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We consider non-adiabatic coupling in the "trilobite"-like long-range Rydberg molecules created
by perturbing degenerate high-ℓ Rydberg states with a ground-state atom. Due to the flexibility
granted by the high Rydberg level density, the avoided crossings between relevant potential energy
curves can become extremely narrow, leading to highly singular non-adiabatic coupling. We find that
the gap between the trilobite potential curve and neighboring "butterfly" or "dragonfly" potential
curves can even vanish, as in a conical intersection, if the gap closes at an internuclear distance
which matches a node of the s-wave radial wave function. This is an unanticipated outcome of
Kato’s theorem.

Introduction - Non-adiabatic physics in the context
of ultracold Rydberg atoms has garnered new interest
in recent years. In long-range Rydberg molecules, the
coupling between potential wells capable of supporting
vibrational levels and dissociative potential curves has
been investigated as a possible decay mechanism [1–3].
Theoretical and experimental work has shown that non-
adiabatic coupling can be strong enough to induce non-
perturbative shifts in vibrational binding energies [4–
6]. In cold or ultracold Rydberg collisions, the avail-
able chemical reaction pathways for molecular formation,
state-changing collisions, or ionization are often deter-
mined by the strength of non-adiabatic coupling param-
eters [7–10]. Interacting Rydberg ions [11, 12] and Ry-
dberg aggregates [13–16] have been proposed as systems
with which to probe and control dynamics through con-
ical intersections.

A long-range Rydberg molecule consists of a Rydberg
atom with principle quantum number n and a distant
(located R ∼ n2 a0 away) "perturber" atom in its elec-
tronic ground state. Non-adiabatic physics are a partic-
ularly interesting aspect of this system due to the close
connection between the potential energy curves and the
Rydberg wave functions [17–20]. The large size of the
molecules makes them an ideal laboratory to explore be-
yond Born-Oppenheimer physics on exaggerated scales,
and the flexibility provided by Rydberg state parame-
ters allows for controllable enhancement or suppression
of non-adiabatic effects and the possibility to steer ultra-
cold chemical reactions.

In this article, we show how the nodal lines of the
Rydberg wave functions can be linked to very strong,
even singular, vibronic coupling between the "high-ℓ" or
"trilobite"-like states of a long-range Rydberg molecule.
This effort extends previous work [7] which showed that
singular non-adiabatic coupling can arise in apparent
contradiction of the von Neumann-Wigner no-crossing
rule [21]. We make an unexpected connection between
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these conical intersections and a fundamental property
of the Coulomb potential, Kato’s theorem [22] and its
spatially-dependent generalization due to March [23].
These relate the total electron density to its s-state con-
tribution alone.

Theory - The interaction between the two atoms is me-
diated by the rapidly moving Rydberg electron (at po-
sition r), which only encounters the short-ranged forces
from the perturber (at position R) inside of a small vol-
ume centered on it. Across this region, the Coulomb
potential is essentially flat, and the potential V̂ (r,R) is
spherically symmetric with respect to the perturber. It
is therefore conveniently described by an expansion into
partial waves L defined with respect to the perturber.
The S-wave contribution to this interaction is the well-
known Fermi pseudopotential [24]. The contribution of
each partial wave is determined by the electron-perturber
scattering phase shift, δL(k), which depends on the in-
ternuclear distance through the semiclassical momentum
k ≡ k(R, n) =

√
2/|R| − 1/n2. These phase shifts scale

as δL(k) ∼ k2

L3 for L ≥ 2 and, since k ≪ 1, the im-
portance of higher-order partial waves decrease rapidly
[25–27]. Hence, in the general theory developed below
for the adiabatic potential energy curves UK(R), we give
particular expressions only for the N = 3 most relevant
partial waves, L = 0, 1, 2 [28]. The molecular states are
denoted "trilobite", "butterfly", and "dragonfly", respec-
tively [26, 28]. To keep the algebra transparent, we as-
sume 0 < δL(k) < π.1

We obtain the set of adiabatic potentials UK(R) by
solving the electronic Schrödinger equation[

Ĥe(r) + V̂ (r,R)
]
ψK(r;R) = UK(R)ψK(r;R). (1)

Although the interaction potential V̂ (r,R) is described
using electronic partial waves L defined with respect to
the perturber, a natural basis to expand ψK(r;R) into is

1 In all alkali atoms, this condition holds everywhere except small
R. This assumption can be relaxed at the expense of more careful
algebra involving the imaginary square roots in the βL terms
defined in Appendix A.
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the eigenstates of Ĥe(r). These are the Rydberg states
ϕnℓm(r) = unℓ(r)

r Yℓm(r̂) with angular momentum 0 ≤
ℓ ≤ n − 1 relative to the ionic core. As the diatomic
system possesses cylindrical symmetry, each m can be
treated individually and we consider just m = 0 below.

As our focus here lies on the high-ℓ states, we ne-
glect the quantum defects µℓ = δℓ/π caused by devia-
tions from a pure Coulomb potential in a non-hydrogenic
atom. We additionally neglect coupling to additional
n levels. Both of these assumptions are well-justified
here [20, 29], and permit the replacement of Ĥe(r) by
the number −1/(2n2). The adiabatic potential curves
UK(R) are obtained by diagonalizing V̂ , whose matrix
elements in the degenerate ℓ subspace of a given n are2

Vℓℓ′ = −
N−1∑
L=0

W †
ℓLWLℓ′ . (2)

Vℓℓ′ shows how the interaction with the perturber causes
an incoming Rydberg electron with angular momentum
ℓ (relative to the ionic core) to scatter, via each partial
wave L (relative to the perturber), into a state ℓ′. The
first three rows of the rectangular matrix WLℓ are given
in Appendix A.

Non-adiabatic coupling - The strength of the non-
adiabatic coupling between adiabatic states K and
K ′, quantified by the derivative coupling matrix
⟨ψK |∂RψK′⟩, is inversely proportional to the energy gap
UK(R) − UK′(R). After diagonalizing V , regions in the
potential curves where non-adiabatic coupling becomes
large can be identified by searching for small gaps. As
pointed out in Ref. [7], these can become arbitrarily small
when they occur at a discrete n value close to the position
of a conical intersection in the potential surfaces defined
as functions of R and n, where n is taken to be a contin-
uous variable.

To predict the positions (R0, n0) of such conical inter-
sections it proves essential to represent the interaction
operator in a different basis, namely the perturber spher-
ical basis composed of the non-orthogonal states

ψ̃L(r;R) =
∑
L′

[
ŴŴ †

]−1/2

LL′

∑
ℓ

WL′ℓϕnℓ0(r). (3)

The transformation from the Rydberg basis to this one
is accomplished using the left-inverse Ŝ satisfying

Ŝ = (ŴŴ †)−1/2Ŵ , ŜŜ† = 1̂N×N . (4)

Using these definitions, it is straightforward to show that
V̂ = Ŝ†ŜV̂ Ŝ†Ŝ [29], and thus

Ŝ(R)Ṽ (r,R)Ŝ†(R)ψ̃K(r;R) = UK(R)ψ̃K(r;R), (5)

2 Throughout, although in principle all variables defined here de-
pend on n, we keep this dependence implicit except at the level
of the hydrogen wave functions or energies.

where ψ̃K ≡ ŜψK and Ṽ ≡ ŜV̂ Ŝ† = −ŴŴ †. The ma-
trix element ṼLL′ is proportional to the overlap ⟨ψ̃L|ψ̃L′⟩;
these are computed explicitly in Appendix A. Clearly,
rather than dealing with the n× n matrix V̂ of Eq. 2, it
suffices to study the conditions necessary to obtain degen-
erate eigenvalues of the N×N matrix Ṽ . Semiclassically,
the elements ṼLL are approximately [30, 31]

UL(R) ∼ − 1

2(n− δL(k)/π)2
. (6)

Trilobite / Butterfly subspace - We first consider the sub-
space with L ≤ 1, corresponding to the trilobite and but-
terfly states. The 2 × 2 matrix Ṽ possesses degenerate
eigenvalues if Ṽ00 = Ṽ11 simultaneously as ⟨ψ̃0|ψ̃1⟩ = 0.
That the latter condition can be met is a priori not
guaranteed: the overlaps determining the diagonal ele-
ments, for example, are nodeless (See Eqs. B1 and B2).
However, employing the spatial generalization of Kato’s
cusp theorem [22], which was first derived and studied in
the context of density functional theory [23, 32–34] but
also discovered in the calculation of electron-transfer in
charged particle collisions [35, 36], we obtain

⟨ψ̃0|ψ̃1⟩ = − |ϕn00(R)|2 . (7)

This result – that the coupling between trilobite and but-
terfly states is determined by the s-wave probability den-
sity alone – shows that the coupling vanishes when

un0(R) = 0, (8)

and therefore degenerate eigenvalues are possible. Using
the semiclassical result of Eq. 6, we find the first condi-
tion, that the diagonal elements are equal, to occur when

δL(k) = δL′(k) (9)

for arbitrary L and L′. For S and P partial waves, if
Eqs. 7 and 8 hold at the same (R,n) tuplet, the two
partial waves locally decouple and the potential surfaces
will cross in a conical intersection. Remarkably, inserting
Eq. 8 into the quantum formulas for the diagonal energies
(Eqs. A2, B1, and B2), shows that Eq. 9 holds for the
fully quantum calculation as well. That the semiclassical
condition perfectly matches the quantum one is another
surprising conclusion stemming from Kato’s theorem.

Fig. 1 shows two extreme examples of the curve cross-
ing between S and P states (for concreteness, we have
taken Rb to be the perturber). For n = 42 (Fig. 1a) the
R value where Eq. 9 holds lies almost perfectly at a node
of u42,0(R) (compare Fig. 1c). For n = 43 (Fig. 1b)
this point lies nearly at an anti-node of the n = 43
wave function. Therefore, the former case exhibits an
extremely narrow crossing (on the sub MHz level) while
the latter case possesses a pronounced avoided crossing.
In Fig. 1(a,b) we compare four different calculations of
the two potential curves. The curves labeled 1M re-
sult from the diagonalization of V̂ . The curves labeled
GF were obtained from a Green’s function calculation
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Figure 1. Crossings of the adiabatic potential energy curves at principal quantum numbers n = 42 (a) and n = 43 (b) calculated
using different methods. 1M: numerical eigenvalues of Vll′ using one manifold of Rydberg states; GF: Green’s function method;
TB: the diagonal "trilobite" and "butterfly" potentials US(R) and UP (R), respectively; and BK: the semiclassical Borodin-
Kazansky model of Eq. 6. Energies are measured with respect to −1/(2n2). (c) Nodes of the Rydberg ℓ = 0 orbital. The
plotted curve is n3|un0(r0)|2, where r0 is obtained by solving k2 = 2/r0 − 1/n2 for the k value where δS(k) = δP (k). When this
function is zero, a conical intersection occurs. Narrow avoided crossings appear when a conical intersection occurs very close
to an integer n.

[26, 37, 38], which includes contributions from the entire
Rydberg spectrum and not just a single Rydberg man-
ifold as in the 1M case [39]. These two complementary
methods agree almost perfectly, especially regarding the
existence and size of the narrow avoided crossing. We
also show two approximations, the so-called BK model
[31], equivalent to Eq. 6 but derived using a different
approach, and the TB curves, which show the exact di-
agonal elements Ṽ00(R) and Ṽ11(R) defined in Eq. A2
and below.

Dragonfly contributions - We now include the effect of
L = 2 partial waves. The coupling between S and D,

⟨ψ̃0|ψ̃2⟩ ∝
un0(R)

4πR3
[2un0(R)−Ru′n0(R)] , (10)

is also oscillatory. It vanishes when un0(R) = 0 or
d
dR lnun0(R) = 2

R . When the former condition holds,
the S partial wave decouples from both P and D waves
simultaneously. Unfortunately, the algebra of higher L
values becomes tedious [25, 40]. We speculate that the
S-state decoupling persists even for higher L values, but
further effort is needed to make this generalization rigor-
ous. A degeneracy in the 2×2 subspace of S and D levels
is also possible, occurring when the expression in Eq. 10
vanishes simultaneously as δ2(k) = δ0(k). This semiclas-
sical condition, unlike the SP case, coincides with the
quantum condition only when R≫ 1 (Eq. B4).

Surprisingly, the coupling between P andD states does
not oscillate (Eq. B9), and therefore these curves cannot
cross. It is intriguing that, just as Kato’s theorem shows
the special role played by the s-wave function (defined
with the origin at the Rydberg ion), it shows how the
S-wave molecular state, defined with the origin at the
perturber, also behaves in a non-generic way.

Discussion - We showed that the L = 0 trilobite state
decouples from the L = 1, 2 partial waves, and likely all

higher partial waves, whenever Eq. 8 is satisfied. This is
a direct result of Kato’s theorem. It is particularly in-
triguing since the weight of the ℓ = 0 state in the wave
functions |ψ̃0⟩ and |ψ̃1⟩ is almost negligible. If the S and
P -wave phase shifts are equal when Eq. 8 is satisfied,
a conical intersection exists and its effects will emerge
in the non-adiabatic coupling of nearby integer n levels.
Such a conical intersection cannot occur between butter-
fly and dragonfly potential curves.

It is interesting to contrast these results with what was
observed in Ref. [7] for the crossing of a trilobite state
with a quantum defect state, with angular momentum ℓ0
and a non-zero quantum defect µℓ0 Semiclassically, the
relevant potential curves become degenerate when

πµℓ0 = δS(k), (11)

at the same (R0, n0) as un0ℓ0(R0) = 0. Eq. 11 bears sim-
ilarity to Eq. 9, but now requires the phase accumulated
by scattering off of the non-hydrogenic core of the Ry-
dberg atom to match that accumulated from scattering
off of the perturber. This is closely connected with the
fact that the R-dependent scattering phase shifts play the
role of quantum defects in the Rydberg formula given by
Eq. 6. The second condition is analogous to Eq. 8 but
differs in a key way which again illustrates the counterin-
tuitive message of Kato’s theorem. For a quantum defect
state, it is that radial wave function which must possess
a node. This carries a certain degree of physical intuition
as this state is the dominant component of one of the elec-
tronic states in the system. On the other hand, for the
trilobite and butterfly state interaction, there is nothing
in the scattering problem or in the pure Coulomb inter-
action to single out a specific ℓ. However, because Kato’s
theorem places fundamental importance on ℓ = 0, this is
the state which matters in the end, in what appears to
be a surprising accident of the Coulomb potential.
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Appendix A: Matrix elements of Ṽ

The L ≤ 2 matrix elements of the N × n rectangular
matrix Ŵ are

W0ℓ = β0 ϕnℓ0(R) (A1a)

W1ℓ = β1
∂

∂R
ϕnℓ0(R) (A1b)

W2ℓ = β2

(
3

2

∂2

∂R2
+
k2

2

)
ϕnℓ0(R), (A1c)

where βL =
√
2(2L+ 1)πk−(2L+1) tan δL(k). The matrix

elements of Ṽ are

ṼLL′ = −βLβL′Q̃LL′ , (A2)

where

Q̃LL′ = QLL′ , L, L′ ≤ 1, (A3a)

Q̃L2 =
1

2
(3QL2 + k2QL0), L ≤ 1, (A3b)

Q̃22 =
1

4
(9Q22 + 6k2Q20 + k4Q00). (A3c)

These formulas make use of the quantity

Qαβ =

n−1∑
ℓ=0

m=ℓ∑
m=−ℓ

∂α

∂Rα
ϕ∗nℓm(R)

∂β

∂Rβ
ϕnℓm(R). (A4)

Appendix B: Computed Q values

In Appendix A, the matrix Ṽ is defined in terms of the
overlap matrix Q̃, which is in turn defined using Qαβ (Eq.
A4) as a sum over the degenerate ℓ and m states. This
summation can be performed analytically, as described
in [20, 35, 36]. In doing so, all Q̃ terms can be defined
in terms of only the s-wave radial wave function and its
derivative, as summarized below. We use u ≡ un0(R)

and u′ = u′n0(R) to shorten the notation:

Q̃00 =
1

4π

[
k2u2 + u′2

]
(B1)

Q̃11 =
k2

3
Q00 −

1

6πR2

(
2uu′ − u2

R

)
(B2)

Q̃22 =
1

20πn2R3

[
2n4(2R+ 9) +R3 − 4n2R2

n2
u′2

+
4(n2(2R− 9)−R2)

R
uu′ (B3)

+ 4(2− 3R)u2

+
6n2R4 −R5 + (18 +R(8R− 7))n6

n4R2
u2

]
.

For R≫ 1,

Q̃22 ∼ k2

20π

[
(ku′)2 +

4

R2
uu′ + (k2u)2

]
. (B4)

We note here that the expressions given for Q11 and a
related quantity in Refs. [20] are incorrect. We report
the correct formulas here for completeness:

Υ33 =
4πR2k2Q00 − uu′ − u2/R

12πR2
(B5)

Υ22 = Q11

= Υ33 −
un0(R)

4πR3
(Ru′ − u). (B6)

For large n values the missing term does not lead to no-
ticeable differences. The various off-diagonal couplings
are

Q̃01 = −|ϕn00(R))|2 = − u2

4πR2
(B7)

Q̃02 =
u

4πR3
[2u−Ru′] (B8)

Q̃12 = − 1

8πR2

[
3
( u
R

− u′
)2

+ k2u2

]
. (B9)

For completeness, another useful result is

Q02 = −k
2

3
Q00 +

1

6πR2

(
2u2

R
− uu′

)
. (B10)

Appendix C: Green’s function

The closed-form Coulomb Green’s function [41] leads
to a transcendental equation [26, 38]

0 = A0(A1 −A01), (C1)

http://dx.doi.org/ 10.1103/PhysRevA.108.042805
http://dx.doi.org/ 10.1088/1367-2630/17/5/055010
http://dx.doi.org/ 10.1088/1367-2630/17/5/055010
http://dx.doi.org/ 10.1103/PhysRevLett.96.013201
http://dx.doi.org/ 10.1103/PhysRevLett.96.013201
http://dx.doi.org/10.1103/PhysRevLett.10.469
http://dx.doi.org/10.1103/PhysRevLett.123.073003
http://dx.doi.org/10.1103/PhysRevLett.123.073003
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where

A0 = 1− Φv
tan δ0
k

(C2)

A1 = 1 + (Φvvv − 3Φuuv)
tan δ1
k3

(C3)

A01 =
tan δ0/k

1− Φv tan δ0/k
3Φ2

uv

tan δ1
k3

, (C4)

whose solutions give the potential energy curves V (R) =

− 1
2ν(R)

2. Here, ν(R) is the R-dependent principle quan-
tum number whose non-integer part gives the deviation
from the unperturbed hydrogen levels caused by the per-
turber. The various Φx terms in Eq. C1 relate to deriva-
tives of the Coulomb Green’s function. The zeros of A0

and A1, computed individually, give the L = 0 and L = 1
potential curves. A01 describes the coupling between
these terms and vanishes whenever

0 = Φuv = −νΓ(1− ν)

2R2
Mν,1/2

(
2R

ν

)
Wν,1/2

(
2R

ν

)
,

(C5)
where M and W are Whittaker functions. When ν is
an integer, the nodes of Mν,1/2 and Wν,1/2 coincide with
those of un0, and hence we recover the result from diag-
onalization discussed in the main text.

Appendix D: Rubidium phase shifts

The existence of narrow avoided crossings at a specific
n value does depend sensitively on the electronic phase

shifts, and in particular on the energy where they are
computed to become identical. For reproducibility, we
give here the phase shifts used in our calculations, which
match those of Ref. [42]. For other sets of phase shifts,
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k (a. u. )

0.0

0.5
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2.0

(r
ad

)
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P

Figure 2. S- and P -wave phase shifts used to compute Fig. 1,
taken from [42].

whether they are computed using different methods or
measured experimentally, we would expect the n values
where conical intersections nearly occur to differ due to
any change in the intersection point.
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