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Abstract: Nanodiamonds (NDs) are emerging as a novel nanoparticle class with growing interest in
medical applications. The surface coating of NDs can be modified by attaching binding ligands or
imaging probes, turning them into multi-modal targeting agents. In this investigation, we assessed
the targeting efficacy of octreotide-functionalized 68Ga-radiolabelled NDs for cancer imaging and
compared it with the tumor uptake using [68Ga]Ga-DOTA-TOC. In vivo studies in mice bearing
AR42J tumors demonstrated the highest accumulation of the radiolabeled functionalized NDs in the
liver and spleen, with relatively low tumor uptake compared to [68Ga]Ga-DOTA-TOC. Our findings
suggest that, within the scope of this study, functionalization did not enhance the tumor-targeting
capabilities of NDs.

Keywords: nanodiamonds; small animal PET; preclinical imaging; AR42J tumor-bearing mice

1. Introduction

Biomedical imaging facilitates the exploration of living organisms, offering molecular
and anatomical insights into biological processes. Most imaging modalities rely on contrast
agents or radiolabeled molecules as generic sources for the acquisition of image data with
sufficient signal-to-noise quality. Among those contrast agents, polymeric and inorganic
nanoparticles have been assessed for tumor imaging as these nanoparticles excerpt passive
accumulation in tumors via the enhanced permeability and retention (EPR) effect. The
EPR effect is intricately linked to the particle size, biocompatibility, and surface charge
of the respective nanoparticle. Moreover, tumor vascularization and lymphatic drainage
govern the retention of nanoparticles in target tissues, which consequently affects image
contrast when such nanoparticles are used as generic imaging agents [1,2]. Even though
the clinical utilization of the EPR effect remains nascent, its application in facilitating the
passive accumulation of nanoparticles in tumors has been extensively evaluated for tumor
imaging, nanomedicinal strategies, and nanoparticle-based therapies [3,4].

Among the diverse nanoparticles investigated as imaging probes, nanodiamonds
(NDs) have emerged as promising tools for biomedical imaging applications [5,6]. Nanodi-
amonds, carbon-based nanoparticles ranging in size from 1 to 150 nm, possess distinctive
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physical and biomedical attributes. They demonstrate chemical inertness, inherent bio-
compatibility, and low toxicity [7]. Furthermore, NDs feature abundant optical color
center defects, primarily attributed to nitrogen impurities during ND aggregation. These
nitrogen-vacancy (NV) color defect centers serve as excellent fluorophores, exhibiting
intense fluorescence emission without notable photobleaching. Notably, surface modifica-
tions of NDs have a minimal impact on their fluorescence properties. Consequently, NDs
are amenable to various chemical modifications, facilitating their utilization in numerous
fluorescence and photoacoustic imaging applications [8,9].

Additionally, NDs inherit intrinsic para- and diamagnetic properties, ultimately re-
sulting in longitudinal relaxation time (T1)-enhancement when used as a contrast agent in
magnetic resonance imaging (MRI) [10,11].

The surface modification of NDs can be achieved using various chemical strategies,
typically involving biocompatible polymers or amino acids to enhance the colloidal stability
and establish a platform for functionalization [12,13]. Targeting capabilities are introduced
by functionalizing the ND surface with biomolecules that target receptors overexpressed on
specific cells [14]. Furthermore, NDs display a high loading capacity, ultimately releasing high
concentrations of potential payloads at the target moiety. Therefore, NDs provide significant
theranostic potential when used as delivery agents for small molecule chemotherapeutics,
peptides, or DNA/RNA [15,16]. Collectively, the inherent attributes of intrinsic and enduring
photostable fluorescence, coupled with their capacity to enhance the T1 contrast in MRI
applications, render ND-based contrast agents highly promising for diverse biomedical
applications. Furthermore, their remarkable versatility in surface modifications and potential
therapeutic payloads amplifies their potential for cross-scaled multimodal imaging and
theranostics, spanning various dimensions of biological exploration.

In previous studies, we explored the potential of NDs for positron-emission tomo-
graphy (PET) imaging [10,17]. In these studies, we coated NDs with cationized human
serum albumin (cHSA) and polyethylene glycol (PEG) and added a chelator (DFO) for
radiolabeling. The synthesis and radiolabeling of the cHSA-PEG-DFO-NDs were successful;
however, the preclinical evaluation in tumor-bearing mice revealed a low tumor uptake. To
improve the tumor uptake, a targeting agent functionalized on the surface coating of the
NDs might be a promising strategy.

Hence, the present study explored the potential of radiolabeled coated NDs, function-
alized with a somatostatin analog (octreotide; Oct) for specific tumor-targeted imaging. The
tumor-accumulation capability of radiolabeled functionalized NDs was investigated and
compared with [68Ga]Ga-DOTA-TOC as the “gold standard” in mice bearing a somatostatin
overexpressing subcutaneous tumor.

2. Results
2.1. Radiolabeling of NDs

Radiolabeling of coated and functionalized NDs was achieved with a radiochemical
purity of 91.1% ± 2.2% for [68Ga]Ga-DFO-ND-Oct (n = 4), respectively, within a total
synthesis time of 60–80 min (for an example TLC analysis see Figure 1).

2.2. Biodistribution and PET Imaging of Radiolabeled Targeting NDs

Dynamic PET imaging was performed for 90 min after injecting [68Ga]Ga-DFO-ND-
Oct and [68Ga]Ga-DOTA-TOC. In Figure 2, PET/MR summation images illustrate the
biodistribution of the tested compounds. The time–activity curves (TACs) obtained from
the image analyses are depicted in Figure 3.
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Figure 2. Representative horizontal co-registered PET/MR image showing the biodistribution of
(A) [68Ga]Ga-DFO-ND-Oct and (B) [68Ga]Ga-DOTA-TOC in an AR42J tumor-bearing CD1 mouse.
The radiation scale was set from 1 to 30%ID/cc. Organs of interest are indicated with arrows:
Sp—spleen, L—liver, T—tumor, Bl—urinary bladder.
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Figure 3. PET time–activity curves (TACs) obtained after injection of (A) [68Ga]Ga-DFO-ND-Oct
(n = 6; %IA/cc) or (B) [68Ga]Ga-DOTA-TOC (n = 8; %IA/cc) in the AR42J tumor-bearing CD1 mice.
The TACs show the mean value ± the standard deviation.

Based on the TACs, the area-under-the curve values (AUCs) were calculated and are
shown in Figure 4A. We obtained statistically significant differences between the [68Ga]Ga-
DFO-ND-Oct and [68Ga]Ga-DOTA-TOC AUCs in nearly all analyzed organs except for
the muscle. Figure 4B shows the results from the biodistribution study comparing activity
concentrations between [68Ga]Ga-DFO-ND-Oct and [68Ga]Ga-DOTA-TOC. The comparison
of the [68Ga]Ga-DFO-ND-Oct activity concentration with [68Ga]Ga-DOTA-TOC did reveal
statistically significant differences in all analyzed organs and tumors except blood and
plasma. The values from the gamma counter are summarized in Table 1. In addition, the
values from the previous study focusing on [68Ga]Ga-DFO-ND [17] are shown in the table.
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Figure 4. (A) Calculated area-under-the-curve from the 90 min PET for [68Ga]Ga-DFO-ND-Oct
(n = 6) and [68Ga]Ga-DOTA-TOC (n = 8). In (B) the radioactivity values obtained from the biodis-
tribution study (gamma-counter) at 95 min p.i. (%IA/g; n = 11/16) in AR42J tumor-bearing CD1
mice are shown. The box plot shows the mean value, and the whiskers indicate the 5–95 percentile.
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; unpaired t-test with Welch correction.
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Table 1. Radioactivity values obtained from the biodistribution study (gamma counter) at 95 min p.i.
in AR42J tumor-bearing CD1 mice.

[68Ga]Ga-DFO-ND-Oct
%IA/g

[68Ga]Ga-DOTA-TOC
%IA/g

[68Ga]Ga-DFO-ND [17]
%IA/g

n 11 16 11
Blood 0.57 ± 0.26 0.78 ± 0.54 0.93 ± 0.61
Plasma 1.01 ± 0.49 1.46 ± 1.05 1.76 ± 1.16
Tumor 0.32 ± 0.12 5.38 ± 2.98 0.37 ± 0.10
Spleen 40.52 ± 15.36 2.00 ± 1.21 41.26 ± 13.28
Liver 52.47 ± 7.76 2.99 ± 2.01 47.75 ± 9.31
Kidneys 1.09 ± 0.28 # 9.25± 1.95 1.45 ± 0.19 # (p = 0.002)
Lung 1.94 ± 0.70 1.31 ± 0.96 1.89 ± 0.38
Brain 0.02 ± 0.01 # 0.04 ± 0.02 0.04 ± 0.02 # (p = 0.027)

# 2-sided unpaired t-test with Welch correction using the Holm–Sidak method.

When comparing the biodistribution values between [68Ga]Ga-DFO-ND-Oct and
[68Ga]Ga-DFO-ND, the two-sided unpaired t-test revealed compelling biological evidence
of divergence in the kidney (t(20) = 3.48, p = 0.002, d = 1.5) and brain (t(20) = 2.38,
p = 0.027, d = 1.01) between these two groups. For the other organs, we observed a reduction
in the [68Ga]Ga-DFO-ND-Oct radioactivity concentration in blood, plasma, tumor, and
spleen, and an increase in liver and lung compared to [68Ga]Ga-DFO-ND, although these
differences did not reach statistical significance.

3. Discussion

Radiolabeled nanodiamonds have emerged as innovative drug carriers with enhanced
biocompatibility, a point underscored by the editorial board of the EJNMMI Radiopharmacy
and Chemistry journal [18]. In a prior investigation, we developed a protocol for coating
and radiolabeling nanodiamonds (NDs), assessing their in vivo pharmacokinetics in mice
with tumors [17]. Due to the initially low tumor uptake, we devised strategies to enhance
the tumor uptake, one of which involved functionalizing the NDs by incorporating a tumor-
targeting moiety. Opting for octreotide, a well-established somatostatin receptor-targeting
radiopharmaceutical in clinical use as a preclinical study model [19,20], we employed the
trans-cyclooctene (TCO) tetrazine click-chemistry approach [21] to integrate octreotide
into the NDs’ surface coating. Subsequently, we evaluated the feasibility of using 68Ga-
radiolabeled NDs functionalized with octreotide for tumor imaging, comparing it with the
established [68Ga]Ga-DOTA-TOC “gold standard”. However, our efforts failed to reveal
enhanced tumor-targeting capabilities with functionalized [68Ga]Ga-DFO-ND-Oct.

In a previous study [17], we explored the biodistribution of non-functionalized
[68Ga]Ga-DFO-ND. Despite including a targeting moiety in the present study, we did
not observe increased ND uptake in the tumor compared to non-functionalized NDs
([68Ga]Ga-DFO-ND: tumor 0.37 ± 0.10 %IA/g [17] versus [68Ga]Ga-DFO-ND-Oct: tumor
0.32 ± 0.12 %IA/g). Moreover, the [68Ga]Ga-DFO-ND-Oct group exhibited a reduced
kidney and blood concentration and increased liver uptake compared to the [68Ga]Ga-
DFO-ND group (see Table 1). Although not all observed differences reached statistical
significance, we attribute this to the slightly larger size (156 nm) of [68Ga]Ga-DFO-ND-Oct
compared to [68Ga]Ga-DFO-ND (146 nm). This finding aligns with a previous investigation
that utilized 125I-labeled bovine serum albumin (BSA) covalently attached to fractionated
detonation nanodiamonds (DNDs) of varying sizes [22]. The DND-BSAI125 samples, with
average particle sizes of 62 nm, 181 nm, and 266 nm, were administered intravenously to
adult male mice. A biodistribution analysis conducted 1 h after intravenous administration
revealed a decreased kidney and blood concentration and increased liver uptake with
larger particle sizes. In another study by Hirn et al. [23], gold nanoparticles of five different
sizes (1.4 nm, 5 nm, 18 nm, 80 nm, and 200 nm) were administered via i.v. injection into
female Wistar-Kyoto rats. Samples (organs, blood, and excretion) were collected after 24 h.
They showed a strong size dependency on the distribution and accumulation of gold NPs
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in all organs, tissues, and excretion. Hence, the uptake pattern of nanoparticles is strongly
influenced by their size.

Furthermore, the uptake of nanodiamonds (NDs) is significantly influenced by their
surface coating and charge. Rawal et al. [24] noted that various physicochemical properties,
such as particle size, shape, polydispersity, and surface charges, play crucial roles in
determining the safety, efficacy, pharmacokinetics, pharmacodynamics, and biodistribution
of nanomaterials. Positively charged particles tend to be captured by macrophages in
organs such as the lungs, liver, and spleen, while neutral or slightly negatively charged
nanoparticles exhibit longer circulation times and reduced accumulation in these organs.
Additionally, Xiao et al. [25] demonstrated that positively charged PEG-oligocholic acid-
based micellar nanoparticles (NPs) with a 15–20 nm size range exhibited higher liver uptake
in nude mice with SKOV-3 human ovarian cancer xenografts. Conversely, nanoparticles
with slightly negative surface charges showed very low liver uptake but high tumor uptake.
Hirn et al. [23] further demonstrated that nanoparticles with a positive charge exhibit
increased susceptibility to clearance via the hepato-biliary pathway.

Moreover, both the size and surface charge play significant roles in influencing the
EPR effect [26–28]. Studies have demonstrated that NPs falling within the 100–200 nm size
range are considered optimal for exploiting the EPR effect in solid tumors [29], a range
that encompasses our current NDs. However, it has also been observed that NPs with
high positive charges are prone to being captured and retained by the vascular endothelial
luminal, which is rich in negatively charged phospholipids. Conversely, nanoparticles
with elevated negative charges tend to be absorbed and cleared by organs such as the liver,
spleen, or other components of the reticuloendothelial system (RES). Consequently, the
ideal surface charge for NPs should be neutral or slightly negative [30]. In our current
investigation, the coated NDs bore a positive surface charge, which may have contributed
to the relatively low tumor uptake observed.

In addition, it also has to be mentioned that the administered activities and injected
masses were different between the [68Ga]Ga-DFO-ND and [68Ga]Ga-DOTA-TOC groups,
potentially biasing the obtained results.

Furthermore, it remains unclear whether the affinity of octreotide was diminished by
the tetrazine-TCO ligation and the presence of the nanodiamonds (NDs). Reubi et al. [31]
highlighted that even minor structural alterations, chelator substitutions, or metal replace-
ments can significantly impact the binding affinity of somatostatin radioligands. Hence,
assessing the somatostatin receptor subtype affinity profile of the functionalized NDs be-
comes crucial. However, conventional in vitro binding assays face a challenge as separating
unbound NDs from cells proves impractical. Moreover, determining peptide concentrations
and molar extinction coefficients poses another challenge. Quantifying peptide concentra-
tions relies on knowledge about the exact elemental composition of the octreotide complex
and its known peptide content. Given that we introduced octreotide via the tetrazine-TCO
click reaction, resulting in cHSA-PEG-DFO-TCO-Tz-Oct as the coating material, deter-
mining the precise amount of Oct per ND was unfeasible. However, it is important to
note that the absence of specific binding in vitro data represents a limitation of the present
study. Hence, generating in vitro data is advisable for subsequent investigations to discern
whether the in vivo ineffectiveness of ND-Oct for tumor targeting stems from inadequate
active accumulation or passive uptake.

4. Materials and Methods
4.1. Chemicals and Radiotracer

The following materials were used for the cell culture: PBS, 0.25% Trypsin-EDTA,
FBS, Penicillin/Streptomycin, RPMI 1640, and L-glutamine, and were obtained from Gibco
(Fisher Scientific, Vienna, Austria).

[68Ga]Ga-DOTA-TOC was synthesized with slight modifications of the described pro-
duction method [32,33]. Briefly, the 30 mCi (1110 MBq) 68Ge/68Ga radionuclide generator
(Cyclotron Co., Ltd., Obninsk, Russia) was eluted using 5 mL 0.1 M HCl and the middle
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fraction (130 MBq in 1 mL) was used. To 800 µL 68Ga-Cl3 eluent, 160 µL 0.25 M Na2CO3
was added to adjust the pH to 5.5–6.5. Then, 50 µg DOTA-TOC in 200 µL acetate puffer
(1.5 M, pH 3.8) was added and reacted for 7 min at 100◦ C and 600 rpm in a thermomixer
(Eppendorf, Hamburg, Germany). Uncomplexed 68Ga was removed through retention
on a reversed-phase cartridge (tC18 SepPAK; Waters Corp., Milford, MA, USA), whereas
[68Ga]Ga-DOTA-TOC was eluted with ethanol (1 mL). After evaporation of the organic
solvent, the compound was redissolved in 600 µL PBS. Radiochemical yield was 78 ± 15%
(n = 5) with >99% of the radioactivity migrated with an Rf ~0.6 corresponding to [68Ga]Ga-
DOTA-TOC as assessed using radio-HPLC. The molar activity was 12 ± 6 GBq/µmol at
the end of synthesis.

4.2. Radiolabelling of NDs

Cleaned NDs (MSY 0–0.2) with an averaged diameter of 100 nm (calculated from
transmission electron microscopy) were provided by Microdiamants AG (Lengwil, Switzer-
land) and pretreated as described previously [34]. A biocompatible, non-covalent coating
strategy was developed to stabilize NDs in biological media and to render functionaliza-
tion more efficient and reproducible. The surface coating preparation for the NDs was
performed following previously described procedures [35]. In brief, human serum albu-
min was cationized to achieve cHSA and then stabilized by the addition of PEG polymer
chains yielding cHSA-PEG. Then, p-SCN-Bn-Deferoxamine (also known as desferal, DFO;
752 g/mol) was introduced to cHSA-PEG by reacting the thiocyanate of DFO with free
primary amine groups of cHSA-PEG. After the removal of unreacted DFO on the next day,
PEG chains containing a trans-cyclooctene group (PEG-TCO; 867 g/mol) were introduced
to cHSA-PEG-DFO. Finally, free PEG-TCO was removed by ultrafiltration, yielding cHSA-
PEG-DFO-TCO. To attach the targeting group octreotide (Oct) to cHSA-PEG-DFO-TCO via
click chemistry, octreotide was site-selectively modified with a tetrazine-PEG rebridging
agent, according to a previous publication [36]. In short note, octreotide contains a single
disulfide bond which, after cleavage of this disulfide bond through the addition of reducing
agents, could be rebridged using an allyl sulfone reagent yielding octreotide–tetrazine (Tz-
Oct). The final product was characterized using electrospray ionization–mass spectrometry
and liquid chromatography–mass spectrometry. Subsequently, 0.5 equivalents of octreotide-
tetrazine (Tz-Oct) were added to a solution of cHSA-PEG-DFO-TCO in 1 mL phosphate
buffer (50 mM, pH 8.0) at room temperature for 2 h. After free octreotide–tetrazine was
removed using ultrafiltration (MWCO: 30 kDa), MALDI-TOF mass spectrometry revealed
the introduction of 8 units of octreotide yielding cHSA-PEG-DFO-TCO-Tz-Oct (148 kDa).

NDs were coated with cHSA-PEG-DFO-TCO-Tz-Oct according to the literature [35]. In
brief, NDs were diluted to low concentration (0.1 mg/mL) in MilliQ water, and afterward,
a solution of cHSA-PEG-DFO-TCO-Tz-Oct (0.1 mg/mL, 4 times mass excess) in MilliQ
water was dropped into the ND solution and the mixture was stirred overnight. The free
proteins were removed using centrifugation the following day, yielding ND-cHSA-PEG-
DFO-TCO-Tz-Oct (DFO-ND-Oct). The successful coating was confirmed using dynamic
light scattering (DLS). The average diameter increased from 138 ± 0.5 nm for uncoated
NDs to 156 ± 3.8 nm for DFO-ND-Oct. The polydispersity index (PDI) did increase from
0.1 ± 0.01 (uncoated NDs) to 0.4 ± 0.05 for the DFO-ND-Oct and the surface charge changed
from a negative value for the uncoated NDs (~−40 mV) to around 30 mV after coating [37].
Radiolabeling was performed as described previously [17]. In brief, prior to radiolabeling,
a 68Ge/68Ga radionuclide generator (Cyclotron Co., Ltd., Obninsk, Russia) was fractionally
eluted using 0.1 M HCl. For labeling, 0.2 mL of the middle fraction (18.1 ± 5.6 MBq) was
used, and the pH was adjusted to 5.0–6.5 using 0.25 M aq. Na2CO3 solution. Before
radiolabeling, the DFO-ND-Oct (0.5 mg/mL in H2O) were dispersed in an ultrasonic bath
or a rotary vortex for 15 min. To the pH-adjusted 68Ga-solution, 0.45 mL DFO-ND-Oct
(0.22 mg) was added and mixed for 60 min in an overhead shaker (Grant Instruments
(Cambridge) Ltd., Shepreth, UK) using the following parameters: orbital: 35 rpm for 5 s,
reciprocal: 90◦ for 10 s, vibro/pause: 5/5 s. Quality control was performed using thin-layer
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chromatography (TLC) using 0.1 M citrate buffer at pH 4.6 as mobile phase. Samples from
the radiolabeled ND solution and 68Ga-Cl3 solution as control were spotted on silica gel
RP 18 TLC plates (2.5 × 10 cm; Merck, Darmstadt, Germany), and plates were developed.
Detection was performed by placing the TLC plates on multi-sensitive phosphor screens
(Perkin-Elmer, Rodgau, Germany). Radiolabeling efficiency was calculated based on the
peaks at the start and front, assuming that the radiolabeled NDs would remain at the
start position.

4.3. Animal Model

The rat pancreatic carcinoma cell line AR42J (ECACC 93100618) was purchased from
ECACC (Public Health England Culture Collections, Salisbury, UK). This cell line was
chosen for the tumor targeting experiments as it was shown to express the highest somato-
statin receptor subtype 2 (SSTR2) concentration [38]. AR42J cells were cultured in CytoOne
(Starlab) flasks containing RPMI 1640 medium supplemented with 2 nM L-Glutamine
plus 10% FBS and antibiotics (100 IU penicillin + 0.1 mg/mL streptomycin). Cells were
maintained at 37 ◦C under a humified condition of 95% air and 5% CO2 and passaged once
weekly before experiment use.

Female Crl:CD1-Foxn1nu mice (Charles River Laboratories, Sulzfeld, Germany) aged
7–8 weeks were used (n = 27, 26.3 ± 2.2 g). Animals were housed in groups (4–6 animals) in
polysulfone type III cages under individual ventilated cage conditions in a temperature and
humidity-controlled facility (22 ± 3 ◦C; 40% to 70% humidity), had free access to standard
laboratory animal diet (ssniff R/M-H, ssniff Spezialdiäten GmbH, Soest, Germany) and
water ad libitum, and were kept under a cycle of 12 h of light and 12 h of dark. An
acclimatization period of at least 1 week was allowed before the animals were used in the
experiments. Then, animals were anesthetized in an induction box with isoflurane in air,
and 5 × 106 AR42J cells in a volume of 100 µL PBS were injected subcutaneously in the
right shoulder region of nu/nu CD1 mice. Tumor sizes were measured once per week
using a caliper, and around 16 days after inoculation, when tumors had reached a size of
1480 ± 970 mm3 (range 140–3870 mm3), animals were used in the imaging experiments.

The Amt der Niederösterreichischen Landesregierung approved the studies in compli-
ance with the Austrian Laboratory Animal Experimentation Act) and study procedures
were in accordance with the European Communities Council Directive of 22 September
2010 (2010/63/EU).

4.4. PET/MR Imaging and Biodistribution

AR42J tumor-bearing animals were divided into 2 groups for the imaging and biodis-
tribution experiments. Before each experiment, the animals were placed in an induction box
and anesthetized with ~3.5% isoflurane in air. When unconscious, the animals were taken
from the induction box and positioned on the heated double-imaging chamber for PET
imaging (n = 6–8/group) or on a heated mat for ex vivo gamma counting (n = 5–8/group)
in prone position, and anesthesia was continued. For PET imaging, a microPET Focus
220 scanner (Siemens Medical Solutions, Knoxville, TN, USA) was used [39]. Before ra-
diotracer injection, a 10 min transmission scan using a rotating 57Co source was recorded.
An energy window of 250–750 keV and a timing window of 6 ns were used to acquire the
dynamic PET scans. During the scans, animal respiratory rate and body temperature were
constantly monitored (SA Instruments Inc., Stony Brook, NY, USA), and the isoflurane
level was adjusted (1.5–2.5% in oxygen) to achieve a constant depth of anesthesia. The
tails were warmed, and a catheter was positioned into the lateral tail vein for radiotracer
injection. [68Ga]Ga-DFO-ND-Oct (n = 11, 1.6 ± 0.4 MBq, 200 µL, 62.5 ± 0.1 µg NDs) or
[68Ga]Ga-DOTA-TOC (n = 16, 8.3 ± 1.7 MBq, 150 µL, 1.6 ± 1.1 µg) was injected and a 90 min
PET scan or 90 min uptake period was started. Some animals additionally underwent a
T1-FLASH (TE: 7 ms, TR: 30 ms, rep.: 5, FOV (mm): 76 × 28 × 24, matrix: 217 × 80 × 34,
resolution (cm/pixel): 0.35 × 0.35 × 0.70, orientation: coronal, scan time: 8 min, flip angle:
35◦) weighted MRI scan (1T ICON scanner, Bruker, Ettlingen, Germany) directly before the
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PET scan. At 90 min after injection, blood was collected using puncture of the retrobulbar
plexus under anesthesia. Animals were sacrificed, and organs (brain, spleen, kidneys, liver,
lung) and tumors were sampled from all animals (n = 11(16)/group) and measured in the
gamma counter. The animal number, weight, injected activity, and number of animals
per group are summarized in Table 2. Imaging method descriptions follow Stout et al.’s
guidelines [40].

Table 2. Overview of animal weight, injected activity, mass, and the number of animals used in
the experiments.

[68Ga]Ga-DFO-ND-Oct [68Ga]Ga-DOTA-TOC

Body weight [g] 25.2 ± 1.7 27.1 ± 2.4
Injected activity [MBq] 1.6 ± 0.4 8.3 ± 1.7
Injected mass [µg] 62.5 ± 0.1 1.6 ± 1.1
PET imaging, n 6 8
Biodistribution, n 5 8

4.5. Ex Vivo Analysis of Samples

Blood was centrifuged to obtain plasma (17,000× g, 4 ◦C, 1 min), and aliquots of blood
and plasma were transferred into pre-weighted test tubes. Radioactivity concentration in
the organ samples was measured in a gamma counter (HIDEX AMG Automatic Gamma
Counter, Turku, Finland). Empty and full tubes were weighted to obtain organ weight.
The gamma counter was calibrated using a series of tubes with decreasing activity of a
68Ga-solution.

Data from the gamma counter expressed in kBq/g were decay-corrected to the time
of radiotracer injection. Then, data points were corrected using the injected activity and
displayed as percent injected activity per gram tissue (%IA/g).

4.6. PET/MR Image Data Analysis

Dynamic PET emission data were sorted into 24 frames, which incrementally increased
in time length from 5 s to 20 min. All PET images were reconstructed using Fourier
rebinning of the 3D sinograms followed by two-dimensional filtered back projection with
a ramp filter, resulting in a voxel size of 0.4 × 0.4 × 0.798 mm3. The standard data
correction protocol (normalization, attenuation, and decay correction) was applied to
the PET data. The PET units were converted into units of radioactivity by applying a
calibration factor yielding kBq/cc. After that, the values were corrected using injected
activity and expressed as %IA/cc. PET images were analyzed using the image analysis
software AMIDE version 1.0.4 42 [41]. The MR image was co-registered with the PET image
using rigid transformation, and volumes of interest (VOI) covering the whole tumor area
were manually drawn. In addition, predefined spherical VOIs were drawn over the brain,
muscle, liver, spleen, kidneys, urinary bladder, lung, and heart on the PET time frame
where the organs were clearly visible. Afterward, the PET time–activity curves (TACs) for
each organ and tumor were extracted. The area-under-the-curve (AUC) of the PET TACs
from 0 to 90 min was calculated for the different VOIs.

4.7. Statistics

Statistical testing was performed using GraphPad Prism 9.5.1 software (GraphPad
Software, La Jolla, CA, USA). Differences between the groups were analyzed using a
2-sided unpaired t-test with Welch correction using the Holm–Sidak method and assuming
individual variance for each group. The level of statistical significance was set to p < 0.05.
Unless stated otherwise, all values are given as mean ± standard deviation (SD).
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5. Conclusions

Our findings underscore the practical limitations of the current functionalized NDs in
terms of biodistribution within our conducted studies. These results serve as a foundation
for future enhancements in ND characteristics, focusing on aspects such as size, surface
coating, coating modification, and targeted specificity.
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