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Abstract
Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on
between-group matching or controlling for sources of biological variation such as subject’s sex and age.
However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs.
This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and
brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267
healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or
moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem
volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison,
age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27).
Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral
corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived
from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males.
CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus
thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts
(-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC
CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture
model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological
variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design
of clinical neuroimaging studies examining SC and brain structure.

Introduction
Knowledge about the relationship between body size (i.e., height and weight), spinal cord (SC) and brain
structure is essential for a mechanistic understanding of human physiology and pathophysiology and,
consequently, developing biomarkers critical for robust clinical trial designs. Besides sex and age, numerous
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other factors influence body size, including genetic makeup, race and ethnicity, socioeconomic and
environmental factors, as well as developmental determinants. There are also diseasesaffecting physical
makeup, spanning chronic conditions (i.e., anemia, asthma, celiac disease, inflammatory bowel disease,
kidney or heart insufficiency), hormonal diseases (i.e., growth or thyroid hormone disbalances) and/or rare
disorders such as achondroplasia and Down, Noonan or Turner syndromes.1,2 For example, patients
diagnosed with Friedreich ataxia tend to be underweight in young age and overweight in adulthood.3,4 Patients
with different types of mucopolysaccharidoses are known to present with a short stature.5–7 While neuroimaging
measurements are usually compared to a healthy population, neither body height nor weight have been
rigorously considered as putative confounding factors, normalization factors, and/or as variables necessary for
an inter-population matching.8–13 Such a study design deficit can lead to bias in clinical outcomes, which
applies even more explicitly to studies where the typical body size of the patients’ cohort differs from the control
group. To assess the significance and importance of body size correction, we have investigated the impact of
body size on structural neuroimaging measurements in the SC and brain of a healthy human population. If the
effect is significant, future clinical research studies and trials utilizing neuroimaging should include body size as
a potential confounding biological factor to avoid bias in clinical outcomes.

Evolutionary biology has identified links between species’ body weight, SC, and cerebral weights14, and
between spinal canal dimensions and adjacent cord.15,16 Cadaveric human measurements revealed links
between the cross-sectional area (CSA) of the cervical SC and cerebral weight, body height, and age.17

However, in vivo evidence of such a relationship between body size and central nervous system (CNS)
structure is limited to a few magnetic resonance imaging (MRI) studies. In vivo CSA of the upper cervical SC
(i.e., C2/3 segment) appears to be determined by both the cerebral volume and white matter (WM) content of
cerebrospinal tracts.18 Recent exploration of the UK Biobank imaging dataset observed weak in vivo links
between the CSA of the C2/3 SC segment and body height and weight, and moderate links between the CSA
and brain and thalamus volumes.19–21 Weak correlations between body height, CSA of the SC (CSA-SC) and
gray matter (GM) as well as brain volume scaling were also reported on a concurrent in vivo dataset.22

However, these effects disappeared when sex was controlled for.22 Additionally, the in vivo CSA of peripheral
nerves has also been shown to moderately correlate with body height, body weight, and body mass index
(BMI), but not age.23 Whether SC WM and GM contents are equally correlated with body size and distinct brain
morphology has not been satisfactorily determined. Our first hypothesis was therefore that “CSA of cervical
SC WM and GM interacts with body size and morphology of distinct brain structures”; we tested this premise
by utilizing a multi-center spine-generic MRI dataset. The dataset allows for the separate assessment of
cervical SC WM and GM morphology in a large cohort of healthy cosmopolitan volunteers with available
demographic records and images of cerebral morphology.24,25

Myelin content is an essential characteristic of the neural tissue microstructural integrity.26 In the CNS, the ratio
between axon diameter and diameter of the total nerve fiber (axon and myelin) is 0.6–0.7.27 As SC axons
generally have larger diameters than axons within the brain,28–31 SC myelin sheaths are often also thicker,
increasing the overall diameter of the myelinated axons. Thicker myelin sheaths around axons accelerate
nerve conduction speed independent of the axonal diameter.32–34 Assuming a fairly constant axon/fiber
diameter ratio,27 thicker myelin sheaths are therefore expected for species with larger body sizes.33,34

Considering intra-species variability in body size, the overall degree of SC myelination might be influenced by
the body size of a given specimen. If true, the influence of body size on myelin content may be detectable in
SC images sensitive to tissue microstructure, such as diffusion tensor imaging (DTI) or magnetization transfer
ratio (MTR) imaging. Both DTI and MTR image contrasts are available within the spine-generic dataset.24,25

Moreover, body weight and BMI are correlated with MTR of peripheral nerves and muscles.35 Our second
hypothesis was therefore that “SC microstructure, as measured using MTR and DTI, interacts with body size”.

Finally, the human brain volume and CSA-SC differ between sexes.21,22,36,37 It is well established that brain
volume shrinks and cortical GM thickness thins with aging,38–40 with both processes accelerating after 45 years
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of age.38,41 However, results obtained from pathological17,42–45 and neuroimaging42 studies investigating the
relationships between age and SC CSA have been less consistent. Recent high-resolution in vivo
neuroimaging indeed observed weaker and slower aging effects in SC CSA than those described for brain
morphology.21,22,37 The UK Biobank dataset already showed that physical measures, including body height and
weight, strongly impact quantitative brain structural measures in a population of 40-69 years olds while
adjusted for sex and age.46 Outside of the UK Biobank, links between body size and brain volume have been
reported with inconsistent results, spanning significant relationships with a stronger height influence,21,41,47 or
non-significant findings.48 Therefore, our third hypothesis was that: “Cerebral morphology interacts with body
height more profoundly than with body weight and age,” We tested our hypotheses by utilizing the
spine-generic dataset of predominantly non-elderly healthy adults and considering sex effects.

Results

Study cohort demography
Structural MRI data were acquired in a cohort of 267 neurologically healthy (self-reported) volunteers whose
demographic data are summarized in Table 1. There was no significant difference in age between females and
males, but body height, weight, and BMI differed (Table 1). All subject-specific demographic data are available
at: https://github.com/spine-generic/data-multi-subject/blob/r20231212/participants.tsv. Body height and weight
were significantly intercorrelated (Pearson correlation coefficient r=0.702).

All Female Male p-value

Number of subjects 267 125 (46.82%) 142 (53.18%)

Age [years] 30.1±6.6 (19.0-56.0) 29.4±6.4 (20.0-56.0) 30.6±6.7 (19.0-56.0) 0.1537

Height [cm] 172.1±10.0 (148.0-203.0) 164.9±6.5 (148.0-185.0) 178.5±8.0 (161.0-203.0) <0.0001

Weight [kg] 68.3±13.4 (41.0-120.0) 59.5±9.7 (41.0-86.0) 76.0±11.4 (55.0-120.0) <0.0001

BMI [kg/m2] 22.9±3.3 (16.6-35.5) 21.9±3.5 (16.6-35.5) 23.8±2.8 (18.6-35.1) <0.0001

Table 1: Demography of recruited cohort.
Cell values are as follows: mean ± standard deviation (minimum-maximum). P-value was derived from a two-sample t-test
comparing variable distributions between females and males. BMI is the body mass index.

Gaussianity of demographic and structural MRI data
Age demonstrated log-Gaussian distribution. Body height demonstrated neither Gaussian (p=0.0089), nor
log-Gaussian distribution (p=0.0259). Body weight, BMI, all CSA measurements, all SC DTI measurements
and all brain morphological measurements demonstrated Gaussian distributions. All SC MTR measurements
demonstrated neither Gaussian (p<0.0086) nor log-Gaussian (p<0.0009) distributions.

Body size interacts with the structure of spinal cord white matter
The following CSA measurements were averaged from cervical C3-4 segments (see Methods for details). CSA
of SC (CSA-SC) was moderately correlated with body height (r=0.355, Fig. 1, Table 2), and this correlation
strength was higher for the CSA-WM subregion (r=0.437, Fig. 1, Table 2). CSA-SC and CSA-WM
demonstrated minimal differences between scanner manufacturers (Fig. 1). Thus, the same correlation
patterns for height were preserved even when manufacturer-specific averages of CSA-SC or CSA-WM were
subtracted from corresponding CSA measurements prior to the correlation analysis in order to normalize data
across scanners (Table 2). The correlation between body height and CSA-SC/CSA-WM remained significant
even when the dataset was split into males and females (Table 2). Body weight was more weakly correlated
with CSA-SC (r=0.261) and CSA-WM (r=0.274). In addition, this correlation was not significant when the
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dataset was split into males and females (Supplementary Table 1). CSA-GM was not correlated with body
size (Fig. 1, Supplementary Table 1). The CSA-GM measured on Philips scanners demonstrated a lower
mean offset than for data obtained on Siemens and GE scanners (Fig. 1; p<0.0001). Neither CSA
measurement (i.e, SC, WM, GM) was correlated with age (Fig. 1, Supplementary Table 1). Overall, body
height is the demographic variable driving the impact on CSA-WM and explaining the majority of
demography-related variability in CSA measurements (Fig. 2b, Table 3).

DTI- and MTR-derived microstructural measurements were averaged from cervical C2-5 levels (see Methods
for details). GE-scanner-derived DTI and MTR measurements significantly differed from Siemens and Philips
scanners (Fig. 3, p<0.0001). Therefore, GE scanner microstructural measurements (13.87% of the dataset)
were not included in correlation analyses that did not use manufacturer-specific normalized microstructural
values (Table 2). Body weight was weakly correlated with mean diffusivity (MD) in the WM region (r=-0.200,
Fig. 3, Table 2, Fig. S1) and bilateral dorsal columns (DC, r=-0.207, Fig. S2). Body weight was not
significantly correlated to MD for females (Table 2). No investigated DTI measures (i.e., MD, fractional
anisotropy - FA or radial diffusivity) were correlated to body size when extracted from the GM region (Fig. S3)
or bilateral lateral corticospinal tracts (LCST; Fig. S4). CSA-WM and SC FA were weakly correlated in DC
(r=-0.247) and LCST (r=-0.224). Body weight was weakly correlated to MTR in WM (r=-0.225, Fig. 3) DC
(r=-0.231, Fig. S5) and LCST (r=-0.200, Fig. S5), and not correlated to MTR in GM (Fig. S5). The correlation
between body weight and MTR remained significant, even when the dataset was split into males and females
(Table 2). When the dataset was normalized for each manufacturer and values from GE scanners were
included in the analysis, the correlation values remained almost identical (Table 2). This finding signifies that
the observed effect remained identical but had slightly higher power due to the larger sample size (added 37
samples; +13.87%). The correlation analysis revealed no aging effects in DTI (-0.004≥r≥-0.099) or MTR
(-0.047≥r≥-0.094) measures (Fig. S1-5) in our sample. However, the exploratory principal component analysis
showed small effects in mutual covariance (Fig. 7d). Linear regression analysis showed that body weight
explained the majority of the demography-related variance in our young adult sample DTI and MTR
measurements (Table 3).

Body height and age interact with brain morphology
Body height was moderately correlated with several cerebral volumes (r=0.54±0.06; 0.434≤r≤0.622), i.e.,
volumes of the brain, brain GM, cortical GM, cortical WM, subcortical GM, thalamus, cerebellum, brainstem,
precentral GM and postcentral GM (Fig. 4, Fig. 5a). The vast majority of correlations with body height
remained significant even after the dataset split to males and females, except for the volumes of cortical WM,
subcortical GM, precentral GM and postcentral GM in females (Table 2). The body height interacted most
profoundly with the cortical GM volume (Fig. 2b).

Body weight demonstrated weaker correlations in all the cortical regions that moderately correlated with the
body height (r=0.37±0.07, Fig. 4, Fig. 5a, Supplementary Table 1). But, the only significant correlation, which
survived the dataset split to males and females, was with brainstem volume in males (Table 2).

Body height or body weight were not correlated with total cortical, precentral gyrus, and postcentral gyrus
thicknesses (Fig. 5a).

As expected, a weak manifestation of age-related cortical GM atrophy was observed in volume (r≈-0.213) and
thickness (r=-0.274) measures (Fig. 4, Fig. 5a). The aging GM atrophy effects remained significant after the
dataset split to males and females (Table 2).

Most importantly, the magnitude of linear dependence between brain morphology and body height was about
2- to 3-fold compared to the effects of age (Table 2, Fig. 4, Fig. 5a). Moreover, the young adult dataset
showed that body height explains more, pathology unrelated, variance in brain volumetry than age and sex
(Table 3). Contrary, cortical thickness variance was associated predominantly with age (Table 3).
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Cross-sectional area of spinal cord white matter interacts with brain morphology
CSA-SC (r=0.38±0.09; 0.240≤r≤0.575) and CSA-WM (r=0.48±0.07; 0.389≤r≤0.640) were moderately
correlated with the investigated brain volumes, i.e., volumes of the brain, brain GM, cortical GM, cortical WM,
subcortical GM, thalamus, cerebellum, brainstem, precentral GM and postcentral GM (Fig. 5b, Fig. 6, Table 2).
Compared to CSA-SC, correlation strengths were higher for CSA-WM (Fig. 5b, Fig. 6, Table 2). CSA-GM was
weakly correlated with the volume of the brain, cortical WM, subcortical GM, and brainstem, but the strength of
these correlations was half weaker than those observed for CSA-SC and CSA-WM (Fig. 6, Table 2). All
CSA-WM and most of the other observed correlations remained significant after the dataset split to females
and males (Table 2) or when SC data were normalized (zero mean) for each manufacturer prior to correlation
analysis (Table 2). CSA-WM was the primary marker defining the correlations with the brain volumes. There
was a descending gradient of the CSA-WM correlation from the brainstem to subcortical GM and then cortical
WM to the cortical GM (Fig. 2c). All these correlations were higher than the correlation with the volume of the
cerebellum (Fig. 2c). Yet, even the correlation between CSA-WM and cerebellum volume was significant (Fig.
2c, Fig. 6).

CSA-SC (r=0.211) and CSA-WM (r=0.252) were weakly correlated with the thickness of the precentral gyrus
(Fig. 5b). The correlations remained significant after the dataset split to females and males (Table 2).
However, the correlations disappeared when SC data were normalized before correlation analysis (Table 2).
CSA-GM was not correlated with any utilized cortical thickness measurement (Fig. 5b).

Brain morphology and spinal cord microstructure are not related
No correlations were detected between SC WM/GM microstructure and cerebral volumes (i.e., total brain, brain
GM, cortical GM, cortical WM, subcortical GM, thalamus, cerebellum, brainstem, precentral GM and
postcentral GM) or cortical thickness (Fig. S6-7), and between thickness measurements and DTI/MTR
measurements, even if the SC ROIs were limited to the bilateral LCST or DC (Fig. S8-10).

Scanner-related effects on SC structural measurements
CSA-SC and CSA-WM offsets differed minimally between manufacturers (Fig. 1, Fig. 5b, Fig. 6). CSA-GM
measurements on Philips scanners were significantly lower than CSA-GM measurements from Siemens and
GE scanners (Fig. 1, Fig. 5b, Fig. 6, p<0.0001). Additional discussion about this specific CSA-GM issue can
be found in Cohen-Adad et al. (2021)25. Data normalization before correlation analysis mainly decreased the
correlation strengths in all CSA measures (without normalization: r=0.348±0.127; with normalization
r=0.313±0.128; Table 2; paired t-test p<0.0001). This finding underlines the importance of adjusting for
scanner-related variability in CSA measurements to minimize risks of false positive results due to
scanner-related data trends.

All microstructural measurements obtained with GE scanners showed significant offsets compared to those
from Siemens and Philips scanners (Fig. 3, Fig. S1-10, p<0.0001). The differences had a direct impact on
correlation analyses. Therefore, we performed correlation analyses of original values without GE values and
correlation analyses of normalized values utilizing all scanners’ data. Correlation analyses were stable and
comparable in the magnitude of correlation coefficients for MTR (Table 2) and MD (Table 2). The normalized
correlation analysis provided higher statistical power due to the larger sample size. Additionally, if we utilized
GE data (Fig. 3) in the correlation analysis without normalization, the resulting correlation coefficients for
MD-SC-WM and MTR-SC-WM in Table 2 would be substantially lower.

Minimal impact of degenerative cervical spinal cord compression on correlation analysis
We excluded one participant with severe degenerative cervical SC compression, providing outliers in SC
structural measurements. However, the spine-generic database identifies an additional 61 subjects with mild
degenerative compression and 2 subjects with severe degenerative compression and radiological
myelopathy.49 Analysis power decreased, but minimal nuances were detected in correlation coefficients when
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tested separately on subjects without or with degenerative cervical SC compression (see Supplementary
Slides). Thus, we conclude that SC compression had a minimal impact on the current study outcomes.

Principal component analysis (PCA) reveals body-SC-brain structural links
We subtracted manufacturer-specific average values from all SC structural measurements prior to the
exploratory analysis via PCA. PCA did not include DTI and MTR measurements from bilateral LCST and DC,
as the WM region provided analogic observations. Cerebral volumes, CSA-WM, and body height formed the
first principal component (PC1), characterizing 43.65% of data variance (Fig. 7a). CSA-SC and body weight
were close, yet separated from the PC1 cluster (Fig. 7a). This finding supports the previously observed body
height and CSA-WM dominance in the observed effects (Fig. 1, Fig. 2, Fig. 4, Fig. 5, Fig. 6, Table 2). Cortical
thickness, MD-SC-WM, and age (negative effect) formed the second principal component (PC2),
characterizing 12.32% of data variance (Fig. 7a) and presenting predominantly negative aging effects in the
thickness measures. The PC1-PC3 projection showed that the PC3 characterizes about 8.91% of data
variance, predominantly explained by CSA-GM, MD-SC-WM, and FA-SC-GM (negative effect), i.e., a link
between SC GM morphology and SC microstructure (Fig. 7b). The PC2-PC3 projection verified that the
cortical thickness variability predominantly forms PC2. In contrast, the PC3 is predominantly formed by SC DTI
and CSA-GM (Fig. S11a). The PC4 explained 5.62% of unique SC DTI microstructural data variance, which is
not present in other investigated modalities and investigated demographic measures (Fig. 7c). PC5 showed
positive effects of body weight and age on MD-SC-WM, and negative effects of body weight and age on
MTR-SC-WM, FA-SC-GM, and CSA-GM. These effects explained about 4.77% of data variance (Fig. 3, Fig.
7d). Simultaneously, the PC projections suggest that the impact of body weight on MTR- and DTI-derived
microstructure metrics might be ≈5% (Fig. 3, Fig. 7). That quite follows the result of 7% explained variance in
regression analysis (Table 3). However, the positive effects of body weight on MD-SC-WM contradicts our
observation of weak negative correlation between body weight and SC MD (Fig. 3). PC3 and PC5 showed
clear evidence that CSA-GM morphology and SC microstructure are linked, yet unrelated to cerebral and SC
WM morphology (Fig. 7b,d, Fig. S11a). In summary, PCA analysis explained 75.27% of data variance,
meaning that nearly 25% is unexplained (Fig. S11b).
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Figure 1: Cross-sectional area of spinal cord white matter correlates with body height and weight.
Abbreviations: CSA - cross-sectional area; SC - spinal cord; WM - white matter; GM - gray matter; r - Pearson correlation
coefficient; ⍴ - Spearman correlation coefficient. All spinal cord measurements were averaged from cervical C3-4 levels.
Regression lines (i.e., the dashed black lines) were estimated from all available data points. Plots with statistically
significant correlation (pFWE<0.05) are highlighted with yellow background, and corresponding r and ⍴ values are
highlighted with black bold font.
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Figure 2: Interactions between body height and morphology of the central nervous system.
Panel a) Representative image of brain and spinal cord (SC) anatomy. The brain scan shows cortical gray matter (GM),
cerebral white matter (WM), subcortical GM structures, brainstem and cerebellum. The axial SC scan shows the WM and
GM anatomy at the C3/C4 level. Image orientation is described in panel a): A - anterior, P - posterior, S - superior, I -
Inferior, L - left and R - right. Panel b) Pearson correlation coefficient between body height and (i) cortical GM volume; (ii)
cerebral WM volume; (iii) subcortical GM structure volume; (iv) brainstem volume; (v) cerebellar volume; and (vi)
cross-sectional area (CSA) of cervical SC WM at C3/C4 level. The colormap for the correlation values is shown in the left
bottom corner of the figure. All correlations are significant (pFWE<0.05). Regarding the investigated list of structures, body
height demonstrated the strongest correlation with the cortical GM volume. Panel c) Pearson correlation coefficient
between the CSA of cervical WM at C3/C4 level and (i) cortical GM volume; (ii) cerebral WM volume; (iii) subcortical GM
structure volume; (iv) brainstem volume; and (v) cerebellar volume. The colormap for the correlation values is shown in
the left bottom corner of the figure. All correlations are significant (pFWE<0.05). The correlation map shows a descending
gradient from the brainstem through subcortical GM structures and cerebral WM to cortical GM. The gradient may be
driven by the increasing distance to the cervical SC level and decreasing relative volume of common tract pathways. The
cerebellum shows the lowest, yet significant, correlation level. This finding may be explained by the fact that the cerebrum
is more strongly and directly interconnected to the peripheral nervous system via SC than the cerebellum, with
spinocerebellar tracts as the primary direct connections.50,51

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2024. ; https://doi.org/10.1101/2024.04.29.591421doi: bioRxiv preprint 

https://paperpile.com/c/sysgwG/5FtV+NATH
https://doi.org/10.1101/2024.04.29.591421
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Pearson correlation coefficients
between body size, age, spinal cord
structure, and brain structure, and
post-hoc sex-effects in the correlation
analysis.
Abbreviations: CSA - cross-sectional area; SC
- spinal cord; WM - white matter; GM - gray
matter; Vol - volume. The correlation analysis
on non-normalized data identified a list of
variable pairs with a correlation coefficient of
pFWE<0.05. The final list here only selects the
variable pairs with the significant post-hoc
Pearson correlation coefficient (uncorrected
p<0.05) in at least one sex-specific
sub-dataset (i.e., female and/or male).
Insignificant correlation coefficients, that did
not meet the post-hoc condition uncorrected
p<0.05, are written with gray font. Positive
correlation coefficients (p<0.05) are visualized
as a yellow-orange-pink-red color shade of
the table background. Negative correlation
coefficients (p<0.05) are visualized as a light
blue-blue color shade of the table
background. CSA was measured as averages
between C3-C4 segments. DTI and MTR
were calculated as averages between C2-C5
segments. The column denoted “Original
values” reports correlation coefficients for raw
measurements with no normalization
procedure prior to the correlation analysis.
The column denoted “Manufacturer-specific
normalized SC measures” reports correlation
coefficients for SC structural measurements,
which were normalized to zero mean for each
scanner manufacturer before correlation
analysis. Empty cells in the right half of the
table represent combinations where no
updated correlation coefficients were
measured, because the utilized normalization
of SC structural measurements had no effect
on these correlation coefficients. Brain
structural measurements were not considered
necessary to normalize as we did not observe
strong scanner-related effects in brain
macrostructural measurements.

Grouping

Variable

Original values (no data

normalization)

Manufacturer-specific

normalized SC

measures

Correlated variable All Female Male All Female Male

HEIGHT

BrainGMVol 0.622 0.321 0.446

BrainVol 0.612 0.274 0.408

CorticalGMVol 0.583 0.252 0.448

CerebellumVol 0.546 0.411 0.218

BrainStemVol 0.531 0.310 0.258

CorticalWMVol 0.523 0.157 0.312

SubCortGMVol 0.522 0.107 0.287

PrecentralGMVol 0.495 0.092 0.418

CSA-WM 0.437 0.295 0.303 0.422 0.285 0.268

PostcentralGMVol 0.434 0.121 0.369

CSA-SC 0.355 0.323 0.230 0.344 0.319 0.205

WEIGHT
BrainStemVol 0.431 0.119 0.191

MD-SC-WM -0.200 -0.022 -0.191 -0.252 -0.108 -0.206

MTR-SC-WM -0.225 -0.374 -0.221 -0.221 -0.331 -0.217

AGE

CorticalGMVol -0.213 -0.357 -0.258

PrecentralGMVol -0.205 -0.326 -0.232

Cortical Thickness -0.274 -0.278 -0.277

CSA-WM

BrainStemVol 0.640 0.624 0.547 0.590 0.580 0.467

BrainVol 0.524 0.392 0.459 0.507 0.379 0.426

SubCortGMVol 0.511 0.257 0.524 0.488 0.248 0.474

CorticalWMVol 0.503 0.315 0.471 0.501 0.339 0.447

BrainGMVol 0.481 0.341 0.406 0.445 0.286 0.359

CorticalGMVol 0.449 0.283 0.390 0.412 0.227 0.346

CerebellumVol 0.433 0.501 0.179 0.441 0.508 0.186

ThalamusVol 0.431 0.244 0.398 0.451 0.279 0.408

PrecentralGMVol 0.420 0.235 0.382 0.370 0.178 0.317

PostcentralGMVol 0.389 0.243 0.356 0.345 0.181 0.311

PrecentralG Thickness 0.252 0.249 0.209 0.146 0.142 0.087

CSA-SC

BrainStemVol 0.575 0.622 0.492 0.519 0.573 0.409

BrainVol 0.419 0.337 0.368 0.393 0.311 0.327

SubCortGMVol 0.417 0.207 0.449 0.388 0.198 0.392

CorticalWMVol 0.432 0.291 0.422 0.411 0.280 0.384

BrainGMVol 0.357 0.265 0.287 0.324 0.225 0.242

CorticalGMVol 0.320 0.195 0.262 0.290 0.159 0.225

CerebellumVol 0.356 0.508 0.109 0.342 0.493 0.086

ThalamusVol 0.335 0.176 0.322 0.338 0.201 0.308

PrecentralGMVol 0.307 0.159 0.273 0.275 0.132 0.228

PostcentralGMVol 0.240 0.146 0.184 0.218 0.120 0.160

PrecentralG Thickness 0.211 0.180 0.201 0.144 0.125 0.117

CSA-GM

BrainStemVol 0.390 0.444 0.480 0.335 0.440 0.375

BrainVol 0.221 0.250 0.298 0.186 0.219 0.254

SubCortGMVol 0.217 0.093 0.392 0.197 0.119 0.343

CorticalWMVol 0.268 0.275 0.355 0.217 0.215 0.301
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Table 3: Coefficients of
determination (R2) of
regression models explaining
a variable y as a linear mixture
of age, body height and body
weight.
Gray background highlighted R2

coefficients are those whose
single demographic variable
(age, height or weight) explained
the most of the neuroimaging
data variance when accounting
for sex effects. Except for cortical
thickness, body size explains a
significantly higher portion of
variance in brain and spinal cord
structural measurements than
age. Bold highlighted R2

coefficients identifies models
which explained most of the
neuroimaging data variance by
given demographic variables.
Abbreviations: CSA -
cross-sectional area; SC - spinal
cord; WM - white matter; GM -
gray matter; Vol - volume.

Grouping

Variable y

y ~ y0 +

Age

y ~ y0 +

Sex +

Age

y ~ y0 +

Sex +

Height

y ~ y0 +

Sex +

Weight

y ~ y0 +

Sex + Age

+ Height

y ~ y0 +

Sex + Age

+ Weight

HEIGHT

BrainGMVol 3.52% 36.69% 42.68% 31.77% 46.35% 37.75%

BrainVol 0.62% 36.56% 43.72% 35.58% 44.50% 37.50%

CorticalGMVol 4.52% 32.40% 36.75% 26.26% 41.32% 33.21%

CerebellumVol 1.43% 31.45% 35.44% 28.94% 37.19% 31.79%

BrainStemVol 0.88% 27.92% 33.92% 29.57% 34.61% 29.67%

CorticalWMVol 0.11% 29.32% 34.22% 29.98% 34.26% 30.02%

SubCortGMVol 0.00% 33.75% 37.36% 34.43% 37.39% 34.72%

PrecentralGMVol 4.22% 26.17% 27.13% 20.41% 31.46% 26.47%

PostcentralGMVol 1.40% 14.92% 19.79% 12.82% 21.09% 15.08%

CSA-WM 0.07% 12.02% 18.39% 12.22% 18.43% 12.64%

CSA-SC 0.08% 6.05% 11.87% 7.83% 12.11% 7.84%

WEIGHT
MD-SC-WM 0.87% 5.14% 4.43% 6.92% 5.15% 7.20%

MTR-SC-WM 0.28% 0.29% 1.24% 7.10% 1.77% 7.16%

AGE Cortical Thickness 7.49% 7.67% 1.06% 0.21% 8.13% 7.67%
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Figure 3: Mean diffusivity and magnetization transfer ratio in spinal cord white matter correlates with body
weight.
Abbreviations: GM - gray matter; WM - white matter; SC - spinal cord; FA - fractional anisotropy; MD - mean diffusivity;
MTR - magnetization transfer ratio; r - Pearson correlation coefficient; ⍴ - Spearman correlation coefficient. All spinal cord
measurements were averaged from cervical C2-5 levels. Black dashed regression lines were estimated from the Siemens
and Philips scanners’ data points. Red dotted regression lines were estimated from the GE scanner’s data points. Plots
with statistically significant correlation (pFWE<0.05) are highlighted with yellow background, and corresponding r and ⍴

values are highlighted with black bold font.
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Figure 4: Brain morphology strongly correlates with body size but weakly with age.
Abbreviations: GM - gray matter; WM - white matter; Vol - volume; SubCort - subcortical; r - Pearson correlation
coefficient; ⍴ - Spearman correlation coefficient. Regression lines (i.e., the dashed black lines) were estimated from all
available data points. Plots with statistically significant correlation (pFWE<0.05) are highlighted with yellow background, and
corresponding r and ⍴ values are highlighted with black bold font.
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Figure 5: Cortical morphology correlates with body size, age, and cross-sectional area of the spinal cord white
matter.
Abbreviations: CSA - cross-sectional area; SC - spinal cord; WM - white matter; GM - gray matter; PrecentralG -
precentral gyrus; PostcentralG - postcentral gyrus; Vol - volume; r - Pearson correlation coefficient; ⍴ - Spearman
correlation coefficient. Regression lines (i.e., the dashed black lines) were estimated from all available data points. Plots
with statistically significant correlation (pFWE<0.05) are highlighted with yellow background, and corresponding r and ⍴

values are highlighted with black bold font. a) Graphs demonstrate correlations with body size and age. b) Graphs
demonstrate correlation with CSA measured in the SC region as averages from cervical C3-4 levels.
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Figure 6: Brain morphology correlates with spinal cord morphology.
Abbreviations: CSA - cross-sectional area; SC - spinal cord; WM - white matter; GM - gray matter; Vol - volume; SubCort -
subcortical; r - Pearson correlation coefficient; ⍴ - Spearman correlation coefficient. All SC measurements were averaged
from cervical C3-4 levels. Regression lines (i.e., the dashed black lines) were estimated from all available data points.
Plots with statistically significant correlation (pFWE<0.05) are highlighted with yellow background, and corresponding r and
⍴ values are highlighted with black bold font.
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Figure 7: Exploratory visualization using biplot projections of principal components.
a) biplot projection of 1st and 2nd principal components (PCs); b) biplot projection of 1st and 3rd PCs; c) biplot projection of
1st and 4th PCs; d) biplot projection of 1st and 5th PCs. Variable vectors are visualized in each biplot projection with a
color-coding characteristic for a corresponding variable group. Variable name abbreviations and variable color codings are
described as follows. Variable abbreviations: MD - mean diffusivity; RD - radial diffusivity; MTR - magnetization transfer
ratio; SC - spinal cord; WM - white matter; GM - gray matter; CSA - cross-sectional area; Vol - volume; PrecentralG -
precentral gyrus; PostcentralG - postcentral gyrus. Variable color coding: demography - green; cerebral volumes - light
blue; cortical thicknesses - yellow; SC morphometry - magenta; SC WM microstructure - red. How to read a biplot: The
overall domain of each component axis is <-1,1>. Each variable is characterized as a vector of magnitude in the range of
<0,1> in the biplot space. Angle 0° between the component axis and variable vector with magnitude 1 (or between two
variable vectors both with magnitude 1) is proportional to Pearson correlation coefficient 1. Under the same vector
magnitude circumstances, an angle of 180° equals Pearson correlation coefficient -1, and angles of 90° and 270° equal
Pearson correlation coefficient 0. The lower magnitude of variable vectors proportionally decreases the overall linear
dependence between vector angles close to 0° or 180°, respectively. Similarly, angle deviation from 0° or 180° also
decreases the level of linear dependence between pairs of vectors in the biplot.
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Discussion
The current study, using the spine-generic dataset, presents unique multi-center in vivo evidence about adult
human cervical SC and brain, and emphasizes the following findings:

(i) Body height correlates moderately with SC WM and brain morphology, improves explanation of
demography-related variance in such structural measurements from 26±10% (range 6-37%) to 33±11%
(range 12-46%) in young adults, and underlines the impact of such pathology unrelated variability in
structural neuroimaging data.

(ii) The expected aging effects21,22,38–41 explain minimal amounts of SC and brain structural data variance
(2±2%) in young adults except cortical thickness (8%).

(iii) Body height predominantly impacts the cortical GM volume (Fig. 2b) and may even define the overall brain
GM volume.

(iv) Body weight correlates weakly with SC WM MTR, which is influenced by myelin content.
(v) Body weight correlates weakly with SC WM microstructure assessed with DTI MD.
(vi) Body weight explains ≈5-7% of DTI and MTR data variance.
(vii) SC WM DTI and MTR explain a significant portion of examined dataset variance (≈14-19%) and are nearly

orthogonal to most macrostructural measurements, except for the CSA-GM.
(viii) Subcortical and cortical GM volumes are correlated with CSA-WM more profoundly than the cerebellar

volume with a descending correlation gradient from the brainstem toward cortical GM (Fig. 2c).
(ix) Cortical WM, subcortical GM, and brainstem volumes correlate with CSA-GM but much less profoundly

than CSA-WM.
(x) Cortical thickness of the precentral cortex correlates weakly with CSA-WM.
(xi) We highlight the importance of considering the scanner-related effects present in SC imaging data.24,25

(xii) We confirm significant relationships between body size, brain volumes/weight, and CSA-SC in line with
previously reported results.17,21,47

Practical impact of the current study in clinical neuroimaging study designs
MRI of SC structure is emerging in clinical research of neurodegenerative diseases and SC injuries.52–63

Microstructural SC MRI of neural tissue integrity aims to understand pathophysiological changes at the
subclinical or presymptomatic stage.9,64–66 Quantitative MRI has made significant advances over the past two
decades for brain imaging,67–86 but is still in its early development stage when it comes to SC imaging. Sex-
and age-matching are critical for any clinical neuroimaging study. Yet, we are proposing that mismatched
variability in body size may influence imaging outcomes more profoundly than mismatched variability in age.
Persistent marginal impact of body stature on brain structural and functional neuroimaging outcomes in the
early elderly population46,87 further underlines the importance of our proposal. Therefore, body size needs to be
considered in the rigor of future neuroimaging studies focusing on between-group differences in brain or SC
structure to secure and guarantee the reproducibility of results. It has not been a common practice in design of
the vast majority of current clinical studies focusing on brain or SC neuroimaging. An alternative solution in
future clinical study designs can be normalizing structural measurements for the body size or using body size
as a confounding factor. In brain volume measurements, e.g., SIENAX88 or other kinds of normalization for the
total intracranial volume may offer an effective normalization method that provides reproducible results
independent of the body size. In the SC morphology, SIENAX22 or the dimension of pontomedullary junction21

have been implemented to normalize the CSA measurement. Yet, if possible, we conclude the body size
matching provides a more optimal study design solution.

Body size, neuroimaging and CNS (patho-)physiology
Body height had the highest impact on brain GM and SC WM morphology. Body height, higher cortical volume
and improved cognitive ability appears to be phenotypically interlinked.89 The higher brain GM volumes in taller
people may also explain their higher resistance to Alzheimer’s disease and other dementias.90–92 Gene
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expression could play a role here, as genetic variants that affect height also influence brain development and
biological pathways that are involved in the development of Alzheimer’s disease.90

Although our data showed an insignificant interaction between body weight and CNS morphology after
controlling for sex, body weight is known to influence CNS morphology and microstructure. Varying body
weight showed WM and GM brain volume loss in patients with acute anorexia nervosa, and full WM volume
and almost complete GM volume recoveries after the body weight had been regained.93 In the opposite body
weight spectrum, obesity demonstrated lower intra-cortical myelination in regions involved in reward
processing, attention, salience detection, and higher intra-cortical myelination in regions associated with
somatosensory processing and inhibitory control.94 Increasing BMI changes cerebral WM microstructure
assessed with DTI,95 but direction of DTI parameter trends in relation to body weight varies between studies.96

Although precise pathophysiological processes are not well known today, it is certain that obesity causes
neuroinflammation, thus, alters brain microstructure and increases risks of neurodegenerative disorders such
as Alzheimer’s disease and other types dementias.97 Our DTI and MTR data acquired in the current healthy
population with low-to-moderate BMI may point to a borderline trend between homeostasis and mild
microstructural changes related to the higher body weight. The negative correlation between body weight and
MTR has also recently been reported in peripheral nerves and skeletal muscles.35 However, we cannot rule out
the possibility of a transmit field (i.e., B1+) inhomogeneity-mediated bias in MTR. Although B1+ map was not
measured for the cervical SC in our study, similar to what has been observed in the brain at 3T98, we expect
both B1+ inhomogeneity and deviation to correlate with body weight positively, hence body transmit coil
loading. Typically, an underflipping (i.e., reaching smaller than the desired flip angle) is more likely than an
overflipping for small structures like the cervical SC in the body. MTR’s sensitivity to B1+ potentially
exacerbates the effect of even a small degree of underflipping for the MT pulse at 3T.

Body height and spinal cord length are linearly dependent (r≈0.6).99,100 We show that even CSA-SC and
CSA-WM are linearly dependent with body height. Thus, the magnitude of the correlation with body height
would be even higher than observed for the CSA measurements if level-specific SC and SC WM volumes were
analyzed. Although CSA values are level dependent,24 the impact of the C3-4 level selection on general study
conclusions should remain minimal due to high intra-individual CSA correlation over segments.101,102 Different
associations of CSA-GM and CSA-WM with other investigated variables, may affirm the necessity of further
development of MRI protocols imaging SC GM in high contrast and detail.103

Recently, the correlation between CSA-SC at C2-3 level and body height, body weight, brain (WM/GM)
volumes and thalamus volume were observed in 804 UK Biobank brain imaging database participants.21 Our
current spine-generic database study complements the UK Biobank results and expands the knowledge that
these observations are almost exclusively SC WM-related. Moreover, the current study identified more cerebral
sub-regions involved than those investigated in the previous study. The lateral corticospinal tracts
predominantly serving motor function are the major portion of the CSA-WM.51 Thus, its significant correlation
with precentral gyrus thickness (primary motor cortex) seems logical from a neuroanatomical perspective. SC
microstructure was also investigated and our exploratory approach via PCA clearly visualizes the
body-SC-brain structural relationships.

The spine-generic database (r20231212) identifies 64 recruited subjects with the presence of degenerative
cervical SC compression, with 2 of these even demonstrating radiological signs of myelopathy.49 These
findings may represent a source of unexplained variance in our results, as compression and myelopathy are
pathologies affecting CSA, DTI, and MTR measures.64–66,104 However, we showed in the Supplementary
Slides that the impact of the compression on the correlation coefficient outcomes was minimal.

The observed negative correlation between age and cortical thickness and absence of correlation between
body size and cortical thickness are in line with previous literature.39,89,105–107 The GM volume reduction in
subcortical structures is less profound than in the cortical GM volume and thickness.40,108,109 Therefore, we may
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only detect low, insignificant trends in the age-related reductions of the subcortical structures due to an
undersampled elderly population in our dataset. SC CSA-GM is also expected to decline with age,37 but we
observed no such effects. Absent SC GM reduction might imply a false positive result due to the limited spatial
resolution of the imaging methods, and the undersampled elderly population. It may also mean that the
pathophysiological dynamics of SC GM reduction are slower than in the subcortical region. Yet, validating and
concluding any of such statements require a rigorous re-test utilizing a dataset with a larger sample elderly
population or longitudinal follow-up.

Study limitations
Despite the relatively large sample size, there are still several limitations. First, we recruited healthy,
predominantly young adults with average weight and low-to-moderate BMI. Therefore, the negative link
between age and SC morphology, as observable in cohorts with greater age variability,21,37,110 was absent in our
study. We found that body size impacts structural measurements more profoundly than age. However, this
finding warrants further investigation, as the moderate age effects may be explained by the relatively narrow
age range and younger cohort.41 However, concurrent study of 40-69-year-old adults also showed significant
impact of body size on brain neuroimaging data.46,87 Head size was identified as an effective confounding factor
minimizing the body size effects in brain structural measurements.46,87 The head size is not possible to
measure precisely from the spine-generic database, because the images covering the brain were defaced.
Thus, a significant portion of the image capturing head is missing in every scan. CSA-GM, SC DTI and SC
MTR measurements demonstrated scanner-related variability, which needs to be addressed in multi-center
data acquisition and analysis. Data of subjects with very low and high BMI may help to investigate the
dependence of MTR and DTI measures on body weight. RF inhomogeneities need to be better mapped in
future studies to avoid risks of biases in MTR outcomes. Comparison between SC and cerebral microstructure
is impossible with the spine-generic database because the database does not contain images of brain
microstructure. The current spine-generic database version does not allow assessing the impact of
socioeconomic and race/ethnicity status on obtained MRI metrics.111 Relationships between spinal canal area,99

cervical cerebrospinal fluid area,99 and body size have not been investigated. Axial diffusivity (AD, i.e., another
DTI metric) was not investigated. We expected that AD would provide similar results as observed for MD and
RD due to expected high FA-MD-RD-AD intra-correlation levels. Therefore, we decided to shrink the variable
space. Although the BMI correlated with several investigated neuroimaging variables,23,35 we reduced the
variables to body height and weight only as BMI combines the two, and we expected similar findings. The
cross-sectional study design limits testing of body size changes on the CNS over time.

Conclusion
(i) We confirmed that “Future clinical research studies and trials utilizing neuroimaging should include body
size as a potential confounding biological factor to avoid bias in clinical outcomes”. (ii) We hypothesized that
“CSA of cervical SC WM and GM interacts with body size and morphology of distinct brain structures”, but after
analysis we refine this to “CSA of cervical SC WM interacts with body height and morphology of distinct brain
structures with a descending gradient from subcortical structures to cortical gray matter”. (iii) We hypothesized
that “SC microstructure, as measured using MTR and DTI, interacts with body size”, but after analysis we
refine this to “SC WM microstructure, as measured as MD and MTR, interacts with body weight, and more
profoundly in dorsal columns than in lateral corticospinal tracts”. (iv) We confirmed our hypothesis that
“Cerebral morphology interacts with body height more profoundly than with body weight and age”.

Methods

Structural MRI data
Signed informed consent was obtained from all participants under the compliance of the corresponding local
ethics committee (more info in the Scientific Data paper25). The spine-generic protocol 3T MRI data were

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2024. ; https://doi.org/10.1101/2024.04.29.591421doi: bioRxiv preprint 

https://paperpile.com/c/sysgwG/s7cB
https://paperpile.com/c/sysgwG/xf7D+s7cB+Yeza
https://paperpile.com/c/sysgwG/AoN1
https://paperpile.com/c/sysgwG/LDuz+Y83Y
https://paperpile.com/c/sysgwG/LDuz+Y83Y
https://paperpile.com/c/sysgwG/fuav
https://paperpile.com/c/sysgwG/ZQ3R
https://paperpile.com/c/sysgwG/ZQ3R
https://paperpile.com/c/sysgwG/YOyF+v5qb
https://paperpile.com/c/sysgwG/g4uY
https://doi.org/10.1101/2024.04.29.591421
http://creativecommons.org/licenses/by-nc-nd/4.0/


acquired once for each participant. Siemens scanners were used in 180 (67.41%) acquisitions, Philips
scanners in 50 (18.72%) acquisitions and GE scanners in 37 (13.87%) acquisitions. 3D T1w scans were
utilized to estimate cerebral volumes and cortical thicknesses. 3D T2w scans were utilized to assess the
cross-sectional area (CSA) of the cervical spinal cord (SC). Axial T2*w scans were utilized to estimate the CSA
of white (WM) and gray (GM) matter of the cervical SC. Diffusion weighted imaging was utilized to estimate
diffusion tensor imaging (DTI) and the corresponding microstructural maps for the cervical SC. GRE-T1w,
GRE-MT1, and GRE-MT0 scans were used to derive the magnetization transfer ratio (MTR) maps in the
cervical SC. More detailed information about protocol settings and scanner subtypes can be found in the
spine-generic protocol original papers.24,25

Image analysis
The same image processing pipeline was employed here, utilizing the Spinal Cord Toolbox (SCT) version
6.1,112 as developed originally for the spine-generic protocol.24,25 CSA of the whole SC (CSA-SC) was
computed and averaged from cervical C3-4 vertebral levels of the 3D T2w scan. CSA of WM and GM
structures (CSA-WM, CSA-GM) were computed and averaged from cervical C3-4 levels of the axial T2*w
scan. C3-4 levels were selected for CSA measurements since the T2*w imaging protocol had set the center of
the field of view at the C3/4 disc and because C3-4 levels still contain the most sensory and motor fiber
bundles. C3-4 average represents a robust representative morphological measurement as the CSA
demonstrates high intra-individual correlation over segments,101,102 although the absolute CSA values
inter-individually vary.25 All CSA measurements were measured in mm2 units. FA, MD, RD, and MTR were
estimated from cervical C2-5 vertebral levels for WM, bilateral lateral corticospinal tracts, and bilateral dorsal
columns utilizing the PAM50 atlas co-registration and weighted average techniques.113 The C2-5 segment
range was selected for DTI and MTR averaging to guarantee the robustness of the tract-specific
measurements with minimal partial volume effects.113

Brain volume was segmented and parceled at partial sub-structures from 3D T1w scans with FreeSurfer ver.
7.2.114 Volumes of brain (BrainVol), brain GM (BrainGMVol), cortical GM (CorticalGMVol), cortical WM
(CorticalWMVol), subcortical GM (SubCortGMVol, including amygdala, caudate, hippocampus, nucleus
accumbens, pallidum, putamen, thalamus, ventral diencephalon, and substancia nigra), thalamus
(ThalamusVol), cerebellum (CerebellumVol), brainstem (BrainStemVol), precentral cortex GM
(PrecentralGMVol) and postcentral cortex GM (PostcentralGMVol) were measured from the FreeSurfer
segmentations in mm3 units. Cortical thickness (Cortical thickness), thickness of the precentral (PrecentralG
Thickness), and postcentral gyrus (PostcentralG Thickness) were averaged across the left and right
hemispheres as derived from the surface-based cortical parcellation. Precentral and postcentral cortices, motor
and somatosensory cerebral centers, were investigated because the majority of the cervical spinal cord WM
cross-section are the motor and somatosensory pathways.

Exclusion of spinal cord and brain structural measurements
Spinal cord images were analyzed for all 267 participants. Cross-sectional area of SC (CSA-SC) was not
estimated for 4 participants (listed in the category “csa_t2” in exclude.yml file, which contains the excluded
subject ID and the verbal explanation of the exclusion; 1.50% of the dataset), CSA of WM and GM (CSA-WM
and CSA-GM respectively) were not estimated for 4 different participants (category “csa_gm” in the
exclude.yml file; 1.50%), DTI measurements were not estimated for 4 participants (categories “dti_fa”, “dti_md”
and “dti_rd” in the exclude.yml file; 1.50%), and MTR measurements were not estimated for 5 participants
(category “mtr” in the exclude.yml file; 1.87%). The exclude.yml file is available at:
https://github.com/spine-generic/data-multi-subject/blob/r20231212/exclude.yml. The most common reasons
for SC measurement exclusions were: (i) motion artifacts; (ii) subject repositioning during data acquisition; (iii)
poor data quality; (iv) wrong field of view placement; or (v) not following required imaging parameters. The
analysis excluded all CSA, DTI and MTR SC measurements for 1 additional subject (sub-mniS05; 0.37% of the
dataset) due to severe degenerative cervical SC compression (maximal compression at C3/C4 level).
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We analyzed brain images from 239 participants (89.51% of the dataset). We excluded T1w scans of 28
participants (10.49%) from the analysis because the images demonstrated field of view cut-offs (18 scans;
6.74%), defacing errors (5 scans; 1.87%), poor image contrast in superior cerebral regions (4 scans; 1.50%),
and severe motion artifacts (1 scan; 0.37%). Excluded brain scans are listed in the exclude.yml file as the
category “brain_t1”.

Statistical analysis
Statistical analysis and figure visualization were implemented in the programming environment MATLAB
R2021b (Natick, USA). Each variable or log(variable) was normalized into the space of the normal distribution
and the Kruskall-Wallis test tested whether investigated variables meet conditions for Gaussian or
log-Gaussian distribution (p<0.05). Between-group differences were tested with two-sample or paired t-tests.
Correlation analysis utilized Pearson (r) and Spearman (⍴) correlation coefficients, considering correlation to
be significant if pFWE<0.05 (FWE - family wise error correction) after the Bonferroni multiple-comparison
correction. Correlation coefficients were estimated for raw and normalized dataset values, where the
manufacturer-specific average was subtracted from all SC quantitative measurements to minimize the effects
of the previously reported inter-manufacturer variability in the spine-generic dataset25. For SC DTI and MTR
correlation analysis, GE scanner raw values were excluded (i.e., 13.87% of the dataset) due to strong offsets
compared to Siemens and Philips scanner values. SC qMRI measurements, FreeSurfer-based brain
measurements, age, body height, and body weight were cross-correlated, and significant correlations (after the
Bonferroni correction) were identified. The dataset was split into males and females and the correlation
analysis was post-hoc repeated to address sex effects in the data demonstrating significant correlations. Due
to the reduced sample size at half, the uncorrected p<0.05 was considered significant in the post-hoc analysis
investigating the sex effects. The correlation analysis was also post-hoc repeated for SC measurements while
excluding all 64 subjects with degenerative cervical SC compression (as identified in the spine-generic
database; r20231212) to test for the compression effects on the study outcomes. The critical pFWE<0.05
remained here, although the dataset was reduced to 76% of its original size.

Manufacturer-specific average was subtracted from all SC structural measurements. Then, all multivariate data
were normalized to mean=0 and standard deviation STD=1 for each examined variable. Such normalized data
formed an input matrix for exploratory principal component analysis (PCA) optimized via singular value
decomposition. Variables were visualized in the space of orthogonal principal components via biplot
projections, and between-variable relationships were quantified and interpreted in the rotated principal space
explaining the majority of the data variance.

Several linear regression models (Eqs. 1-6) were estimated for the SC and brain structural measurements (y)
demonstrating significant correlation with age, body height and/or body weight respectively. Models’
coefficients of determination (R2) objectively assessed which demographic variable or set of demographic
variables explained most of the demography-related variance in the SC and brain structure. Model utilizing
simultaneous regression of body height and body weight was not utilized as body height and weight are
strongly linearly dependent variables. The variable y0 represents the model’s constant member, the 𝛽
parameters are model regression coefficients (Eqs. 1-6). Categorical variable Sex was modeled as a vector of
values 0.5 at positions of males and of values -0.5 at positions of females. Manufacturer-specific average was
subtracted from all SC structural measurements before the regression analysis.

y ∝ y0 + 𝛽Age·Age (1)

y ∝ y0 + 𝛽Sex·Sex + 𝛽Age·Age (2)

y ∝ y0 + 𝛽Sex·Sex + 𝛽Height·Height (3)

y ∝ y0 + 𝛽Sex·Sex + 𝛽Weight·Weight (4)
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y ∝ y0 + 𝛽Sex·Sex + 𝛽Age·Age + 𝛽Height·Height (5)

y ∝ y0 + 𝛽Sex·Sex + 𝛽Age·Age + 𝛽Weight·Weight (6)

Data availability
All raw data are publicly available at: https://github.com/spine-generic/data-multi-subject (utilized release ID:
r20231212)
MRI imaging protocols for all optimized manufacturers and scanner types are publicly available at:
https://github.com/spine-generic/protocols
Tables with SCT and Freesurfer measurements are available at:
https://github.com/umn-milab/spine-generic-body-size-results (utilized release ID: r20240423)

Computer code availability
Spinal Cord Toolbox is available at: https://github.com/spinalcordtoolbox/spinalcordtoolbox (utilized version:
6.1; git commit: git-master-c7a8072fd63a06a2775a74029c042833f0fce510)
FreeSurfer is available at: https://surfer.nmr.mgh.harvard.edu (utilized version: 7.2)
All computer code providing image and statistical analyses is available at:
https://github.com/spine-generic/spine-generic (utilized release ID: height-weight-analysis)
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