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Abstract

Geolectal variation is often present in settings where one language is spoken across a vast geographic area. This can be found in phonological,
morphosyntactic, and lexical features. For practical reasons, it is not always possible to conduct fieldwork in every single location of interest in
order to obtain the full pattern of variation, and a sample of themmust be chosen.We propose and test a method for sampling these locations,
with the goal of obtaining a distribution of typological features representative of the whole area. We apply k-means and hierarchical clustering
algorithms for defining this sample, based on their geographic distribution. We test our methods against simulated data with several spatial
configurations, and also against real data from Circassian dialects (Northwest Caucasian). Our results show an efficiency significantly higher
than random sampling for detecting this variation, which makes our method profitable to fieldworkers when designing their research.
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1. Introduction

Languages spoken across a vast geographic area tend to present
dissimilarities in their local varieties, to a higher or a lower degree.
The term geolectal variation stands for the different forms that a
language takes across its geographically separated varieties (Labov,
1963). This variation can be present in different forms, such as
phonological, morphosyntactic, and lexical features. This type of
linguistic variation has been addressed by dialectologists since the
mid-nineteenth century and was considered generally by linguists
only in the second half of the twentieth century (Chambers and
Trudgill, 2004). Traditionally, this phenomenon has been over-
looked, with homogeneous distributions being assumed in most
studies (Dorian, 2010).

In certain regions, it is possible to find a geographic dialect
continuum formed by a group of settlements whose dialects differ
slightly with distance. This generates a situation where every group
of contiguous settlements speak very similar, intelligible varieties,
butmore distant settlements of the same continuum speak varieties
that are non-intelligible (Chambers and Trudgill, 2004). This is the
case of several groups of languages in Europe, such as the West
Romance, East Slavic, or Scandinavian dialect continua, and it is
particularly relevant in the Caucasus.

In order to account for the variation in a geographic region, it is
necessary to collect data from a significant number of different
locations. Although methods for collecting a large amount of
linguisitc data in a short period of time exist (and they thrived during
theCOVID-19 pandemic [Leemann et al., 2020; Staff, 2019; Sprouse,

2011; Piller, Zhang, & Li, 2020]), in this kind of research, linguists
need take into account geographical imbalance, quality, and
representativity of the obtained data (e.g. in terms of recording
conditions, possibility of speech disorders, and others). Therefore,
this collection must be done in a systematic way, such as field
expeditions where questionnaires are elicited and completed by
experienced researchers with high quality recording devices. For
practical reasons, it is not always possible to collect fieldwork data
from every single location in order to obtain this full pattern of
variation. Instead, it is more efficient to collect data from a selected
group of these settlements, which wewill call a sample. The question
arises of which locations should be surveyed, either in order to
resemble the real distribution of linguistic features, or at least to
detect the degree of different values that exist for each of them.

1.1. Spatial sampling

Spatial sampling is a well developed field (see Stehman and
Overton, 1995; Delmelle, 2009 and references therein), but no
systematic study specific to linguistics has been carried out to date.
According to Delmelle (2009), spatial sampling can be used in
order to solve three categories of problems: estimating non-spatial
characteristics of a spatial population, summarizing spatial
variation of a variable in the form of a map, and obtaining
observations independent from each other from a spatially
structured dataset. All of them are relevant to us.

We focus on a two-dimensional discrete spatial sampling,
where our goal is to sample a set n out of a population ofN spatially
structured datapoints. Delmelle (2009) divides such sampling
methods into i) uniform random sampling, ii) systematic sampling
(which can be further divided into regular, random, and
unaligned), and iii) stratified sampling.

In the uniform random sampling, the dots are randomly
selected, and the selection of a unit does not influence the selection
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of any other. The advantages of this method are its operational
simplicity and its capacity to generate a wide variety of distances
among pairs of points in the sample. Its main disadvantage is that
the distribution of selected points may not be representative of the
underlying population, resulting in some areas being oversampled
and others undersampled.

In the systematic sampling, the space of interest is divided into a
uniform grid of subregions or cells, and one sample is taken from
each of these. It is called regular systematic if the sample is always
taken from the same location inside the cell (e.g. its center),
systematic unaligned if there is a differentiate algorithm for
choosing the sample inside each cell, or systematic random if the
sample inside each cell is taken at random. The benefits of this
approach are a good spreading of observations across the whole
region of interest, resulting in a representative sampling coverage,
and avoiding sampling clustering and redundancy. Its inconven-
iences are that the distribution of distances between points in the
sample is biased (many points are separated by the same distance,
i.e. multiples of the cell size), and there is the possibility of missing
spatially periodic behaviors.

Finally, in stratified sampling, the region of interest is
partitioned into non-overlapping strata, making the systematic
sampling a special case of stratified sampling. For each stratum,
one or more samples are collected. The main challenge here is
deciding the shape and size of each stratum. Also, a criterion is
necessary for deciding how many dots will be sampled in each
stratum (e.g. an amount proportional to the size of the stratum
or only one for each stratum) and how this will be selected
(e.g. always in the center of the stratum, or at random).

One issue to take into account is that of spatial auto-correlation.
In the case of spatially structured data, we expect stronger
similarities among closely spaced datapoints, and it is therefore
redundant to oversample in those areas. Spatial auto-correlation,
defined as how similar the values of the variable of interest are at
different locations as a function of their separating distance,
generally decreases as the distance among sample points increases,
and the functional form of this decrease makes one or other
sampling methods more efficient, that is, to have a lower variance.

It has been argued that linear distances between point locations
are not the best way of accounting for the possibility of linguistic
contact, but an inverse-square lawmight be more useful (Nikolaev,
2019). Although we think this is a relevant observation for
larger distances (such as the macro-area of Eurasia, studied in
the mentioned reference), linear distances are a good enough
measurement for our region of interest, the Caucasus.

It also should be mentioned that, in our paper, we used fake
latitude and longitude values for simulations and real latitude and
longitude values for Circassian data. Using those values as a simple
two-dimensional space is equivalent to projecting our observation
in the Mercator projection, known for causing a huge distortion in
sizes. This is not a big problem for the small area that we analyze,
but it could be so for other regions of interest. Therefore,
we propose applying our methods onto projected coordinate
systems with a projection suitable for the area under analysis.

1.2. The aim of this study

In the present paper, we propose and test a method for sampling
different locations, with the goal of obtaining the distribution of
linguistic features most representative of the whole area. For this
goal, we use different clustering algorithms, such as k-means and
hierarchical clustering of the locations. Using spatial clustering is

not particularly new, since it can be found in the list of methods
from Delmelle (2009). The novelty in our approach is that we test
this algorithm using four spatial configurations for the locations
involved, which we call circular equidistant, center–periphery,
dialect chain, and uniform. We test our methods against both
simulated data with a different number of categories, with all
possible distributions of our linguistic feature of interest, and on
various spatial configurations, and also against real data from
Circassian dialects (Northwest Caucasian). This assures us a
geographically representative sample, less affected by spatial auto-
correlation than a random selection. Our results show an efficiency
higher than random sampling, both for detecting variation and for
estimating its magnitude, which makes our method profitable to
fieldworkers when designing their research.

In section 2 we describe the data used, both in our simulation
and in our example of real data on Circassian languages. In section 3
we describe the clustering methods used. In section 4 we describe
and discuss the results obtained. In section 5 we summarize our
conclusions. We used the packages lingtypology (Moroz, 2017),
partitions (Hankin, 2006), stats (R Core Team, 2021), and tidyverse
(Wickham et al. 2019) in the programming language R. All code and
data are available on GitHub.1

2. Data

In this paper we focus on the scenario where a researcher is
interested in one or more linguistic features with discrete values.
This can represent the realization of a phonological feature,
a morphosyntactic feature, the attestation of a lexical item, or an
overall feature of the variety, such as the dialect spoken in a region.
However, ourmethod can be extended to numeric variables such as
number of cases or vowel length. We give one single value to
the feature of interest in each settlement. This is a simplification of
the real situation, where inter-speaker and intra-speaker variation
can be present in the same settlement (see Dorian, 2010; Moroz
and Verhees, 2019).

2.1. Generation of simulated data

We generated data that resembles different distributions found in
realistic linguistic settings. In all cases, we generated a number of
settlements Ns, ranging from 30 to 90 in decades, and a number
Nc of different categories for the feature of interest, ranging from
3 to 9. For each combination of Ns and Nc, each category can be
differently populated. For example, if we have Ns= 50 and Nc= 5,
an even distribution will group exactly 10 settlements in each
category (configuration 10–10–10–10–10), while an extremely
skewed distribution will have one overly populated category
with 46 settlements, and the remaining four categories with only
one settlement each (configuration 46–1–1–1–1). We call this
distribution the count configuration Q, and its associated entropy is
H(Q) (Shannon, 1948).

We distinguish four spatial configurations, that we call circular
equidistant, center–periphery, dialect chain, and uniform, described
below. In all configurations, the locations of settlements labeled
with each category are generated as a bimodal normal or log-
normal distribution around a center, as explained below.
The different configurations refer to how these centers are located
in space, as well as the parameters of the normal distribution. More
complex configurations that have been defined in the bibliography
(see e.g. Goossens, 1977:78), such as enclave, funnel, tubular,
or ring, are not considered a priori, although some enclave-like
configurations can emerge from the overlapping regions of our
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simulated data, which might be associated with the mixed zones
(Mischgebiet) in the mentioned reference.2

Circular equidistant. In this configuration, the centers of each
category correspond to the vertices of a regular polygon ofNc sides,
circumscribing a circumference of radius r, centered in the origin.
Therefore, all centers are at distance r from the origin, and each
category has two closest neighbors to its sides at a distance equal to
the polygon’s side, dt ¼ 2r � sin � π

Nc

�
. In the tangential direction,

settlements belonging to a given category follow a normal
distribution centered in the corresponding vertex of the polygon
and with a standard deviation equal to half of the distance between
closest neighbors σt = dt/2, allowing for some overlap. In the radial
direction, we allow settlements to approach the origin, but not to
expand too much outwards. For this reason, we choose a log-
normal distribution bound by 2r, and decaying towards the origin,
with standard deviation σr= r. Figure 1(a) shows an example of this
distribution for Ns = 117, Nc = 6, and Q = (42,21,19,13,11,11).

Center–Periphery. This configuration is built in a fashion
similar to the previous one, with one main difference: The most
populated settlement is located at the origin, and all others form an
(Nc − 1)-side regular polygon around it. All of these peripheral
settlements lie at the same distance r from the central one and have
two closest neighbors in addition to this one, at a distance

dr ¼ 2r � sin π
Nc�1

� �
. Again, in the tangential direction, settlements

belonging to a given category follow a normal distribution centered
in the corresponding vertex of the polygon, with a standard
deviation equal to half of the distance between closest neighbors

σt = dt/2; and in the radial direction they form a log-normal
distribution bound by 2r, decaying towards the origin, with
standard deviation σr = r. Figure 1(b) shows an example of this
distribution for Ns = 117, Nc = 6, and Q = (42,21,19,13,11,11).

Dialect chain. This configuration is similar to the circular
equidistant one, but along a straight line. Here, the Nc centers of
each category lie on a straight line, each separated by distance
r from its closest neighbors. Therefore, the distance between two
contiguous centers is d = r, while distance between the two most
extreme centers is dM ¼ ðNc � 1Þ � r. The settlements belonging to
a given category follow a normal distribution centered in the
corresponding point in the straight line, with standard deviation
σ= r in both the direction along the line and the perpendicular one,
resulting in circular distributions with some overlap between
neighbors. Figure 1(c) shows an example of this distribution for
Ns = 117, Nc = 6, and Q = (42,21,19,13,11,11).

Uniform. In this configuration, the centers of all Nc categories
coincide at the origin, and settlements around them form a uniform
squared distribution, with standard deviation r. Figure 1(d)
shows an example of this distribution for Ns = 117, Nc = 6, and
Q = (42,21,19,13,11,11).

2.2. Real data: Circassian languages

As a real example application of this procedure, we use data for
Circassian languages (Northwest Caucasian), from Moroz (2017).
This dataset contains different linguistic data for 158 Circassian
settlements in the Russian Caucasus. We consider two different

Figure 1. (a) Circular equidistant, (b) center–periphery, (c) dialect chain, and (d) uniform distributions for Ns= 117 settlements distributed in Nc= 6 categories, with a count
configuration Q = (42,21,19,13,11,11) and r= 26. In (a), the distributions’ centers form a regular hexagon. In (b), the most populated category lies in the origin, while the other
centers form a regular pentagon around it. In (c), they form a straight line. In (d), all centers coincide at the origin. The dots within each category are surrounded with their
normal ellipses (Fox andWeisberg, 2018). The centers around which the data are generated in (a) and (b) form regular polygons, while the polygons showed here link the centroids
of the generated data a posteriori and are therefore not regular. Similarly, the dialect chain in (c) does not form a horizontal segment, although the centers for data generation did.
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features for these data. First, we study the dialect spoken in each
settlement. There are eight dialects, each spoken in the following
number of settlements: Baksan (68), Bzhedukh (27), Kuban (17),
Temirgoy (15), Shapsug (13), Terek (10), Besleney (5), and
Malkin (3). These dialects show a distribution with a clear
geographical pattern, as can be seen in Map 1. The second
feature we study is the reflex of *qh (Moroz, 2021), which has

different values in different settlements: qh in Neshukay
(Bzhedukh) and Besleney (Besleney), q in Bolshoy Kichmay
(Shapsug) and Pshicho (Temirgoy), χ in Pseytuk (Shapsug) and
Khadzhiko (Shapsug), and qχ in Zhako (Kuban) and Khodz’
(Kuban). This feature has four categories, and its distribution
does not show an obvious geographical pattern, as can be seen in
Map 2.

Map 2. The distribution of Circassian reflex of *qh.

Map 1. Distribution of dialects in the Circassian settlements.
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3. Clustering methods

For each case study, we examined howmuch of the real variation in
the data we would be able to discover by using three different
sampling strategies. Remember that we had Ns settlements with a
given geographical configuration, and our feature of interest was
distributed acrossNc categories, according to a count configuration
Q. We wanted to characterize the amount nc of categories
discovered after sampling ns settlements with different criteria. The
discovery fraction, df ¼ nc

Nc
, was used as a score for comparing

sampling methods. All methods described below (except for
random sampling) were our clustering methods based on
geographical distance.

Random sampling. The most trivial form of sampling is
random: If we assume that there is no association between the
geographic location of a settlement and the value for the linguistic
feature of interest (or if we have no information about the
geography whatsoever), the most simple method is to sample at
random. We randomly drew ns out of the Ns settlements and
counted the number nc of categories discovered in the sampling.

k-means clustering. This method (Lloyd, 1982) uses a pre-
specified number of clusters. It starts with k randomly chosen
clusters and iterates searching for the mutually exclusive set of
clusters of spherical shape based on a similarity measure. In our
case, we used geographic distance as the parameter to build the
clusters of settlements, and we built k = ns clusters. After this, we
randomly chose one settlement inside each cluster, forming in this
way our sample of ns settlements. The different categories in this
sample were our result nc.

Hierarchical clustering. This method (Ward, 1963) ranks the
elements of a set according to their similarity (we used Euclidean
distance), and builds a dendrogram (tree-like plot). Then, it
clusters the different subgroups according to their grouping in the
dendrogram. The total number of clusters can be either selected
a priori or data driven. We used the former option here. We again
used geographic distances to cluster settlements, and set the number
of clusters to ns. As in the previous case, we randomly chose one
settlement as a representative of each cluster, forming our sample ofns
settlements. The different categories in this sample were our result nc.

4. Results and discussion

4.1. Simulated data

Figure 2 shows the results of applying the three different clustering
algorithms to our simulated data. The plots show the discovery
fraction df ¼ nc

Nc
as a function of the proportion of settlements

sampled ns
Ns

for different values of total number of categories and

spatial configuration. Each column of plots shows the results for a
different value of the total number of categories Nc from 3 to 9,
while each row of plots shows a different spatial configuration:
circular equidistant, center–periphery, dialect chain, and uniform.
Each group was approximated with a logistic regression line.

From the rows 1–3 in Figure 2 we can see that in the cases with
spatial structure (configurations circular equidistant, center–
periphery, and dialect chain) there was a clear improvement of
the clustering methods over random sampling, the hierarchical
clustering consistently performing slightly better than the k-means

Figure 2. Results for the discovery fraction as a function of the settlement sample fraction for different values of the parameters. We can see a clear improvement in the discovery
fraction when using clustering algorithms for the data with spatial structure (rows 1–3) and no improvement or depreciation in performance for the cases with no spatial structure
(last row).
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clustering. This improvement in the discovery rate was more
evident for the cases with the higher quantity of categories Nc, and
the effect was different for different spatial configurations: it was
the most prominent for the dialect chain configuration, followed
by equidistant, and finally center–periphery.

From the last row, we see that in the cases of data with no spatial
structure (uniform), the performance of all three sampling
methods was practically the same: there was no improvement
(and also no depreciation) in the performance when choosing a
spatial clustering algorithm over a random sampling.

We now want to study how the count configuration Q affected
our results. Shannon entropy (Shannon, 1948), defined as

HðQÞ ¼ �
Xn
i¼1

PðqiÞ � log2PðqiÞ (1)

gives us an idea of how evenly distributed counts in the different
categories are, for a count configuration of the formQ= (q1, : : : , qn),
where P(qi) is the probability of finding the i-th value of Q in each
settlement. If the values are evenly distributed across all categories, the
value of entropy will be higher, while it will be lower if the distribution
is skewed. Going back to a previous example of Ns= 50 settlements
and Nc= 5 categories, the most even count configuration, with 10
settlements in each category,Qeven= (10,10,10,10,10), has an entropy
H(Qeven)= 3.32, while the most uneven count configuration with all
categories populated, Quneven = (46,1,1,1,1), has an entropy
H(Quneven)= 0.56.3

In Figure 3, we plotted the discovery fraction as a function of
normalized Shannon entropy h = H/Hmax of the count

configuration Q, for different values of the spatial configuration,
clustering method, and total number of categories Nc. Plots were
aggregated in the settlement fraction sampled. In this figure, we can
see several behaviors. First, for each spatial configuration and
clustering method, the discovery fraction increased with entropy.
This is what we expected, since the more evenly the categories were
distributed in settlements, the easier it was to discover more
categories. We can also see how, when we increased the number of
categories Nc, the overall curve decreased and moved to the right.
This means, on the one hand, that it is harder to discover a large
fraction of categories if there are more of them, and that the higher
Nc, the larger configurations space is, and therefore the higher the
possible values of entropy.

4.2. Real data: Circassian languages

In Figures 4 and 5, we can see the results for the discovery rate as a
function of the settlement sample fraction, for the Circassian
dialect recognition, and reflex of Circassian *qh. Shadowed dots are
the jittered values for each individual observation. We can see how
hierarchical clustering had the highest performance, followed by
the k-means clustering, while the random sampling performed the
worst for both cases. This is consistent with the behavior observed
for the simulated data discussed above.

4.3. Overall results

As we can see from Figures 2–5, our algorithm worked better than
random sampling in all cases. It is worth mentioning the obvious
fact visible through our analysis that the number of categories
influenced the discovery rate. If a researcher sampled around

Figure 3. Results for the discovery fraction as a function of entropy. We can see a clear improvement in the discovery fractionwhen there is a higher value of entropy, although the
obtained results depend on the number of categories.
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90 percent of the data, they will discover nearly all of the present
variation. However, if the sample is smaller, than the value where
both approaches (clustering and random sampling) converge and
all variation is found depends on the number of categories Nc. For
example, from Figure 2 we can see that if our variable had three
categories, then both approaches converged near 50 percent, but if
our variable had nine categories, then the approaches would not
converge until almost all settlements were sampled. We can also
see this behavior for the case of the Circassian languages: The
stabilization of the results (100 percent discovery rate for all
methods) was reached at a lower sampling factor when the reflex of
*qh was studied (Figure 5, four categories) than when the dialect
was investigated (Figure 4, eight categories). Another fact easily
visible through our analysis is that it was easier to discover
variables with evenly distributed frequencies. From Figure 3, we
can see that the higher discovery rate corresponded with higher
values of entropy. We can also see that the increase in the number
of categories made it harder to discover all possible values; however
it was easier to discover nine evenly distributed categories than
three hardly skewed ones. The consequence of this could also be
turned around: if the researcher discovered a given number of
categories in a large amount of settlements, there is always a
possibility that the variable under investigation is skewed and that
there are really more rare values of this variable to discover. This
uncertainty cannot be avoided by any sampling method, but it can
be estimated by generating simulated data, as in this study.

5. Conclusion

This paper proposes a solution to the problem of sampling
settlements in the limited conditions where it is not possible to
collect fieldwork questionnaires from every single location.
We performed two studies: First, we simulated data with different
spatial and count configurations, as well as different number of
categories, and compared the results from our algorithm with the
random sampling. For all spatial configurations, our algorithm
discovers more variation than random sampling. Second, we tested
our algorithmwith two different linguistic features fromCircassian
languages. For both the results are the same: hierarchical clustering
performed the best, k-means slightly worse, and random sampling
the worst. In a case with no spatial structure (uniform
configuration), our algorithm performs exactly the same as random
sampling.We also showed that not all variables are equal: It is harder
to discover the variation of those with lower entropy, as expected.
Our recommendation to the field linguist is to follow this algorithm:
Estimate the number of settlements ns that they can visit, then
perform clustering of all settlements, and finally, randomly sample
one location from the ns clusters obtained from the clustering
process. During the work on this paper, we wrote an R code for
creating different spatial relationships between datapoints (circular
equidistant, center–periphery, dialect chain, and random) that could
be useful for other projects where spatial relations are important.
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Notes

1 See https://lingconlab.github.io/Detecting_linguistic_variation_with_geographic_
sampling/.
2 Strictly speaking, our mixture zones are regions where villages with two or
more values of the feature of interest coexist, but the value is unique for each
village, while the mixed zone in the citation refers to a region where a mixed
variety is spoken.
3 The extreme configuration Qextreme = (50,0,0,0,0) has H(Qextreme)= 0.
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