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Abstract: In the present investigation we studied the molecular mechanisms of the monodesmosidic
saponin digitonin on natural and artificial membranes. We measured the hemolytic activity of
digitonin on red blood cells (RBCs). Also different lipid membrane models (large unilamellar
vesicles, LUVs, and giant unilamellar vesicles, GUVs) in the presence and absence of cholesterol
were employed. The stability and permeability of the different vesicle systems were studied by
using calcein release assay, GUVs membrane permeability assay using confocal microscopy (CM)
and fluorescence correlation spectroscopy (FCS) and vesicle size measurement by dynamic light
scattering (DLS). The results support the essential role of cholesterol in explaining how digitonin
can disintegrate biological and artificial membranes. Digitonin induces membrane permeability or
causes membrane rupturing only in the presence of cholesterol in an all-or-none mechanism. This
effect depends on the concentrations of both digitonin and cholesterol. At low concentrations,
digitonin induces membrane permeability while keeping the membrane intact. When digitonin
is combined with other drugs, a synergistic potentiation can be observed because it facilitates
their uptake.
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1. Introduction

Saponins are natural glycosides, which are widely distributed in the plant kingdom and in
some marine animals like sea cucumbers (Holothuriidae) and sea stars (Asteroidea) [1,2]. Saponins
are mainly divided into monodesmosides with a single sugar chain and bidesmosides with
two sugar chains. Monodesmosides exhibit strong membrane activities which are due to their
amphiphilic molecular structure with a lipophilic aglycone and a hydrophilic sugar side chain. A
main characteristic of saponins is their foaming, soap-like behavior in aqueous solution, leading
to their name (Latin sapo = soap) [3]. The aglycone moiety of saponins is generally referred to as
the sapogenin, to which one or more sugar molecules are attached. Two classes of saponins are
distinguished based on their type of aglycone: steroid (or steroidal) saponins and triterpene (or
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triterpenoid) saponins. Steroidal saponins consist of a steroidal aglycone, a C27 spirostane skeleton,
generally comprised of a six-ring structure. Triterpenoid saponins consist of a triterpenoid aglycone,
with a C30 skeleton and a pentacyclic structure.

Saponins exhibit a number of biological and pharmacological activities, such as anti-inflammatory,
antifungal, antibacterial, cholesterol-lowering, anticancer, and adjuvant effects [4,5]. Moreover, due
to their amphiphilic structure, many saponins have strong surface activity and have been used
to increase cell membrane permeabilization and allow various (often polar) molecules to reach
cytoplasm or nuclei [6].

Digitonin, from the foxglove plant, Digitalis purpurea (Plantaginaceae) is a steroidal saponin
with a strong lytic activity on various biological membranes and cytotoxic activity against several
cancer cell lines [7,8]. The activity of digitonin apparently depends on the presence of cholesterol
in the membrane [9–11]. At particular low concentrations, digitonin can enhance the uptake of other
compounds and therefore, can increase the toxicity of certain substances such as anticancer drugs [12],
peptides [13], and natural secondary metabolites [14]. Previous studies have suggested that digitonin
causes vesiculation and pore formation in cell membranes, resulting in the leakage of ions, small
molecules, and proteins. We recently reported that digitonin penetrates into the inner layer of the
membrane, then binding to cholesterol, so that both move to outer membrane layer; this eventually
leads to membrane leakage [15]. However, the exact molecular mode of action of digitonin in causing
cell membrane permeabilization is still unknown.

The aim of this work was to study the molecular interactions of digitonin with natural
and artificial membranes present in red blood cells (RBCs) and in different lipid membrane
models (large unilamellar vesicles/liposomes, LUVs, and giant unilamellar vesicles, GUVs). LUVs
are vesicles composed of one or more lipid components (phospholipids, cholesterol). GUVs are
large-sized vesicles, which are readily examinable by confocal microscopy and are employed for
the same purpose of studying membrane permeability. The results clearly show that the membrane
activity of digitonin depends on the presence and concentration of cholesterol. Formation of
digitonin-cholesterol complexes is rapidly followed by membrane leakage or rupture as visualized
by GUVs. Permanent pores are formed which allow solutions from outside the GUVs to pass to
the inside. This work can explain why digitonin can be applied as a drug toxicity enhancer in a
combination therapy as it facilitates the uptake of polar drugs.

2. Results and Discussion

2.1. Digitonin Ruptures Red Blood Cells (RBCs)

Membrane lysis of natural cell membranes caused by digitonin was examined with RBCs.
Defebrinated sheep red blood cells were mixed with differing concentrations of digitonin and
the effect on membrane permeability was determined photometrically by measuring hemoglobin
leakage. Salt solution (0.9%) and water were used as negative and positive controls. Digitonin affected
sheep RBC membranes and ruptured them at an IC50 concentration of 0.0151 mM (Figure 1).

Red blood cells (RBC) are a suitable natural model to evaluate the effect of saponins on biological
membranes. Saponins disrupt RBCs and this hemolytic activity depends on the chemical structure of
the applied saponin (aglycones and sugar moieties). Many studies have shown that steroid saponins
have stronger hemolytic effects than triterpenoid saponins [16]. Both aglycone types are strongly
hemolytic if they carry only one sugar chain attached at C-3 (monodesmosides) rather than two sugar
chains (bidesmosides) [17]. Our results support this finding: the monodesmosidic digitonin shows
30-times higher hemolytic activity than bidesmosides [12].
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Figure 1. Dose-dependent hemolytic effect of digitonin on sheep RBCs. Digitonin concentrations were 
in the range from 0.001 to 0.1 mM. Hemolysis: IC50 0.0151 mM. Data are expressed as means ± SD of 
hemolytic activity for three independent experiments. Insert: digitonin, structural formula. 

2.2. Digitonin Causes Calcein Leakage 

The specific interactions of digitonin with phospholipids and cholesterol were studied on artificial 
lipid vesicles loaded with the fluorescent calcein. Calcein leakage experiments were performed to 
quantify the extent of membrane permeabilization caused by digitonin (Figure 2). Several large 
unilamellar vesicles (LUVs) were prepared all differing in the composition of the membrane lipids 
phosphatidylcholine (PC), sphingomyelin (SM), cardiolipin (CL) (present in mitochondrial membranes), 
and cholesterol (Chol) in four different ratios: 100% PC, PC/Chol (80/20), PC/SM/Chol (40/40/20), and 
PC/CL (80/20). LUVs were incubated with different concentrations of digitonin and the release of 
calcein into the extravesicular solution was determined by fluorescence spectroscopy. 

 
Figure 2. Calcein release from different LUVs induced by digitonin. Data are expressed as means ± 
SD of calcein release after 60 min for three independent experiments. PC: phosphatidylcholine; CL: 
cardiolipin; Chol: cholesterol; SM: sphingomyelin. 

Figure 1. Dose-dependent hemolytic effect of digitonin on sheep RBCs. Digitonin concentrations were
in the range from 0.001 to 0.1 mM. Hemolysis: IC50 0.0151 mM. Data are expressed as means ˘ SD of
hemolytic activity for three independent experiments. Insert: digitonin, structural formula.

2.2. Digitonin Causes Calcein Leakage

The specific interactions of digitonin with phospholipids and cholesterol were studied on
artificial lipid vesicles loaded with the fluorescent calcein. Calcein leakage experiments were
performed to quantify the extent of membrane permeabilization caused by digitonin (Figure 2).
Several large unilamellar vesicles (LUVs) were prepared all differing in the composition of the
membrane lipids phosphatidylcholine (PC), sphingomyelin (SM), cardiolipin (CL) (present in
mitochondrial membranes), and cholesterol (Chol) in four different ratios: 100% PC, PC/Chol
(80/20), PC/SM/Chol (40/40/20), and PC/CL (80/20). LUVs were incubated with different
concentrations of digitonin and the release of calcein into the extravesicular solution was determined
by fluorescence spectroscopy.
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Figure 2. Calcein release from different LUVs induced by digitonin. Data are expressed as means ˘ SD
of calcein release after 60 min for three independent experiments. PC: phosphatidylcholine; CL: cardiolipin;
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The results indicate that digitonin specifically interacts with cholesterol in membranes to induce
vesicle leakage and releasing entrapped calcein to the solution. The intensity of extravesicular calcein
fluorescence in the 100% PC and PC/CL (80/20) cases did not increase after incubation with digitonin
for 24 h (data not shown). Digitonin immediately interacts with cholesterol-containing membranes
inducing membrane leakage within less than 2 min, then remaining stable for more than one hour, as
indicated by the steady level of extravesicular calcein fluorescence (Figure 3).
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Figure 3. Kinetics of calcein release of PC/Chol (80:20) LUVs induced by digitonin. Intensity of 
fluorescence of calcein released from LUVs by 0.01 mM digitonin was measured continuously every 
120 s for 1 h. The inset shows the percentage of calcein release in the range time of 0–10 min. 

Cholesterol plays a crucial role for the activity of saponins on cell membranes. Saponins form 
complexes with cholesterol, leading to membrane leakage with a change in membrane permeability or 
pore formation allowing a free diffusion to and from the cytoplasm [11,18–24]. We used unilamellar 
vesicles as a membrane model to further elucidate the mechanism of this effect. We confirm that 
cholesterol is the target for monodesmosidic saponins in the membrane. Saponins appear not to 
interact with other lipid membrane components such as to phosphatidylcholine, sphingomyelin, or 
the mitochondrial cardiolipin. Both steroid and triterpenoid saponin induced a permeability change 
of LUV membranes containing cholesterol [9,18]. The sugar chain seems to play a crucial role in the 
hemolytic activity, the monodesmoside being more active in the membrane than bidesmosides [17]. 
The rate of membrane permeability induced by the saponins was relatively fast depending on saponin 
and cholesterol concentrations in the membrane. 

2.3. Calcein Release Depends on Membrane Cholesterol Concentration 

As shown before, cholesterol plays a crucial role for digitonin activity. We determined the influence 
of cholesterol concentration on membrane leakage (indicated by the intensity of calcein release) caused 
by digitonin (Figure 4). 

One of the main functions of cholesterol in lipid bilayers and biological membranes is in increasing 
the packaging and rigidity of the membrane, maintaining the membrane lipids in the liquid-ordered 
state, causing the membrane to be laterally more condensed with increased packing density of the 
phospholipids. This increases the mechanical strength and decreases the permeability of the 
membranes [25,26]. Saponins readily change the structure of membranes that contain a high amount 
of cholesterol, as, e.g., RBCs with 45 mol % cholesterol. Hemolysis and calcein release data suggest 
the ratio of saponin: cholesterol complexation as being 1:1 [27–29]. This may explain the observed 
differences of saponin action against different cancer cell lines whose cholesterol content may differ. 

Figure 3. Kinetics of calcein release of PC/Chol (80:20) LUVs induced by digitonin. Intensity of
fluorescence of calcein released from LUVs by 0.01 mM digitonin was measured continuously every
120 s for 1 h. The inset shows the percentage of calcein release in the range time of 0–10 min.

Cholesterol plays a crucial role for the activity of saponins on cell membranes. Saponins form
complexes with cholesterol, leading to membrane leakage with a change in membrane permeability
or pore formation allowing a free diffusion to and from the cytoplasm [11,18–24]. We used unilamellar
vesicles as a membrane model to further elucidate the mechanism of this effect. We confirm that
cholesterol is the target for monodesmosidic saponins in the membrane. Saponins appear not to
interact with other lipid membrane components such as to phosphatidylcholine, sphingomyelin, or
the mitochondrial cardiolipin. Both steroid and triterpenoid saponin induced a permeability change
of LUV membranes containing cholesterol [9,18]. The sugar chain seems to play a crucial role in the
hemolytic activity, the monodesmoside being more active in the membrane than bidesmosides [17].
The rate of membrane permeability induced by the saponins was relatively fast depending on saponin
and cholesterol concentrations in the membrane.

2.3. Calcein Release Depends on Membrane Cholesterol Concentration

As shown before, cholesterol plays a crucial role for digitonin activity. We determined the
influence of cholesterol concentration on membrane leakage (indicated by the intensity of calcein
release) caused by digitonin (Figure 4).

One of the main functions of cholesterol in lipid bilayers and biological membranes is in
increasing the packaging and rigidity of the membrane, maintaining the membrane lipids in the
liquid-ordered state, causing the membrane to be laterally more condensed with increased packing
density of the phospholipids. This increases the mechanical strength and decreases the permeability
of the membranes [25,26]. Saponins readily change the structure of membranes that contain a high
amount of cholesterol, as, e.g., RBCs with 45 mol % cholesterol. Hemolysis and calcein release data
suggest the ratio of saponin: cholesterol complexation as being 1:1 [27–29]. This may explain the
observed differences of saponin action against different cancer cell lines whose cholesterol content
may differ.
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Figure 4. Influence of cholesterol concentration in artificial membranes on the lytic activity of digitonin. 
PC vesicles with different concentrations of cholesterol were incubated with 0.1 mM digitonin for 1 h. 
Data are expressed as means ± SD of percentage of calcein release for three independent experiments.  

2.4. Digitonin Affects Vesicle Size Only in the Presence of Cholesterol 

We applied dynamic light scattering (DLS) to elucidate possible interactions and effects of  
digitonin on vesicle membranes (with and without cholesterol) in terms of shape changes of vesicles. 
1-Stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) vesicles without and with 20% cholesterol 
were prepared and incubated with different concentrations of digitonin for 30 min, then measured 
by DLS. Size distributions of SOPC-vesicles incubated with various concentrations of saponin are 
presented in Figure 5a and Table 1 (without cholesterol) and Figure 5b and Table 2 (with cholesterol). 

 
Figure 5. DLS profile of SOPC vesicle sizes with and without cholesterol after incubating with different 
concentrations of digitonin. (a) Control experiment: SOPC vesicles (black); SOPC + 50 µM digitonin 
(red); (b) SOPC20% cholesterol vesicles (SOPC20Chol) (black); SOPC20Chol + 10 µM digitonin (green); 
SOPC20Chol + 50 µM digitonin (red); SOPC20Chol + 100 µM digitonin (blue). 

Table 1. Asymmetric Gaussian fitting data of the vesicle size distribution plot for SOPC before and 
after digitonin incubation for 30 min. Corresponding curves are displayed in Figure. 5a. 

Sample 
Before Incubation 

Digitonin Concentration (µM)
After Incubation 

rmax (nm)  FWHM (nm) rmax (nm)  FWHM (nm)
SOPC 80 90 0 77 83 

SOPC + 50 32 78 50 46 74 
FWHM: full width at half maximum (FWHM). 

Figure 4. Influence of cholesterol concentration in artificial membranes on the lytic activity of
digitonin. PC vesicles with different concentrations of cholesterol were incubated with 0.1 mM
digitonin for 1 h. Data are expressed as means ˘ SD of percentage of calcein release for three
independent experiments.

2.4. Digitonin Affects Vesicle Size Only in the Presence of Cholesterol

We applied dynamic light scattering (DLS) to elucidate possible interactions and effects of
digitonin on vesicle membranes (with and without cholesterol) in terms of shape changes of vesicles.
1-Stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) vesicles without and with 20% cholesterol
were prepared and incubated with different concentrations of digitonin for 30 min, then measured
by DLS. Size distributions of SOPC-vesicles incubated with various concentrations of saponin are
presented in Figure 5a and Table 1 (without cholesterol) and Figure 5b and Table 2 (with cholesterol).
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Figure 5. DLS profile of SOPC vesicle sizes with and without cholesterol after incubating with
different concentrations of digitonin. (a) Control experiment: SOPC vesicles (black); SOPC + 50 µM
digitonin (red); (b) SOPC20% cholesterol vesicles (SOPC20Chol) (black); SOPC20Chol + 10 µM
digitonin (green); SOPC20Chol + 50 µM digitonin (red); SOPC20Chol + 100 µM digitonin (blue).

Table 1. Asymmetric Gaussian fitting data of the vesicle size distribution plot for SOPC before and
after digitonin incubation for 30 min. Corresponding curves are displayed in Figure 5a.

Sample Before Incubation Digitonin
Concentration (µM)

After Incubation
rmax (nm) FWHM (nm) rmax (nm) FWHM (nm)

SOPC 80 90 0 77 83
SOPC + 50 32 78 50 46 74

FWHM: full width at half maximum (FWHM).
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Table 2. Asymmetric Gaussian fitting data of the vesicle size distribution plot for SOPC-Cholesterol
(20 mol %) before and after digitonin incubation for 30 min. Corresponding curves are displayed in
Figure 5b.

Sample

Before Incubation Digitonin
Concentration

(µM)

After Incubation
Peak 1 Peak 1 Peak 2

rmax
(nm)

FWHM
(nm)

rmax
(nm)

FWHM
(nm)

rmax
(nm)

FWHM
(nm)

SOPC20Chol 77 93 0 63 65 ND ND
SOPC20Chol + 10 58 154 10 71 99 470 1566
SOPC20Chol + 50 58 34 50 17 23 39 3038
SOPC20Chol + 100 51 252 100 30 10 1116 588

FWHM: full width at half maximum (FWHM); ND: not detected.

Shape and size of SOPC vesicles without presence of cholesterol are similar for both
digitonin-treated and untreated vesicles, indicating that digitonin alone did not intercalate the vesicle
membranes (Table 1 and Figure 5a). In the presence of cholesterol, shape and size of vesicles changed
with increasing concentrations of digitonin, and vesicle size dramatically changed when incubating
with the respective amount of digitonin, 0, 10, 50, and 100 µM. The comparison of data before and
after incubation with digitonin implies that saponin has an influence on the size distribution when a
concentration of at least 10 µM is applied (see Figure 5b and Table 2).

The data can be interpreted that at concentration less than 50 µM digitonin creates additional
vesicles ranging from 200 to 1000 nm in size leaving many vesicles in the original size. However, from
concentration of digitonin 50 µM upwards the number of vesicle ranging around 80 nm decreases and
bigger vesicles are formed. With concentration 100 µM digitonin most vesicles have a size between
700 and 2000 nm and just a small peak at 29 nm is left. To account for the measurement errors,
the intensity vs. radius data collected from the vesicle solutions without incubation were compared.
When the same batch of vesicles is used the variations in the curve progression should be minimal.
However, the maxima of the size distribution vary from 60 to 81 nm for the vesicle containing 20%
cholesterol and 74 to 85 nm for SOPC vesicles. Measurements from different batches partly show
shifted distributions or slightly different curve progressions. It can be seen that, the distributions
show differences at a radius of 10 to 25 nm and between 2000 and 3000 nm. The later peak most likely
derives from contaminations.

Nevertheless, DLS data definitely show that there is interaction between cholesterol containing
vesicles and digitonin. Digitonin at a concentration 10 µM already induce membrane leakage
and vesicles disruption and the effect increased with increasing of digitonin concentration [9–11].
The digitonin-cholesterol complexes cause morphological changes of the membrane forming an
additional layer on the outside of the membrane causing membrane phase separation [15]. This leads
to alteration of membrane structure and aggregate formation in various shapes and forms [30,31].
It was not possible to identify modes of interaction between vesicles and saponins only with this
method, nor if permeabilization of membranes occurs at concentrations under 10 µM digitonin.

This provides an explanation for the synergistic activity of digitonin at low concentrations by
facilitating the uptake of other drugs resulting in increased toxicity. For example, administration of
5 µM digitonin has been shown to increase the toxicity of monoterpenes, terpenes, polyphenols, and
alkaloids [8,14] and the anticancer drug cisplatin [12] in various cancer cell lines. Administration of
20 µM digitonin increased the efficacy of cisplatin by 20% in clinically isolated lung perfusions [32].
However, administering precise concentrations of digitonin will be essential in approaching an
efficient combination therapy with cytotoxic drugs.

2.5. Digitonin Affects GUV Membrane Permeability and Integrity in the Presence of Cholesterol

Fluorescence microscopy was employed to further investigate the interaction and permeabilization
effect of digitonin on giant unilamellar vesicles (GUV) with a diameter of up to 100 µm. Dil stain
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was used to mark GUV membranes and Alexa Flour 488 fluorescence for coloring the extravesicular
solution of GUVs. Membrane permeabilization was visualized by monitoring the presence of the
dye inside of GUVs (black spheres). The kinetics and degree of membrane permeabilization can be
quantified for individual vesicles.

PC-GUVs were prepared either with or without cholesterol. The membrane permeabilization
effect of digitonin was monitored for 60 min. Figure 6a–d show the effects of digitonin on GUV
membranes, without and with cholesterol; (a) without cholesterol, shortly after adding the drug
and (b) same, after 1 h of incubation; here, digitonin apparently cannot permeabilize the GUV
membranes as these are still intact and there is no sign of influx through the membrane into the GUVs
(black interior); (c) However, in the presence of cholesterol, digitonin affects membranes immediately;
(d) after 10 min all GUVs were filled with green solution and most membranes were disrupted.
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Figure 6. GUV membrane permeabilization by digitonin. (a) PC-GUVs shortly after applying 20 µM 
digitonin; (b) PC-GUVs after incubating with 20 µM digitonin for 60 min; (c) PC/Chol (80:20) GUVs 
shortly after applying 20 µM digitonin, (d) PC/Chol (80:20) GUVs after incubating with 20 µM 
digitonin for 10 min. Solution bathing GUVs (green), interior of GUVs (black), GUV membranes (red). 

Membrane permeabilization and kinetics can be calculated by comparing the fluorescence 
intensity inside the individual GUVs with the background in the chosen incubation time. The degree 
of GUV filling represents the specific interaction between digitonin and the lipid membrane and also 
can be used to reveal the mechanism of membrane permeabilization. Different concentrations of 
digitonin were applied to determine their ability to induce membrane permeabilization with and 
without incorporated cholesterol. The results again show that digitonin can induce membrane rupture 
only in the presence of cholesterol in an all-or-none mechanism and that the concentration greatly 
affects the ability of digitonin to cause membrane disruption (Figure 7).  

Figure 6. GUV membrane permeabilization by digitonin. (a) PC-GUVs shortly after applying 20 µM
digitonin; (b) PC-GUVs after incubating with 20 µM digitonin for 60 min; (c) PC/Chol (80:20) GUVs
shortly after applying 20 µM digitonin; (d) PC/Chol (80:20) GUVs after incubating with 20 µM
digitonin for 10 min. Solution bathing GUVs (green), interior of GUVs (black), GUV membranes (red).

Membrane permeabilization and kinetics can be calculated by comparing the fluorescence
intensity inside the individual GUVs with the background in the chosen incubation time. The degree
of GUV filling represents the specific interaction between digitonin and the lipid membrane and
also can be used to reveal the mechanism of membrane permeabilization. Different concentrations
of digitonin were applied to determine their ability to induce membrane permeabilization with
and without incorporated cholesterol. The results again show that digitonin can induce membrane
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rupture only in the presence of cholesterol in an all-or-none mechanism and that the concentration
greatly affects the ability of digitonin to cause membrane disruption (Figure 7).Molecules 2015, 20, page–page 
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Figure 7. GUV filling upon incubating GUVs with different concentrations of digitonin. (a) PC-GUV 
with digitonin incubation 60 min; (b) PC/Chol (80:20)-GUV with digitonin incubation 10 min. 

2.6. Visualizing the Disrupting Effect of Digitonin on Individual PC/Chol (80:20) GUVs 

The permeabilization kinetics was quantified by monitoring the permeability of individual GUVs 
in real time. The images were captured every 20 s for 1 h. The filling rate of PC/Chol-GUVs incubated 
with digitonin was very fast and most of them were filled after 10 min of incubation. The interaction 
of digitonin and cholesterol not only caused permeabilization but also led to vesicle rupturing (Figure 8; 
Videos 1 and 2 in Supplementary Materials). 

 
Figure 8. Time dependence of response of single PC/Chol (80:20)-GUV to 20 µM digitonin. Left images 
show GUV without digitonin as a control during the incubation time. The other images show time 
lapse interaction of 20 µM digitonin with PC/Chol (80:20)-GUV. Scale bars 20 nm.  

Video S1. Time dependence of response of single PC-GUV to 20 µM digitonin. During the 
incubation time the GUV is not permeabilized by digitonin. 

Figure 7. GUV filling upon incubating GUVs with different concentrations of digitonin. (a) PC-GUV
with digitonin incubation 60 min; (b) PC/Chol (80:20)-GUV with digitonin incubation 10 min.

2.6. Visualizing the Disrupting Effect of Digitonin on Individual PC/Chol (80:20) GUVs

The permeabilization kinetics was quantified by monitoring the permeability of individual
GUVs in real time. The images were captured every 20 s for 1 h. The filling rate of PC/Chol-GUVs
incubated with digitonin was very fast and most of them were filled after 10 min of incubation.
The interaction of digitonin and cholesterol not only caused permeabilization but also led to vesicle
rupturing (Figure 8; Videos 1 and 2 in Supplementary Materials).
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Video S1. Time dependence of response of single PC-GUV to 20 µM digitonin. During the
incubation time the GUV is not permeabilized by digitonin.

Video S2. Time dependence of response of single PC/Chol (80:20)-GUV to 20 µM digitonin.
Digitonin leads to an increase of permeabilization (interior turns green, indicating extravesicular
solution entering the GUV), and the vesicle eventually collapses resulting from membrane
structural disintegration.

Giant unilamellar vesicles (GUV) are suitable for microscopic real-time monitoring of
digitonin-cholesterol interactions [33–36]. We observed the response of single GUVs when exposed
to various concentrations of digitonin. The results support the data obtained from hemolytic and
calcein leakage experiments. Cholesterol is clearly shown as the target for digitonin and the effect of
inducing membrane permeability in GUVs depends on the concentration of digitonin.

Digitonin acted by an all-or-none mechanism: in the absence of cholesterol no observable
morphological changes of vesicles were seen even at a high concentration of ě20 µM digitonin and
even after more than 60 min. In contrast, inclusion of cholesterol in membranes leads to complex
formation with digitonin leading to permanent pores and subsequent complete filling of vesicles.
Strong permeability was evidenced at concentrations above 10 µM digitonin, when all vesicles had
filled with green solution. The pore size as induced by the digitonin-cholesterol complex appears to
be bigger than 2 nm based on the free diffusion of Alexa 488 dye having a diameter of 1.4 nm [37–39].
This explains the selectivity of substance passage through the cholesterol membrane by the action
of digitonin.

Digitonin leads to increased vesicle size, and at higher concentrations to membrane rupture.
GUV rupturing was monitored in real time. Interestingly, vesicles start to rupture after filling is
complete, the vesicles then deflate as the solution seeps out from the vesicles. The pores formed by
the digitonin-cholesterol complex seem to be retained for a longer period of time but with diameters of
much more than 2 nm, leading to structural membrane instability. The membranes start to reorganize
to become stable again forming small compact vesicles at the end. Increased levels of cholesterol in
the membranes of above 20% will cause the vesicles to suddenly burst [40]. This result may explain
the limitations of using digitonin as a toxicity enhancer: membranes are totally destroyed at higher
concentrations of digitonin and cholesterol.

3. Experimental Section

3.1. Materials

The following chemicals were employed: acetone (Zentralbereich Neuenheimer Feld,
Heidelberg, Germany), Alexa Flour 488 (LifeTechnology/Thermo Fisher, Darmstadt, Germany),
ammonium hydroxide (Sigma Aldrich, Steinheim, Germany), bovine serum albumin (BSA) (Sigma
Aldrich), cardiolipin (heart, bovine) (CL) (Avanti Polar Lipids, Inc., Alabaster, AL, USA), chloroform
(Sigma Aldrich), cholesterol (Avanti Polar Lipids, Inc.), desalting column PD-10 (GE Healthcare,
Garching, Germany), digitonin (Sigma Aldrich), Dil stain (dioctadecyltetramethyl-indocarbocyanine
perchlorate) (LifeTechnology/Thermo Fisher), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)
(Avanti Polar Lipids, Inc.), Ethanol (Zentralbereich Neuenheimer Feld), methanol (Zentralbereich
Neuenheimer Feld), Milli-Q H2O (Thermo Electron LED GmbH, Niederelbert, Germany),
L-α-phosphatidylcholine (egg, chicken) (PC) (Avanti Polar Lipids, Inc.), Phospholipids B kit
(Wako Chemicals, Neuss, Germany), Sphingomyelin (egg, chicken) (Avanti Polar Lipids, Inc.),
1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC) (Avanti Polar Lipids, Inc.), Texas Red-DHPE
(Avanti Polar Lipids, Inc.), Triton X-100 (Sigma Aldrich).

3.2. Hemolytic Activity

Defribrinated sheep blood was centrifuged at 3000 rpm for 5 min and red blood cells were
then resuspended in isotonic NaCl solution to obtain a 1% erythrocyte solution. Serial dilutions of
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digitonin were prepared in an isotonic NaCl solution. 500 µL of sample was mixed with 500 µL of
erythrocytes in Eppendorf tubes and then incubated for 1 h at 37 ˝C. After incubation the tubes were
centrifuged at 1000 rpm for 5 min and then the supernatant was transferred into 96-well plate. The
absorbance of hemoglobin in the supernatant was measured at 544 nm with a Biochrom UVM-340
microplate reader (Biochrom, Cambridge, UK). As a positive control 5% Triton X-100 was employed
and an isotonic NaCl solution as a negative control. Measurements were replicated three times for
each digitonin concentration. Hemolytic activity was calculated with the following formula [8].

% hemolysis “
absorbance of sample – absorbance of blank

absorbance of positive control
ˆ 100 (1)

3.3. Preparation of Lipid Vesicles and Entrapment of Calcein

Large unilamellar vesicles (LUVs) were prepared by hydration of a thin lipid film, according
to the Bangham method. The desired membrane lipids, in appropriate amounts, were dissolved
in chloroform, mixed properly in a round-bottom flask, and then dried under a stream of N2 gas.
The solvent was completely removed by keeping the sample in the vacuum desiccator connected
to a rotary vacuum pump for more than 12 h. To prepare LUVs containing calcein, lipids were
resuspended to a concentration of 4 mg/mL in 1 mL solution containing 80 mM calcein in water
(pH 7.4, adjusted with NaOH) continuing with vortexing for 30 s several times at room temperature.
Next, the lipid-calcein suspension was subjected to six cycles of freezing and thawing in liquid N2.
Afterwards the solution was extruded 31 times through double-stacked polycarbonate membrane
(pore size, 100 nm) using a two-syringe extruder in a LiposoFast liposome extruder (Avestin, Ottawa,
ON, Canada) until the solution became transparent. The untrapped calcein was removed from LUVs
solution through a PD-10 desalting column (GE Healthcare Life Sciences, Piscataway, NJ, USA)
equilibrated with outside buffer. The lipid concentration was estimated with the Phospholipids B
kit (Wako Chemicals, Richmond, VA, USA). Fluorescence intensities of calcein entrapment in LUVs
were measured at room temperature at excitation wavelength 490 nm and emission wavelength
520 nm [41].

3.4. Permeabilization of LUVs (Calcein Release Assay)

Permeability activity of digitonin at the LUVs was determined by measuring the intensity of
calcein fluorescence released into solution from LUVs after introduction of digitonin. The black
96-well plate was blocked with 10% bovine serum albumin (BSA) for 1 h at room temperature to
avoid nonspecific interaction between plate material with digitonin and vesicles. The BSA solution
was removed from the plate, continuing with washing several times with sterile water, then
dried. Following this, 100 µL of LUVs with entrapped calcein was added to each well. Different
concentrations of digitonin were applied immediately before measurements with a Tecan Infinite
M200 plate reader (Tecan, Männendorf, Switzerland) at fluorescence emission wavelength of 520 nm
and excitation at 495 nm. The increased fluorescence intensity of calcein was monitored with time
until a stationary state was reached. As a positive control 5% Triton X-100 was employed and buffer
as a negative control. The percentage of calcein release from vesicles induced by digitonin was
calculated from:

%R “ 100
Ff –Fi

Fm – Fj
(2)

where F f is the calcein fluorescence intensity at a specific time after incubation with digitonin, Fi
the initial calcein intensity before adding digitonin, and Fm the maximum intensity of calcein upon
adding 5% Triton X-100 [41].
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3.5. Preparation of Giant Unilamellar Vesicles (GUVs)

Giant unilamellar vesicles (GUVs) were prepared by the electroformation method. The desired
lipid composition with and without cholesterol was mixed with Dil stain to visualize GUV membrane
rims under the fluorescence microscope. The lipid mixture at 1 mg/mL in chloroform was spread
onto two platinum wire electrodes at 5 µL per each wire and the solvent was evaporated for one
minute. After the solvent had completely evaporated, the platinum wires were immersed in a
chamber containing 300 mM sucrose solution and then the unit was connected to a power generator.
The electroformation proceeded at 2.3 V and 10 Hz for 2 h, then followed by 30 min at 2 Hz at room
temperature to release the GUVs from the electrode wires. The 40 µL of GUVs electroformed in
300 mM sucrose were transferred to 400 µL PBS onto an eight-chamber slide (Lab-Tek™ II Chamber
Slide™ System, Nunc™, Waltham, MA, USA) that was previously blocked with 2 mg/mL bovine
serum albumin [42].

3.6. Membrane Permeability Assays

For GUVs permeabilization measurements, Alexa Flour 488 was added and mixed properly
with PBS containing digitonin solution before GUVs were added into it. The Alexa Flour 488
fluorescence can differentiate between solution from the outside and inside of GUVs. The degree of
permeabilization (filling kinetics) was determined by collecting pictures of several GUVs in different
sample conditions every 20 s for 1 h. GUV images from several regions were taken after 2 h incubation
with or without digitonin to reach the final extent of vesicle permeabilization. Permeabilized and
nonpermeabilized GUVs were counted and analyzed with homemade GUV detector software and
ImageJ [42–44].

3.7. Confocal Microscopy (CM) and Fluorescence Correlation Spectroscopy (FCS)

Membrane permeabilization by digitonin was monitored with LSM710 microscope with a
C-Apochromat 40ˆ/1.2W Corr M27 water immersion objective (Zeiss, Oberkochen, Germany) in
multitrack modus. The green channel consisted of excitation light from an Ar-ion 488 nm and a
505–530 nm band-pass filter. The red channel consisted of excitation light from a He-Ne 561 nm with
633 nm excitation laser and a 650 nm long-pass filter. Fluorescence cross-correlation spectroscopy
(FCCS) measurements were performed at 22 ˝C using a Confocor 3 module. Photon arrival times were
recorded with a hardware correlator Flex 02-01D/C. We repeatedly scanned the detection volume
with two perpendicular lines through the equator of a GUV (the distance between the two lines, d,
was measured by photobleaching on a film of dried fluorophores). The data was analyzed using
homemade software [42]. We binned the photon stream in 2 µs and arranged it as a matrix such that
every row corresponded to one line scan. We corrected for membrane movements by calculating the
maximum of a running average over several hundred line scans and shifting it to the same column.
We fitted average overall rows with a Gaussian and we added only the elements of each row between
´2.5 s and +2.5 s to construct the intensity trace. We computed the autocorrelation and spectral and
spatial cross-correlation curves from the intensity traces and excluded irregular curves resulting from
instability and distortion. The auto- and cross-correlation functions were then fitted with a nonlinear
least-squares global fitting algorithm, as described by García-Sáez et al. [42] and Bleicken et al. [37].

3.8. GUV Image Analysis

Permeability of GUVs is defined by influx of colored solution through the GUV membranes.
The percentage of GUV filling was calculated according to the equation below. The threshold for
nonpermeabilized GUVs was set to <15%. Several hundred GUVs were analyzed per experiment.

«

`

Fin
t – F0

˘

`

Fout
t – F0

˘

ff

ˆ 100 (3)
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in which Fin
t is the average fluorescence intensities inside a GUV, Fout

t the average fluorescence
intensities outside a GUV, and F0 the background fluorescence at time t.

To quantify digitonin binding to GUV membranes, the fluorescence intensity at the vesicle rim
(Frim) was calculated with ImageJ using the plug-in radial profile plot. Intensity was plotted as
Frim/Fback, where Fback is the background intensity outside the GUVs.

In the kinetics experiments, images were recorded every 20 s and changes in the fluorescence
intensity inside GUVs were analyzed over time as

FN
t “

`

Fin
t – F0

˘

`

Fout
t – F0

˘ (4)

FN
t is the normalized fluorescence intensity at time t.

To calculate the initial A0 and relaxed Arelax permeabilized area of individual GUVs, as well as
the relaxation time τrelax, we used a multiexponential fitting described by:

F ptqNin “ 1 –
–t

eτfluxptq
(5)

where the influx rate, τ f lux, decreases with time (the initial pore size relaxes to a smaller structure)
according to

τfluxptq “
V

Aptq ˆ D
m

(6)

where V is the vesicle volume, D the dye diffusion coefficient, m the membrane thickness, and A the
total permeabilized area, which varies with time according to

Aptq “ Arelax ` pA0 – Arelaxq ˆ
–t

eτrelax (7)

Membrane thickness was assumed to be 4.5 nm. The diffusion coefficient of cyt c-al488 was
196 µm2/s (196 ˘ 27 µm2/s) as calculated by fluorescence correlation spectroscopy (FCS) [37].

3.9. Size Measurement by Dynamic Light Scattering (DLS)

In order to get an overall idea about the effects of digitonin on the phospholipid bilayer
membrane, the size change of small unilamellar vesicles was measured using a dynamic light
scattering (DLS) technique. Different concentrations of digitonin were added to the suspension of
vesicles with or without cholesterol incorporation and the size distribution was measured at room
temperature before and after an incubation of 30 min. The 900 µL of vesicle solution (0.5 mg/mL)
was inserted in a disposable cuvette (Roth, Karlsruhe) and measured with 11 scans of 10 s in a DLS
Zetasizer Nano ZS (Malvern Instruments, Malvern, UK) at 21 ˝C. Afterwards 100 µL of digitonin
was added and after incubation for 30 min at room temperature, the solution was measured once
more. For the control sample instead of digitonin, 100 µL of filtered Milli-Q water was added to
the vesicle solution and further processed as described above. The data was analyzed using the
asymmetric Gaussian function (ExpModGauss) multipeak fitting 2 package for IGOR PRO software
(Wavemetrics, OR, USA).

4. Conclusions

In the present study we attempt to understand the molecular mechanism of digitonin on
membranes in regard to its ability to change membrane permeability. The results support the essential
role of cholesterol in explaining the activity of digitonin on biological and artificial membranes [9,13].
Digitonin induces membrane permeability or causes membrane rupturing only in the presence of
cholesterol in an all-or-none mechanism. This effect depends on the concentrations of both digitonin
and cholesterol. At low concentrations, digitonin induces membrane permeability while keeping
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the membrane intact. Digitonin thus can act synergistically in combination with other drugs to
enhance their toxicity because their uptake is facilitated. Administering precise concentrations of
digitonin will be essential in approaching an appropriate combination therapy. This study extends
and complements the numerous related studies on the activity and mode of action of digitonin on
membranes [9–15].

Supplementary Materials: Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/
20/11/19682/s1.
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