second term in Eq. (29) can be written as∫

BZ

d2k
(2π )2

|Ge(ω+
k )|2�(ω+

k , r j )�(EF − ωk)

=
∫ 2π

0

dk

2π
eikr′

f2(k), (C11)

with a new auxiliary one-dimensional integral defined as

f2(k) = g2
∫ 2π

0

dk⊥
2π

∫
BZ

d2q
(2π )2

|Ge(ω+
q )|2

ω+
q − �k′

�(EF − ωq)

(C12)

=
∫ EF

0
dε ρ(ε)|Ge(ε+)|2σ (ε+, k). (C13)

Finally, we arrive at the compact expression

〈c†b j〉GS ≈ g
∫ 2π

0

dk

2π
eikr′

Re[ f1(k) + f2(k)], (C14)

which follows from the fact that the correlations are real, since
the total Hamiltonian is real, and fn(−k) = fn(k) for n = 1, 2.

For the special case of (m, n) = (1, 0), we can find an
analytical expression for σ (z, k), which reads

σ (z, k) = g2

J

sgn(Re(b))√
b2 − 4

, b = z

J
− 2 cos(k) − 4, (C15)

while for (m, n) = (1, 1), we find that

σ (z, k) = g2

2J cos(k)

sgn(Re(b))√
b2 − 4

, b = z − 4J

2J cos(k)
.

(C16)
In practice, for general r = (m, n) we compute Re fn(k) nu-
merically, and then evaluate Eq. (C14) using a Fast Fourier
Transform algorithm.

Note that the same approach can be used to compute the
bath-bath correlations (34) in an efficient way, and this is how
we obtain Fig. 1(c).

b. Long-range scaling

The long-range behavior of the Fourier transform is deter-
mined by the singularities of the function to be transformed.
The singularities of Re f1(k) arise because the integrand in
its definition, Eq. (C7), is discontinuous at the Fermi surface,
�k′ = EF . Similarly, the integrand in the definition of Re f2(k)
(after performing the integral in the q variables) has a logarith-
mic divergence at the Fermi surface. Thus, if the Fermi surface
is smooth, after integrating along the perpendicular momen-
tum k⊥, Re[ f1(k) + f2(k)] has a set of singularities of the form
Re[ f1(k) + f2(k)] � Ai + Bi|k − kF,i|1/2 for k → kF,i, which
results in a long-range scaling of the correlations as ∼r−3/2

[81]. In fact, the singularities are of the same type as the ones
that one would obtain following a similar procedure for the
bath-bath correlations in an impurity-free bath, which can be
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computed as [77]

〈b†
0b j〉FS =

∫
BZ

d2k
(2π )2

eik·r j �(EF − ωk). (C17)

A similar analysis can be performed for higher dimensions,
arriving at the same conclusion.

APPENDIX D: THERMODYNAMIC LTA

A general eigenstate of the Hamiltonian (1) with energy E
can be written as

|φα (E )〉 =
(∑

n

aαnc†
n +

∑
k

aαkb†
k

)
|vac〉, (D1)

where α = 1, . . . , D(E ) labels the degenerate eigenstates at
energy E and D(E ) denotes the associated degeneracy. The as-
sociated eigenvalue equation H |φα (E )〉 = E |φα (E )〉 implies
that

�aα +
∑

k

gkaαk = Eaα, (D2a)

g†
kaα + ωkaαk = Eaαk, (D2b)

where we have defined aα = (aα1, . . . , aαN )T and gk =
gLd/2(e−ik·r1 , . . . , e−ik·rN )T . By the second equation,

aαk = g†
kaα

E − ωk
, (D3)

and substituting this solution into the first equation,

[E − � − �(E )]aα = 0, (D4)

where we have introduced

�(z) ≡
∑

k

gkg†
k

z − ωk
. (D5)

Note that this definition of �(z) is consistent with the
definition of the self-energy matrix in Sec. IV. Thus, the
eigenenergies E are solutions to

det G−1(E ) = 0, (D6)

where G(z) ≡ [z − � − �(z)]−1, and the amplitudes on the
impurities aα , which fully determine the associated eigenstate
through Eq. (D3), can be chosen as unit vectors in the kernel
of G−1(E ). It is straightforward to show that the norm of the
state is given by

〈φα (E )|φα (E )〉 = a†
α[1 − �′(E )]aα, (D7)

where �′(z) ≡ ∂z�(z). Similarly, the degenerate eigenstates
obey the orthogonality condition

〈φα (E )|φβ (E )〉 = a†
α[1 − �′(E )]aβ = 0 (D8)

for α 
= β.
Note that in the thermodynamic limit, the sum in Eq. (D5)

diverges for an eigenenergy E within the band of the bath,
since the bath energies ωk form a continuum and so for
some k in the sum, ωk → E , causing the denominator of the
corresponding term to vanish. The norm of the eigenstates
with energies in the continuum may diverge or not in the
thermodynamic limit, depending on the specific values of aα .

The first kind correspond to scattering eigenstates, while the
second correspond to bound states in the continuum (BIC),
as discussed in the main text. In the following discussion,
we disregard these states and focus only on the unbounded
eigenstates.

We now consider the correlations of degenerate eigenstates
in the initial state |ψ0〉 = c†|FS〉. We find that

〈φ†
α (E )φβ (E )〉0 = a†

α[1 − �′
<(E )]aβ√〈φα|φα〉〈φβ |φβ〉 , (D9)

where we have dropped the argument E in the denominator,
and where �<(z) is defined analogously to Eq. (D5), with the
sum restricted to k ∈ BZ such that ωk < EF . We want to un-
derstand the behavior of this correlator in the thermodynamic
limit. As noted above, the denominator in this expression will
diverge. If E > EF , then the divergent term which dominates
�(E ) is not included in �<(E ), and therefore the numerator
in Eq. (D9) remains finite, and, accordingly, the correlator
vanishes. On the other hand, if E < EF , the numerator is dom-
inated by the divergent term, and hence a†

α[1 − �′
<(E )]aβ ∼

a†
α[1 − �′(E )]aβ . By Eq. (D8), this implies that the correlator

vanishes for α 
= β. Conversely, for α = β, the numerator and
denominator diverge in the same way, so that finally

〈φ†
α (E )φβ (E )〉0 = δαβ�(EF − E ), (D10)

for unbounded eigenstates in the thermodynamic limit, which
is what we set out to show.

APPENDIX E: POPULATION TRAPPING IN BICs

1. General formalism

Before discussing in general terms the contribution of BICs
to the LTA impurity occupation, we first review the formalism
for BICs developed in Refs. [53,83]. The bath Hamiltonian in
Eq. (1) can be written as HB = H•

B + H◦
B , where H•

B includes
only the sites to which the impurities couple, while H◦

B de-
scribes a bath with vacancies at those sites. A general BIC has
the form |φ〉 = ∑

n ψn|en〉 + |�〉, where the bath component
|�〉 = ∑

j ψ j | j〉 obeys H◦
B |�〉 = �|�〉, i.e., it is an eigenstate

of the bath with vacancies. Note that this implies, of course,
that ψ jn = 0. The emitter amplitudes are then given by

ψn = J

g

∑
〈 jn, j〉

ψ j . (E1)

Importantly, the BICs obtained in this way are not, in general,
orthonormalized. Specifically, given a set of BICs {|φn〉}n, we
can define a (nonunitary) transformation |φ̃μ〉 = ∑

n Mnμ|φn〉,
such that Eq. (42) becomes, neglecting the contributions from
the ground state and any other bound states,

〈O〉 = tr[(M†OM)(M†XM)]

+
∑

ωk<EF

tr[(M†OM)(M†Y (k)M)]. (E2)

Here we have also used the fact that all BICs are degener-
ate at energy � and defined matrices O, X , and Y (k) with
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elements

Omn = 〈φm|O|φn〉, (E3a)

Xmn ≡
N∑

l=1

〈φm|el〉〈el |φn〉, (E3b)

Ymn(k) ≡ 〈φm|k〉〈k|φn〉. (E3c)

By construction, 〈φ̃μ|φ̃ν〉 = δμν implies that
M†SM = I , where S is the overlap matrix of the
nonorthonormalized BICs with elements Snm = 〈φn|φm〉.
Since S is positive-semidefinite, a suitable choice of M
is M = S−1/2 = V D−1/2V †, where V diagonalizes S and
D = diag(λ1, . . . , λN−1) contains its eigenvalues.

2. Dicke regime (1D)

a. BIC population trapping

As alluded to in the main text, if a pair of impurities is
separated at a distance d = (π/k�)Z, the lattice described
by H◦

B consists of a finite chain of length d − 1, as well as
two semi-infinite chains with unbounded eigenstates (in the
thermodynamic limit). The eigenmodes of the finite chain are
standing waves. The particular standing wave eigenmode at
energy � thus forms the localized bath component of a BIC,
and by Eq. (E1), this BIC has amplitudes only on the two
impurities which “cut out” the finite chain from the lattice. In
particular, this implies that in the Dicke regime there emerge
N − 1 such BICs, whose explicit form can be calculated, after
normalization, as [115]

|φn〉 =
√

R

⎡⎣[en± +
√

�0

v�

d−1∑
j=1

sin(k� j)| jn + j〉
⎤⎦, (E4)

where n = 1, . . . , N − 1, |e±
n 〉 = (|en〉 ± |en+1〉)/

√
2 with ±

referring to the case where cos(k�d ) = ∓1, and R defined in
Eq. (48).

We now focus on the case of the LTA total impurity occu-
pation, for which O = X in Eq. (E2). Using the wave function
(E4), we can compute

Xmn = R

[
δm,n ∓ 1

2
(δm,n+1 + δm,n−1)

]
, (E5a)

Ymn(k) = g2R

L

[
1 ∓ cos(kd )

(� − ωk )2

]
e−ik(m−n)d , (E5b)

Smn = δm,n ∓ R

2
(δm,n+1 + δm,n−1), (E5c)

where ∓ refers to cos(k�d ) = ±1. Since S is tridiagonal and
Topelitz, its eigensystem can be obtained analytically and
reads [116]

λn = 1 + R cos
(nπ

N

)
, (E6a)

Vnm =
√

2

N
sin

(nmπ

N

)
(E6b)

with n, m = 1, . . . , N − 1. Notably, V = V T = V †, and this
transformation will diagonalize any tridiagonal Topelitz ma-
trix with equal values on the off-diagonals. In particular, this

includes X , which has eigenvalues

χn = R

[
1 + cos

(
nπ

N

)]
, (E7)

so that we can write

tr[(M†XM)2] =
N−1∑
m=1

(
χn

λn

)2

, (E8)

which gives us Eq. (47). Similarly,

tr[(M†XM)(M†Y (k)M)] =
N−1∑
m=1

(
χn

λ2
n

)
(VY (k)V )nn, (E9)

and, after some algebra, we find that

(VY (k)V )nn = g2R

L

[
1 ∓ cos(kd )

(� − ωk )2

]

×
[1 − (−1)n cos(Nkd )] sin2

(
nπ

N

)
N

[
cos

(
nπ

N

)
− cos(kd )

]2 . (E10)

b. Two-impurity resolvent formalism

To draw a connection to previous work, we can confirm
that our explicit analysis of population trapping in terms of
BICs is consistent with the resolvent approach used to de-
scribe this effect in the single-excitation sector [2,4]. For two
impurities, we consider (anti)symmetrized impurity operators
c± = (c1 ± c2)/

√
2, since for a time-reversal symmetric bath

(ωk = ω−k) these couple to two sets of orthogonal bath modes
with the same dispersion relation ωk as the original bath.
Specifically, for emitters at a distance d from each other,
H = H+ + H− with

H± = �c†
±c± +

∑
k>0

ωkb†
k,±bk,± +

∑
k>0

gk,±√
L

(c†
±bk,± + H.c.)

(E11)
with coupling gk,± = g

√
2(1 ± cos kd ) and bath modes

bk,± = (eikr1 ± eikr2 )bk + (e−ikr1 ± e−ikr2 )b−k

2
√

1 ± cos kd
, (E12)

which satisfy {b†
k,α

, bq,β} = δαβδkq for k ∈ [0, π ). Since
[H+, H−] = 0, the two-impurity problem can thus be mapped
onto two single-impurity problems.

To extend the resolvent formalism to each of these
problems, we define the states |e±〉 ≡ c†

±|vac〉 and
| k±〉 ≡ b†

k, ±|vac〉 and the transition amplitudes A±(t ) ≡ 〈e±
|e−iHt |e±〉 and Ak,±(t ) ≡ 〈k±|e−iHt |e±〉, which can be calcu-
lated from an integral of the form (17) from propagators G±(z)
and Gk,±(z) identical to Ge(z) and Gk (z) in Eqs. (18) except
for the substitution �e(z) → �±(z) ≡ �e(z) ± �(z, d ) and
g → gk,±. By a derivation analogous to the one for the
single-impurity model, the collective decay of the fully
inverted state is described by

〈Ne〉t =
∑
α=±

⎛⎝|Aα (t )|2 +
∑
k<kF

|Ak,α (t )|2
⎞⎠. (E13)
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The long-term limit of this expression is determined by the
real poles of G±(z) and Gk,±(z). This again includes BS
outside the energy band, given by the real solutions to the
pole equations z − � − �±(z) = 0; however, we neglect their
contribution here. This leaves only the pole ωk of Gk,±(z), as
well as a new pole at z = �, which we can show emerges for
G∓(z) when cos(k�d ) = ±1. The associated residue is given
by R as defined in Eq. (48) [2], such that the LTA occupation
is finally given by

〈Ne〉 = g2
∫

ωk<EF

dk

2π
|Ge(ω+

k )|2

+ R2

(
1 + g2

∫
ωk<EF

dk

2π

1 ∓ cos(kd )

(� − ωk )2

)
. (E14)

Given Eq. (E10), it is straightforward to see that this agrees
with Eq. (E2) in the case where N = 2.

3. Van Hove singularity (2D)

When searching for BICs in the 2D bath with impurities
detuned to the Van Hove singularity, we are faced with the
challenge that the entries of the self-energy matrix �(�) will,
in general, diverge at � = 4J . We should therefore understand
Eq. (43) as the statement that �(�) has at least one eigenvalue
which vanishes in the limit � → 4J . However, rather than
trying to establish which constraints this condition imposes
on the impurity positions in general, we note that there is a
more intuitive approach for constructing BICs at the Van Hove
singularity.

For such a BIC, it is easy to see that the eigenvalue equation
H◦

B |�〉 = �|�〉 amounts to the condition

∑
〈 j, j′〉

ψ j′ = 0 ∀ j 
= jn. (E15)

We can then use Eq. (E15) to iteratively construct a simple,
real wave function for the BIC supported by this configu-
ration: starting at some site j adjacent to a vacancy site,
we assign ψ j = +1 or ψ j = −1 arbitrarily on this site. To
ensure that Eq. (E15) holds for the nearest neighbors of this
site, we must then assign amplitudes ψ j′ = ±1 to its next-
nearest neighbors j′. We then proceed to enforce Eq. (E15)
to those sites in turn, until we arrive ultimately at a checker-
board pattern, where every other site in the rectangle has
amplitude ψ j = +1 (which we label j ∈ P) or ψ j = −1
( j ∈ M). After normalization, we are left with a BIC wave

FIG. 7. BIC wave functions for the extended emitter configura-
tions from Fig. 5(b), uniquely defined up to a global sign. Black dots
indicate sites to which the impurities are coupled (i.e., vacancy sites),
and we highlight a positive (negative) nonzero amplitude ψ j on a
bath site j in red (blue).

function

|φ〉 = √
RV

⎡⎣|σ〉 + g

2J

⎛⎝∑
j∈P

| j〉 −
∑
j∈M

| j〉
⎞⎠⎤⎦, (E16)

where we have defined

RV =
[

1 +
( g

2J

)2
(|P| + |M|)

]−1

, (E17)

with |P| and |M| denoting the number of sites with positive
and negative amplitude, respectively, and where

|σ〉 = 1

2

4∑
n=1

σn|en〉, (E18)

with σ ∈ {−1,+1}⊗4 capturing the relative sign of each emit-
ter amplitude as determined from the bath wave function by
Eq. (E1).

With reference to Refs. [2,4], we note that the above anal-
ysis applies for instance to the diamond configuration of four
impurities at sites r1 = (0,−m), r2 = (−m, 0), r3 = (0, m),
and r4 = (m, 0) [shown for m = 3 in Fig. 7(a)]. In this case,
|P| + |M| = m2 and therefore RV = [1 + (gm)2/(2J )2]−1.
Noting also that σ = (1,±1, 1,±1), where + (−) refers to the
case of odd (even) m. It is then easy to show that the subradiant
decay in this configuration reported in Refs. [2,4] is consistent
with population trapping in a BIC of the form (E16).

More generally, our analysis can also be applied to ex-
tended configurations giving rise to multiple BICs of the form
(E16). We focus in particular on the two examples shown in
Fig. 5, with N = 6 and N = 8 impurities, respectively, whose
wave functions can be constructed as shown in Fig. 7. It
is straightforward to show that these configurations support
multiple BICs |φn〉 with n = 1, 2 and n = 1, 2, 3, respectively.
With access to the full BIC wave function, we are able to
construct the matrices S, O, X , and Y (k) explicitly, allowing
us to calculate LTA expectation values from Eq. (E2).
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