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Abstract

Navigation requires a network of neurons processing inputs
from internally generated cues and external landmarks. Most
studies on the neuronal basis of navigation in vertebrates have
focused on rats and mice and the canonical senses vision,
hearing, olfaction, and somatosensation. Some animals have
evolved the ability to sense the Earth’s magnetic field and use
it for orientation. It can be expected that in these animals
magnetic cues are integrated with other sensory cues in the
cognitive map. We provide an overview of the behavioral evi-
dence and brain regions involved in magnetic sensing in
support of this idea, hoping that this will guide future
experiments.

Addresses
1 Research Group Neurobiology of Magnetoreception, Max Planck
Institute for Neurobiology of Behavior – Caesar, Ludwig-Erhard-Allee
2, Bonn 53175, Germany
2 International Max Planck Research School for Brain and Behavior,
Bonn, Germany

Corresponding author: Malkemper, E. Pascal (pascal.malkemper@
mpinb.mpg.de)
Current Opinion in Neurobiology 2024, 86:102880

This review comes from a themed issue on Neurobiology of Behavior
2024

Edited by Sandeep Robert Datta and Nadine Gogolla

For a complete overview see the Issue and the Editorial

Available online xxx

https://doi.org/10.1016/j.conb.2024.102880

0959-4388/© 2024 The Author(s). Published by Elsevier Ltd. This is an
open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).
Introduction
Spatial navigation depends on a complex underlying
network of neurons that encode a map of the environ-
ment. Initially hypothesized by Tolman in 1948 [1], the
first direct evidence of a cognitive map came in 1971,
with the discovery of neurons in the brains of rats that
increased their firing rate when the animal visited a
specific location in the environment, hence, termed
place cells [2]. Many other spatial cell types were
discovered in the following years, including grid cells
that fire at regularly spaced distances, head direction
cells that fire at specific head orientation angles, and
www.sciencedirect.com
border cells that fire at the edges of the environment
[3]. The ensemble activity of spatially tuned neurons
represents the neural correlate of a map of the external
space: a cognitive map.

Forming and maintaining a cognitive map requires sen-
sory and motor cue inputs. Internal self-motion cues
(idiothetic cues) like vestibular signals, sensory flow,
proprioception, and motor efference copies keep track
of travelled distances and directions. Over time, how-
ever, these accumulate errors, which are minimized by
consulting external environmental cues (allothetic

cues) [4]. The predominantly studied organisms for
cognitive maps are rats and mice, which effectively
navigate with external cues perceived by the canonical
senses - vision, olfaction, hearing, and somatosensation -
used flexibly depending on availability and task re-
quirements (Figure 1). However, within the diverse
animal kingdom some species have evolved sensory
specializations to navigate in their unique habitats, such
as the ability to detect the Earth’s magnetic field [5].
Do magnetic cues integrate into the cognitive map in
these animals?

The geomagnetic field
The Earth’s magnetic field provides an omnipresent set
of allothetic cues to any navigator able to sense it
(Figure 2): The polarity (direction), inclination (tilt),
declination (angle between magnetic and geographic
north) and intensity (density) of the field lines. In
addition to directional (compass) information, inclina-
tion, declination and intensity gradients potentially
provide positional (map) information [6,7]. Moreover,
magnetic anomalies created by magnetic minerals in the
Earth’s crust could serve as local landmarks [7].

The magnetic compass sense
Many organisms use the direction of the Earth’s magnetic
field for orientation [8]. An intensively studied model

organism is the European robin, a long-distance migratory
bird that uses a magnetic inclination compass on its
biannual migrations [9,10]. Fishes, amphibians, and tur-
tles also possess a magnetic compass sense. Even among
mammals a magnetic compass has been demonstrated in
species that inhabit aphotic habitats, such as bats and
subterranean mole-rats [11]. Mole-rats use their compass
to navigate through mazes of tunnels [12], bats to return
to their home roost after nightly foraging bouts [13], and
presumably for long-distance migration [14].
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Figure 1

Sensory cues used by an animal orienting in space: The environment offers visual, olfactory, auditory, tactile, and possibly magnetic cues from the
geomagnetic field or local anomalies that can aid navigation of an animal able to sense these cues. Together with idiothetic information such as vestibular
signals, optic flow and proprioreception, a cognitive map in the brain is formed, consisting of spatially firing neurons such as a. Head direction cells b.
Border cells c. Grid cells d. Place cells. a: Example polar plot of firing rate of a cell at different angles in the environment, b–d: Example firing rate maps of
respective cell types in an animal exploring a rectangular environment, with warmer colors denoting the location encoded by the cell.
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The magnetic map sense
In addition to the magnetic compass, evidence from
long-distance migrants supports the use of geomagnetic
cues for true navigation, i.e. to determine position based
on magnetic parameters [6,7]. The global gradients of
geomagnetic field intensity, inclination and declination
often form grids that provide information for a bi-

coordinate map. Virtual displacement experiments in
which animals displayed compensatory reorientation
behavior after sole exposure to the magnetic field pa-
rameters of a remote location (without being physically
displaced) provide the strongest evidence. For example,
reed warblers exposed to the magnetic field parameters
of a location w2700 km northeast from their southern
migratory route displayed a corresponding southwest
deflection of their directional preference in a laboratory
orientation assay [15]. Similarly, hatchling green turtles
use magnetic signatures to identify critical locations

along their migratory route, where they must change
their swimming direction to stay in the Atlantic gyre and
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prevent drifting into colder waters [7]. Migratory fishes
such as eel and salmon also possess a magnetic map
sense [16,17]. It is important to note, however, that the
geomagnetic field gradients are very shallow, rendering a
magnetic map most feasible for long-distance migrants.

Intensity and inclination changew3e5 nTandw0.009�
per km, respectively, corresponding to a relative change
of 0.01% per km [18,19]. Absolute sensitivities and
discrimination thresholds of the magnetic sense are not
well studied, but published thresholds for the inclina-
tion compass of 2e5� for birds [19] and 0.5� for newts
[18] suggest that the use of magnetic maps over dis-
tances<50e200 km is unlikely (others have suggested a
lower limit of >10 km [6]). The lower threshold might
be determined by receptor properties [20] or back-
ground noise, such as the daily fluctuations of the

geomagnetic field, which are regularly of the same
magnitude as the field would change over a distance of
10 km. Indeed, even in homing pigeons which home
from distances of up to several hundreds of kilometers,
www.sciencedirect.com
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Figure 2

The geomagnetic field as an allocentric cue for navigation. a. Magnetic cues from the Earth’s magnetic field can be used to derive directional in-
formation by using polarity, inclination or declination angle (angle between magnetic north’ mN and geographic north’ gN) or positional information by
using declination changes or the gradients of inclination angle or intensity of the field. b. Example of a bat migrating a distance of 2,224 km in southwest
direction from Pape, Latvia to Pitillas, Spain [14]. The bat could either follow a magnetic direction over a specified distance or follow magnetic field
gradients until the parameter of the local magnetic field matches the desired location (which the animal remembered or interpolated).
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there is no strong evidence for the use of a magnetic
map sense [21]. Similarly, magnetic manipulations did

not impede homing success in shearwaters that were
displaced 400 km [22]. Accordingly, geomagnetic gra-
dients are likely not helpful for animals orienting over
short distances (<2 km), such as rodents. However, local
magnetic anomalies caused by magnetic minerals in the
Earth’s crust could steepen gradients and serve as
landmarks [7].

Sensory basis of the magnetic sense
The cellular and molecular basis of the magnetic sense
remains obscure [23], but several physically plausible
sensory mechanisms have been suggested [24]. The
www.sciencedirect.com
radical pair hypothesis describes a quantum mechanism
based on the influence of weak magnetic fields on the

recombination of radicals [25]. There is evidence for
magnetic field effects on radicals produced in photo-
excited cryptochromes in the retina [26]. A second
proposed mechanism is based on magnetic nanocrystals
(e.g. magnetite), but such particles are still awaiting
their discovery in a sensory cell of any vertebrate [23].
Finally, recent evidence from pigeons supports a com-
pass mechanism based on electromagnetic induction in
the semicircular canals of the inner ear [27]. It is
conceivable that an animal species possesses two mag-
netic sensors tuned to fulfil different functions

(e.g. compass þ map).
Current Opinion in Neurobiology 2024, 86:102880
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Brain regions involved in the magnetic sense
Our understanding of the neuronal circuits responsible
for processing magnetic information remains incom-
plete. Various species appear to engage different circuits
for this task, although direct neurophysiological re-
cordings supporting this assertion are scarce [28].
Instead, in many experiments animals were exposed to
magnetic stimuli and immediate early genes (IEGs such
as c-fos, ZENK/EGR-1, pERK) served as proxies for
neuronal activity [29]. The IEG expression was
compared to sham-exposed control animals to identify

activated brain regions. Stimulus-response properties of
magnetosensory systems are unknown, thus often
complex changing magnetic fields served as stimuli to
maximize the likelihood of activating the receptors.
Based on such studies, brainstem trigeminal and/or
vestibular nuclei are likely primary processing centers
for magnetic information in rodents, birds, and fishes
[30e32]. From the primary brainstem areas, magnetic
information distributes across many brain areas,
including the thalamus, superior colliculus, hippocampal
formation, and cortical/hyperpallial areas. A separate

thalamofugal pathway from the retina to a forebrain
region termed Cluster N appears to process magnetic
compass information coming from the retina in night-
migratory birds [33]. Cluster N densely connects with
the hippocampal formation [34], a key brain region for
spatial navigation and cognitive maps.

Brain regions involved in navigation (cognitive maps)
The formation of a cognitive map requires integration of
multiple sensory cues, both internally generated and
external landmarks, distributed across several brain re-
gions [35,36]. Information from these sensory systems is
first encoded in an egocentric reference frame, i.e. with

respect to the animal’s position and orientation in space.
This is then transformed into allocentric information to
form a coherent cognitive map of the external space,
independent of the animal’s head and body posi-
tion [37].

Upstream brain regions like the medial vestibular nu-
cleus, nucleus prepositus, dorsal tegmental nucleus,
lateral habenula and the lateral mammillary nucleus
encode angular head velocity using inputs from self-
motion cues [38,39]. This idiothetic information on

speed and direction of head turning is integrated with
allothetic sensory cues, leading to the directional firing
of head direction cells that are found in many brain re-
gions, including the dorsal tegmental nucleus, lateral
mammillary nuclei, anterodorsal thalamic nucleus,
laterodorsal thalamic nucleus, postsubiculum,
postrhinal-retrosplenial-, and medial entorhinal cortex
(MEC) [39]. Edges of the environment are encoded in
border cells, also called boundary vector cells, in the
subiculum, postrhinal cortex, retrosplenial cortex and
MEC [40e42]. Moreover, object vector cells in the

MEC encode information on the distance to objects in
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the environment [43]. Cells that encode the speed of
movement are also found in the MEC [44]. The com-
bination of movement speed, distance and direction
leads to the formation of multiple hexagonally arranged
periodically firing fields characteristic of grid cells in the
MEC [44] and the pre- and parasubiculum [45]. These
cells likely provide metrics for navigation by laying a grid
on the external space which acts as a reference for

measuring distances. Ultimately, inputs from this dis-
tance metric together with spatial information from
other cell types feed into place cells in the hippocampus
CA1, CA3, and dentate gyrus [46,47]. Apart from the
animal’s location in space, the hippocampus also en-
codes the position of objects in landmark cells and their
sensory features in object recognition cells [48]. More-
over, spatially selective neurons resembling place cells
were also discovered outside the hippocampus, e.g. in
the visual cortex [49], somatosensory cortex [50], the
subiculum [47], and superior colliculus [51], suggesting

a wide distribution of spatial signals in the brain with the
hippocampus playing the role of a central hub [52].

Possible integration of magnetic information into the
cognitive map
Animals with a magnetic sense likely use directional
(compass) and perhaps positional (map) information of
the geomagnetic field together with other sensory
inputs when forming a cognitive map. It is conceivable

that they possess neurons that respond to specific values
or combinations of magnetic field parameters, but where
could these neurons be located?

In birds and mammals, several brain regions have been
identified to exhibit both spatially firing cells and re-
sponses to magnetic fields (Figure 3). An early step in the
formation of a cognitive map requires the integration of
head position and movements using input from brain-
stem vestibular nuclei [53]. Interestingly, in head-fixed
pigeons these nuclei are also activated by magnetic

field rotations [27,54] and electrophysiological recordings
in head-fixed pigeons revealed vestibular brainstem
neurons tuned to specific magnetic field directions [55].
Interestingly, the cells appeared to be tuned to the in-
tensity of the Earth’s magnetic field, as their response
increased from 20 mT to 50 mT, but did not increase
further at 100 mT or 150 mT [55]. These results are
consistent with a population of magnetic head direction
cells that transmit allocentric directional information to
downstream spatial brain areas. Where and how this in-
formation is integrated is currently unknown.

A study in mole-rats reported a reduction in c-fos
expression in the anterodorsal (AD) and laterodorsal
(LD) thalamic nuclei, the dorsal tegmental nucleus, the
postsubiculum, the retrosplenial and entorhinal cortices,
and the hippocampus when the ambient magnetic field
was perturbed. While this does not prove that all these
areas process magnetic information, it suggests a
www.sciencedirect.com
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Figure 3

Brain regions that contain spatially firing neurons and are involved
in magnetic sensing. a. Schematic rodent brain with functional overlaps
in RSC = retrosplenial cortex [56,94], ADN = anterodorsal thalamic nu-
cleus [56,95], HPC = hippocampus [2,56,96], PoS = postsubiculum
[42,47,56], SC = superior colliculus [32,51], EC = entorhinal cortex
[44,56], DTN = dorsal tegmental nucleus [56,97]. b. Schematic bird brain
with functional overlaps in MP* = medial pallium [77], HPC = hippocampus
[54,61], DL* = dorsolateral hippocampus [98]. DT✝ = dorsal thalamus [49]
and VN✝ = vestibular nucleus [55]. *Magnetic responsive cells are yet to
be discovered in MP where head direction cells were discovered in shear
water chicks and DL where grid-like cells along with other spatially se-
lective cells were very recently found in the tufted titmouse in a region
lateral to the dorsal hippocampus seen as a functional homolog to the
mammalian MEC (dashed black lines). ✝DTand VN were found to have a
magnetic response. The vestibular nucleus contains angular head velocity
(AHV) cells while the dorsal thalamus contains head direction cells in
mammals. However, presence of these directionally selective cells is yet
to be established in the two brain regions in bird brains (dashed red lines).
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correlation between stable magnetic fields and the
cognitive map in these subterranean rodents [56]. It is
known from other rodents that spatially tuned cells often

stop firing when their sensory anchors are unreliable [57]
and the expression of c-fos has been linked to their ac-
tivity in a given environment [58]. The reported mag-
netic responses in the anterior thalamus in mole-rats are
particularly noteworthy, as recently the firing of head
direction cells in the anterior thalamus of mice were
found to increase their average firing rate in response to
auditory and somatosensory stimulation [59]. This
demonstrates thatmultimodal information from external
cues already enters the head direction network at the
level of the thalamus. Furthermore, magnetic field
www.sciencedirect.com
effects on c-fos expression in the dorsal thalamus were
also found in head-fixed pigeons [54]. It would be
interesting to test if magnetic stimuli modulate the ac-
tivity of head direction cells in this brain region.
Consistent with the notion that magnetic cues are in-
tegrated with other modalities to form a multisensory
representation of space, magnetic responses were also
found in the superior colliculus of mole-rats [32].

Further downstream, the retrosplenial cortex which
contains head direction cells and border cells is centrally
involved in egocentric to allocentric transformation
[37]. Irrespective of the upstream magnetic information
processing brain regions, we postulate that this hub for
transformation of external sensory information into the
spatial navigation circuitry could integrate magnetic
information into the cognitive map. Once incorporated
into the allocentric map, the spatial representations in
downstream brain regions like the MEC and the hip-

pocampus can also be expected to exhibit activity
modulation by magnetic cues.

Finally, the hippocampal formation, which harbors place
and head direction cells in bats, birds and rodents is an
especially intriguing brain region [60e63]. Magnetic
field effects on hippocampal c-fos expression were
found in birds and mammals. In freely hopping zebra
finches, a changing magnetic field increased c-fos
expression in the dorsomedial anterior hippocampus
[64], and a similar effect has been reported for the

hippocampus in head-fixed pigeons [54]. The pigeon
hippocampus is involved in spatial navigation [65,66]
and contains place cells [67], as does the anterior hip-
pocampus of zebra finches [61]. Overall, these findings
are consistent with the integration of magnetic cues in
the hippocampal formation.

Possible encoding of magnetic landmarks
The hippocampus, MEC, and LEC [68] store informa-
tion on both the spatial location and non-spatial sensory
features of objects in the environment. Interestingly,
mole-rats inspect magnetic objects longer than similar
non-magnetic ones [69]. We speculate that magneto-
sensitive animals encode the magnetic properties of

objects in object tuned cells to map them as magnetic
landmarks (anomalies) during navigation, comparable to
the use of acoustic landmarks in bats [70].

Feasibility of recording brain activity in animals with a
magnetic sense
Although there is some evidence for a magnetic sense in
standard laboratory rodents [71e73], there is a lack of
evidence for the use of magnetic cues in navigation in

these animals [74]. It is, therefore, advisable to study
sensory specialists. These are primarily non-model or-
ganisms inhabiting specific niches, but recent advances
in recording technology enable freely moving electro-
physiological recordings in any animals able to carry a
Current Opinion in Neurobiology 2024, 86:102880
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Figure 4

Putative magnetic cue effects on neural representations of space. Schematic representations of predicted outcomes of spatial tuning patterns of hypo-
thetical cells anchoring to different parameters ofmagnetic cues. a.Magnetic compass guided spatial representations in head direction cells and border cells of
mole-rats exploring a circular arena: A 90� clockwise rotation of the magnetic field is expected to rotate the preferred firing direction of a head direction cell
(depicted in the polar plots) and the firing field of a border cell (depicted in the firing rate map) by corresponding angles in the same direction. b.Magnetic map
senseguidedspatial representations ingrid cells andplacecellsof reedwarblersvirtuallymagneticallydisplaced from Illmitz,Austria toNeftekamsk,Russia [15]:
Each location on Earth has distinctive magnetic field parameters like field intensity, inclination angle, and declination angle. Spatial representations in grid cells
andplace cells (both depictedas firing ratemaps) could anchor to theseexternal parameters to formauniquemapof the respective locations.Grid fieldsofa grid
cell could realign in new environments whereas place cells could remap their firing fields.
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few grams on their head. Wireless transmission or log-
ging of acquired neural data has made it possible to
record from freely flying bats [62] and barn owls [60],
swimming goldfish [75], freely moving quails [76] and
migratory seabirds [77]. High-density silicon probes
enable the acquisition of stable neural data from hun-
dreds to thousands of neurons over months and in deep
brain regions [78]. In addition to advances in electro-

physiology, modern imaging technologies such as func-
tional ultrasound imaging [79] and multi-photon
quantification of calcium reporters enable functional
assessment of large neuronal populations in freely
moving animals [80].

Considerations for studies on the role of magnetic
cues in cognitive maps
When studying magnetic orientation behavior, the

stimuli should mimic natural situations, i.e. they should
have Earth’s field strength and be spatially homoge-
neous. Furthermore, when integrating magnetic stimuli
into electrophysiological experiments, one needs to be
aware of artefacts due to electromagnetic induction
[81]. Controlling for other artefacts, such as heating or
vibrations, by using double-wrapped coils is crucial [82].
Moreover, as the compass of birds and possibly some
mammals is sensitive to interfering radiofrequencies
[71,83,84], minimizing and characterizing the electro-
magnetic fields in the recording setup is imperative.

Attention states and task requirements influence the
dynamics of spatial representations [85]. Hence, it is
crucial to study the contribution of magnetic cues to the
cognitive map when the magnetic information is rele-
vant to the task [77]. Long-distance migrants rely on
their magnetic sense primarily during the migratory
seasons and in specific migration phases [10]. Further-
more, some animals might use their magnetic sense only
during certain times of the day, e.g. around sunset,
either to calibrate a sun compass [86] or because the

magnetic field fluctuations are minimal during this time
[87]. A key challenge is, therefore, to find a species and
behavior with a robust magnetic response at a spatial
(<1e2 m arena) and temporal scale (<30e60 min per
session) suitable for freely moving neural recordings
inside a magnetic coil system.

An exciting example are streaked shearwater chicks just
before their first migration, in which HDCs were found
to fire preferentially towards the seasonally appropriate
northern direction [77]. The recordings were made

during 10 min sessions in a small arena (diameter
120 cm), providing an ideal opportunity to study the
effect of magnetic field manipulations on HDC firing.
Other magnetosensitive species in which spatial cell
recordings have been achieved include bats [62], fishes
[75], pigeons [67], and zebra finches [61]. To screen for
magnetic compass information in spatial brain regions of
these species, several sessions could be recorded from
www.sciencedirect.com
an animal inside a magnetic coil system that changes
magnetic directions between the sessions (Figure 4a).
Rotations of spatial representations (e.g. the preferred
firing direction of a head direction cell) would indicate a
compass response, similar to the response observed in
rats when a prominent visual cue has been rotated [88].

It is currently technically impossible to study the cogni-

tivemap at the scale relevant for themagneticmap sense.
It could be addressed, however, by recording from long-
distance migrants before and after a virtual displace-
ment. Place cells and grid cells are known to exhibit
environment-specific firing patterns that can be stable
over several months [90]. In different environments,
however, the cells reorganize their firing activity [91] in
form of global remapping by place cells wherein the place
fields of place cells change their respective firing loca-
tions, and in the form of grid realignment wherein the
entire grid pattern of a grid cell moves and rotates. If an

animal indeed perceives an environment as novel after a
magnetic virtual displacement (with all cues except
magnetic cues unchanged), one would expect to observe
global rearrangement of activity in these cells (Figure 4b).

To promote the use of magnetic cues, other available cues
should be minimized [20], although presenting the
magnetic field along with additional visual cues as a
reference could yield insights in cue conflicts induced by
magnetic field rotations as demonstrated in bogong
moths [89]. Finally, global remapping has also been

demonstrated to occur in the hippocampus and subic-
ulum of bats when they were forced to switch from one
sensory modality (vision) to another one (echolocation)
within the same environment [92]. It is therefore
conceivable that remapping takes place in magneto-
sensitive animals when the magnetic field is not present.

Conclusion
In recent decades, our understanding of cognitive maps

and the magnetic sense has evolved substantially, albeit
independently. At the same time, neuroscience has
undergone a technological revolution that begins to
relax the restriction to a handful of standard model or-
ganisms. Novel tools allow bridging both fields to record
neural activity in animals exploring naturalistic envi-
ronments [93] and investigate the role of the Earth’s
magnetic field in the cognitive map of sensory special-
ists. We anticipate that as technology progresses, the
number of recordings of spatial cells across diverse
species will increase and simultaneously advance our

understanding of the cognitive map and the role that
magnetic cues might play in it.
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